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Let μ be a distribution with compact support in R". In the terminol-
ogy of Ehrenpreis [2] μ is called invertible for a space of distributions %
in R" if μ * f = <$. Using his characterisation of invertible distributions
in terms of the growth of their Fourier transforms, we obtain a class of
invertible distributions which properly contains the distributions with
finite supports. We consider ^ — & (or Φ') and ίF= Φp, but our results
for the latter space are only partial.

1. Introduction. We follow the notation of Schwartz [6]: by 6D/

(̂ Dp) we denote the space of distributions (distributions of finite order) in

R". & will denote the space of infinitely differentiable functions in R" with

the topology of uniform convergence of functions and all* their derivatives

on compact subsets of R". The dual space of S, denoted by S', consists of

distributions with compact support in Rn. For J L I E S ' we define the

Fourier-Laplace transform of μ by

Ehrenpreis [2] and Hormander [3] have studied the range of convolu-

tion operators

(1) u h-» μ * u, μ G £ ' ,

in each of the spaces ^D', Φp and &. We recall their main result: the

operator (1) in & and, equivalently, in βJύr (resp. in φp) is surjective if and

only if μ is slowly decreasing (resp. very slowly decreasing) in the sense of

DEFINITION 1. Let μ G &'. μ is called slowly decreasing if there exist

constants A9 B and m such that

sup

for all £0 E R". μ is called very slowly decreasing if there exists a constant

m and for each ε > 0 a constant Bε such that

sup

for all ξ0 E R".
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We sketch the proof of this result for the space S in the Appendix;
the given direct proof of the sufficiency of the slowly decreasing condition
is due to J. E. Bjδrk (personal communication).

In this note (§§2-4) we prove the following theorems:

THEOREM 1. Let μ — vλ+v2, where vχ,v2 E &' have disjoint singular

supports and assume that vx is slowly decreasing. Then μ is slowly decreasing.

THEOREM 2. Let μ E S', let f be real analytic in a neighbourhood of the

singular support of μ and assume (/• μ) is slowly decreasing. Then μ is

slowly decreasing.

THEOREM 3. Let μ E S' be a measure containing an atom {i.e. μ{x0} Φ

0 for some JC0 E Rw). Then μ is very slowly decreasing.

REMARK 1.1 do not know whether Theorems 1 and 2 remain true with
"slowly decreasing" replaced by "very slowly decreasing"; the given
proofs show they do if μ is a measure and vλ (resp. (/ μ) ) is very slowly
decreasing in the sense of Definition 1 with m — 0.

REMARK 2. Measures with non-empty singular support but without an
atom may fail to be invertible as the following elementary example shows:
Let « = 1, let φ be a test function equal to 1 near x = 0 and put
μ — φ - log I | then μ is invertible if and only if φ Vp(l/x) is, but
(φ Vp(l/x))\ξ) = / j^ φ(£') dξ' is not slowly decreasing.

As a corollary to the theorems, we describe in §5 a class of invertible
(for &) distributions which properly contains the distributions with finite
supports (see Ehrenpreis [1] and Hormander [3], Theorem 4.4).

Finally I would like to thank Professor J. E. Bjδrk for the generous
advice I was fortunate to profit from during the work on this paper.

2. Proof of Theorem 1. It is no restriction to assume μ is a measure
with total mass not greater than 1 (otherwise regularise μ by convoluting it
with a suitable invertible distribution, see Ehrenpreis [2]).

Since by adding a test function one does not affect the invertibility of
μ we may also assume that "singular support" in the theorem has been
replaced by "support".

Let φ be a test function such that

(2) φ — 1 on a neighbourhood of supp vx and supp v2 Π supp φ — 0 .
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By assumption (φ μ) is slowly decreasing: for any ξ0 E R" there

exists ( , 6 R " such that

\ξλ-ξ0\<Alog{2+\ξ0\) and B{\ " ί)

with some constants A, B, m and we shall assume 5 = 1 .

For any i? > 0 we may estimate the part of the integral over the ball

and the remaining part by f^>R | <p(£) | dξ; we obtain

(3) (1+lίolΓ^llΦlU sup \β(ξ)\+f \Φ(i)\dξ.
|£-£0 |<Λ + /Πog(2 + |£0|)

 J\^R

We may now pass to infimum over all ψ satisfying (2). To do this we

need

LEMMA 1. Let Φ be any test function with property (2). Denote by % the

set of all test functions φ which satisfy (2) and are such that \\φ\\L\ < | |Φ| |L i .

Then there exist constants C,, C2 > 0 such that, for any R > 0,

inf

By Lemma 1 with R- NA log(2 + | £01), the constant N to be de-

termined shortly, it follows from (3) that

s p I Λ / / M I ^ / Λ I IΛ \\~C2NA

implying

sup \β(ξ)\^B{l+\ξo\Y

for a suitable constant B if N was chosen so that C2NA > m.
2

Proof of Lemma 1. Suitably chosen positive constants occurring in the

proof will all be denoted by C We shall assume with no loss of generality

that/? > 1.

Since for all test functions φ and all TV = 0 , 1 , . . . ,
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and since | ξ \N < CN • Σ | ξj \N, ξ E R", we easily see that

J

For each such TV let φ^ be a function in fVith the property

\\ T\N~^ II ^ - /^N+ 1 Λ7" ! 1 <r i -£" M

X/. Q)xr i — O * iV I, 1 — J — At,

for example, for a non-negative test function ψ with sufficiently small

support and / ψ = 1, put φ^ = ψ(ΛΓ) * * ψ(ΛΓ) * Φ, where ψ (7V)(^) =

Nnψ(Nx) occurs in the convolution TV times.

Then

r r IC\N

(4) i n f / | φ | < / |φ J < i?" C I — I iV!

for TV > n and, since JR > 1, also for TV = 0,1, . . . ,n.

Now, for each TV, take the inverse of (4), multiply it by 2~N and then

sum over all TV >: 0; we obtain

inf^J \Φ\^Rn C - e-CR,

which is clearly bounded by Cλe~ClR for some constants C]9 C2> 0.

3. Proof of Theorem 2. The proof of Theorem 1 applies almost
verbatim with condition (2) replaced by

(2)' φ = 1 on a neighbourhood of supp μ and/real analytic on supp φ,

and then φ and φ^ in Lemma 1 replaced by / φ and/ ψN, respectively.

4. Proof of Theorem 3. We may clearly assume x0 = 0.

Let φ be a non-negative test function with support contained in the
unit ball in R^ and / φ = 1.

For R > 0 put φR(ξ) = R~"φ(R~ιξ); observe that the equalities φR(x)
= φ(Rx) and φ(0) = 1 imply that the functions φR converge pointwise to

(= the characteristic function of the set {0}) as R -> oo.
By a direct calculus we see that

(5) lim fφR(ξ')fi(ξ-?)dξ' =
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uniformly in ί- G R":

<PR *β(i)- μ{0} = ΦΛ μ(β"< «>) - μ(χ{0])

= μ ( φ Λ « - ' < • • « > - X { 0 , • * - ' < • • « > ) ,

and this is bounded by

which is clearly convergent to zero as R -*• oo.

It now follows from (5) that, for some R > 0,

sup

for all £0 E R".

5. A class of invertible distributions.

THEOREM 4. Le/ μ E S' be a measure with an atom, let v E &' have

singular support disjoint from that of μ and let P be a non-zero polynomial.

Then P μ + v is slowly decreasing.

Proof. By Theorems 1 and 3 all we need to prove is that non-zero

polynomials are (very) slowly decreasing: for any ε > 0 the function

is a polynomial with no real zeroes, hence it is bounded away from zero.

Therefore, for some 5 ε, Cε > 0,

sup |P({)|>Ce ( / |P(ί0

Appendix. We briefly sketch the proof of the following result of

Ehrenpreis [2].
The mapping

(Al) S B w h - » / ϊ * ι / E S

is surjective if and only if μ is slowly decreasing.

Since the adjoint of (Al),

(A2) g'Bmμ^Gδ',
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is injective, μ * & is dense in S; it is equal to & if and only if μ * S' is
weak* closed (see, for example, Kelley and Namioka [4], Theorem 2.19).
By reflexivity of S the weak* closure of μ * &' is equal to its weak closure
and therefore also to its strong closure, the strong topology of S' being
locally convex. Malgrange [5], Corollary on p. 310, proved that μ * S' is
strongly closed if and only if β has the following division property:

(A3) if v E S' and v/β is entire, then v — μ * γ for some γ E &'.

We now show that (A3) holds if and only if β is slowly decreasing.
If β is slowly decreasing then, without losing generality, we may

assume that for every ξ0 E R" there exists ξ} E R" such that

|£0l) and | A U , ) | > 1 .

Let v E S' and assume v/β is entire. For T E C put φ(τ) =

β(ξx + 2 τ ( | 0 - £,)) a n d Ψ( τ) = ?(£i + 2^(£o - έi)) % Harnack's in-
equality

(A4) log+ = logH

By subadditivity of log+ and the equality log | φ | = log+1φ | — log+11/φ | ,
we may estimate the integral in (A4) first by

= l
log|φ|,

and then only by

(A5)

because, by the assumption,

( l θ g + | ψ | + l θ g + | φ | )

ί log|Φ| > log|Φ(0)| = log|A(€i)| ^ 0.
J\τ\=\

Since the points on the circle | τ | = 1 lie at a distance at most
2 A log(2 + I ξ01) from the real space R^ and we have an estimate on β and
v in terms of the exponential of that distance, the integral (A5) is not
greater than log C + ΛΠog(l + | £01) for some constants C, N. Thus

proving that v/β has polynomially bounded growth on R | and therefore,
being necessarily of exponential type (see Malgrange [5]), is a Fourier-
Laplace transform of some γ E S'.



A CLASS OF SURJECTIVE CONVOLUTION OPERATORS 7

Conversely, if jίi is not slowly decreasing, then there exists a sequence

| , e R " j = 1,2,..., such that

and we may assume |£ ; |-> oo suitably quickly. It is now possible to

construct an entire function g which itself is not a Fourier-Laplace

transform of any γ G δ ' , but becomes one when multiplied by β. We

indicate the idea: for each j we let φy be a test function with support in a

fixed set k such that φj(ζ) is about the size of \ξj when ξ — ξj9 but is

conveniently small when \ξ — £ 7 | > y l o g | £ y | . The function g = Σφ, is of

exponential type but not polynomially bounded on R^. At the same time

β - g = Σ βf>j is polynomially bounded on R^ because β is small where φ ; is

big. For the details of the construction we refer to Ehrenpreis [2] and

Hόrmander [3].

Added in proof. I wish to thank Olaf von Grudzinski for bringing my

attention to the papers [7], [8] of L. Hόrmander and in particular to the

fact that Theorem 2 of this note (hence also Theorem 1) is a consequence

of Theorem 3 in [8] and Lemma 5.4 in [7]. It may be remarked, however,

that the proof presented here is independent of the much more advanced

methods of [7].
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