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DETERMINATIONS OF JACOBSTHAL SUMS

RoNALD J. EVANS

The sign ambiguities are resolved in evaluations of Jacobsthal sums
E,{,:l(m(m" +a)/p) for k=2, 3, 4, 6, 10, and 12, where ( /p)
denotes the Legendre symbol.

1. Introduction. For a positive even integer e = 2n, a prime p = ef
+ 1, and an integer a prime to p, define the Jacobsthal sum of order e by

i n
pla)= 3 (ML),
m=1 p
where ( /p) denotes the Legendre symbol. In {1, §4], the values of
Jacobsthal sums ¢, (a) of orders e =4, 6, 8, 12, 20, 24 are given up to
some sign ambiguities. The purpose of this paper is to show how the
precise values of ¢,(a) can be found.

In §3, we give congruence conditions (mod p) which determine the
correct choices of * signs. The computational complexity of these de-
terminations for large p is much less than that of computing ¢,(a) directly
from the definition.

In §4, we describe a method for determining the correct choices of *=
signs by congruence conditions (mod a), when a is prime. If @ is small
compared with p, then the determinations in §4 (mod a) turn out to be
computationally simpler than those in §3 (mod p).

The cases e = 4, 6 and e = 8§ have already been treated by Hudson
and Williams in [2] and [3], respectively. We employ different techniques
based on Jacobi sums which work for all values e = 4, 6, 8, 12, 20, 24.
Each of these values of e is considered in §3, but in §4, only the case
e = 12 is treated, for brevity.

It will be convenient to introduce the notation F,(a) for the sum

(1) F(a)= 3 (’"—(’"——;—;—15’—2

m=1

| = a(-a).

An evaluation of F(a) immediately yields one for ¢,(a), since [4, (7)]

F(a) = ¢,(—a) = ¢,(a)(—1)"".

In the sequel, attention will be focused on F(a).
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2. Notation and Jacobi sums. For a character A (mod p), define the
Jacobi sums

J) = i AmA1 —m),  K(A) = AAION).

Write p = ef + 1. For each value of ¢ =4, 6, 8, 12, 20, 24, fix a
character x = x, (mod p) of order e. Let P be the prime ideal divisor of p
in Z[exp(2mi/e)] chosen such that

(2) x(a) =a?™V/¢=qa/ (mod P)
for all @« € Z[exp(27i/e)]. It is easily seen that
(3) K(x)=0 (modP).

In [1, §3] one finds the following evaluations of Jacobi sums K(x) of
orders e = 4, 6, 8, 12, 20, 24 in terms of parameters in quadratic partitions
of p.

(4) K(x,) =a,+ib,, wherep=aj+ b}, a,=— (2/p) (mod4);
-1 .
6) (5K = K(x2) = s + 85,
where p = a3 + 3b7,a, = —1 (mod 3);

(6) K(xg) =ag+ ibg)2, wherep =ai + 2b%,a;=—1 (mod4);
8 8 8 8 8 8

(7) K(x) = {a4 +ib,,  if3ta,,

where
K(x},) =a,+ib, asin(4);
(8) K(X24) = ay + ib24\/€9 where p = a3, + 6b3,,
a, = ag(mod3), with K(x3,) = ag + ibg)2 asin (6);
ay +iby)5, if5tay,
(9) K(Xzo) =9 .
Wy — bzo\/_s_’ if 5] a,,

where

a, (mod5), if5ta
=a +5b3 and ay=1{°* v
P = @20 2% ant du {b4 (modS), if5]ay,

with K(x5,) = a, + ib, as in (4).
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3. Congruence conditions (mod p). This section is to be read in
conjunction with [1, §4]. We consider only those values of a for which the
evaluations of F,(a) in [1, §4] have sign ambiguities, and we resolve these
ambiguities with congruence conditions (mod p), for e = 4, 6, 8, 12, 20,
24.

Casel.e =4,(a/p) = —
The proof in [1, Theorem 4.4] shows that
(10) Fy(a) = 2 Re(x(a)K(x)) = —2bsix(a) = *2b,.

To determine the correct sign, it remains to find F,(a) (mod p). By (3)
and (4), —ib, = a, (mod P). Thus by (10) and (2), Fy(a) = 2a,a’ (mod P),
SO

(11) F,(a) =2a,a’ (mod p).

REMARK. While it takes the computer O( p) operations to compute
F,(a) directly from the definition (1), it requires at most O(,/p ) operations
to compute F,(a) from (10) and (11), since a’ (mod p) can be computed
in O(log p) steps.

Case 2. e = 6, a is noncubic (mod p).
Write A = x2. Note that A(a) = (—1 =#/3)/2. The proof in [,
Theorem 4.2] shows that

(12)  Fy(a) = =1+ 2Re(A(a)K(A))
= —1—a;+2by3 ImA(a) = —1 — a; = 3b,.

It remains to determine Fy(a) (mod p). By (3) and (5), a; = —iby/3
(mod P), so by (12) and (2),

F(a)=ay(a”’ —a¥)—1—ay;=2a;a*’— 1 (mod p).

Case3.e =8,(a/p) = —
From the proof in [1, Theorem 4.6),

(13) Fy(a) = =2 Re(K(x)(x( a)))

= —2ibg/2 (x(a) +x3(a)) = =4b,.
Thus,

Fy(a) =2ay(a’ + a¥) (mod p).
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Cased.e = 12,(a/p) = — L.
Subcase 4A. 3| a,, a is cubic (mod p).

By [1, (4.3)],
(14) F,(a) = 6 Re(x(a)(a, + ib,)) = 6x(a)ib, = +6b,.
By (3) and (7), a, = —ib, (mod P), so
F,(a) = —6a,a’ (mod p).

Subcase 4B. 3} a,.
By 1, (4.5)],

(15) Fpy(a) = 2b,/Im x(a)

+4p,, if ais noncubic (mod p)

= 4ib,/ (x(a) + x*(a)) = {

+2b,, ifaiscubic (mod p).

Thus,
Fy(a) = —4a,/ (a/ + @) (mod p).

Case5.e =24,(a/p) = — 1.

This case is slightly different than those above in that rwo congruence
conditions are required to determine F,,(a). From the proof in [1,
Theorem 4.10],

F24(a) = Ay, + By,
where
Ay = —2 Re((“s + ibgﬁ)(x3(a) + Xg(a)))

= —2iby2 (x*(a) + x°(a)) = =4b,

B, = —2 Re((a24 + ib24\/g)(x(a) -+ xs(a) + X7((l) + xll(a)))
= —2ib,/6 (x(a) + x*(a) + x"(a) + x"'(a))

_ [ *=12b,,, if ais noncubic (mod p)
0, if a is cubic (mod p).

It remains to determine 4,, and B,, (mod p). Since ag = —ibgy/2 and
a,, = —ib,,/6 (mod P), we have

Ay =2ag(a¥ + a”) (mod p)
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and

By, =2a,(a’ + a” +a” + a'V) (mod p).

Case 6. e = 20.
This case is similar to Case 5, so we omit some details. From the
proof in [1, Theorem 4.13],

on(a) = Ay, + By,

where
Ay =2 RC{XS(")(‘M - ib4)}
and
[2Re{(x(a) = x*(a) = x"(a) + Xx*(a))(—iaz — by)/5 )},
if 5] a,,
By, =
|2 Re{(x(a) + x(a) + x7(@) + x°(a))(az0 — 505},
if Sta,.

S

It remains to determine A4,, and B, in each of the subcases below.

Subcase 6A. 5| a,, (a/p) = 1, a nonquintic (mod p).
Here 4,, = *=2a, and B,, = =10b,,, with

(16) A,y =2a,a” (mod p)
- and
(17) By, =2(a’ — a¥ — a” + a*)a,a,,/b, (mod p).

Observe that there is no sign ambiguity in the right member of (17), since
a,/b, =1 (mod>5), as is noted after (9).

Subcase 6B. 5| a,, (a/p) = —
Here,

+8a,,, if ais quintic (mod p)

A,y = *2b, and B, = {tZazoa if a is nonquintic (mod p),

with the congruences (16) and (17) again holding.
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Subcase 6C. 54 a,, (a/p) = — 1.
Here
+10b,,, if ais nonquintic (mod p)

Ay = *+2b, and By =
2 s A0 Za {0, if  is quintic (mod p),

with (16) holding and
B,y =2a,(a’+ a¥ + a7+ a®) (mod p).
4. Congruence conditions (mod a). Throughout this section, e = 12,

p = 12f+ 1, x is a character (mod p) of order 12, (a/p) = —1, and a is
prime. From (14) and (15),

(18) Fy,(a) = tIm K(x*)/Im x(a) = tb,/Im x(a) = =hb,
where
(19) K(x®) =a,+ib,
and
h=t= —6, if3]|a,andais cubic(mod p),
h=1t=2, if 3} a, and a is cubic (mod p),
h=4,t=2, if3}a,andaisnoncubic (mod p).
If the prime a is odd, then a } b,, otherwise we would have
p=a;+b;=a} (moda),

which contradicts (a/p) = — 1. Thus we can resolve the ambiguity in (18)
by determining F,(a) (mod a), if a > 3. (Note a + 3, as (a/p) = —1.)
For a = 2, we will resolve the ambiguity by determining F,,(2) modulo an
appropriate power of 2, in (20) and (21) below.

Casel.a=2.
It is classical [4, p. 107] that
b, = —2ix*(2) (mod83).
If 2 is a cubic residue (mod p), then
b, — ib, 2x°(2) —
Imx(2) x(2) x(@)

—2 (mod38),

so by (18),
(20) F,(2) = —2t = —4 (mod 16), if 2 is cubic (mod p).
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If 34 a, and 2 is noncubic (mod p), then

_2b  _ 4ib,  _ 8X(2)
@ = 4@ " x@ - 30 x0) - x@
8 (mod 32).

T X0 —x'0)
Since x%(2) = (—1 = i/3)/2 and x°(2) = (1 = i¥/3) /2,
(21)  F,,(2) =8 (mod32), if3}a,and 2 is noncubic (mod p).

Case 2. a is a prime > 3.
To determine F,,(a) (mod a), it suffices, by (18), to determine

S(x) = Im x(a)/b,

modulo a. To do this, we need some formulas for Gauss sums G(¢),
defined for characters { (mod p) by

G(¥) = 3 w(n)exp(2min/p).

n=1

From [1, Theorems 2.2 and 3.1],
G(x)" = pI*(x*) K (x)
so by [1, Theorem 3.19],
(22) G(x)" = pI*(x*)K(x*).
From [1, (3.28) and Theorems 2.2 and 3.1],

G(x)/G(x*) = T2 (x*)K*(x),
so by [1, Theorem 3.19],
(23) G(x)/G(x’) =T (xH)K*(xP).
Here, as in [1, Theorem 3.4],
(24) 2J(x*) =r, + 3it5)3, wheredp = r2 + 272, r, = 1 (mod 3).

It is clear from the definition of G(x) that, in the ring of algebraic
integers,

(25) G*(x) =x"(a)G(x") (moda).

We will complete the proof by determining S(x) (mod a) in (27)—(30)
in terms of the parameters p, r;, and a, unambiguously defined in (4) and
(24).
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Subcase 2A. a = 5 (mod 12).
By (25) and (23),

x'(a) = G 3(x)G*(x)/G(x°) = G**(x)J*(x*)K*(x*) (mod a).
Thus, by (22),
X7(a) Ep(a—5)/12J(a+1)/3(x4)K(a—l)/2(x3) (mod a)'
Replacing x by x’, we obtain
(26) x(a) = pe=9/12J(@1/3(x4) g @ /2(x3)  (mod a).

Each member of (26) is a rational linear combination of 1, i, V3, i3 by
(19) and (24). The respective coefficients of i must be congruent (mod a).
Since Im x(a) is rational, it follows that

Im x(a) = —p@ 9/12ReJETD3(x*) Im K@ V/2(x*) (mod a)
$O
(27) S(x) = —pY™>/2b, ' Re J D3 (x*) Im K“~V/*(x*) (mod a).
For example, when a = 5, (27) yields
S(x) =(—4b,)"'Re(r, + 3it,)3) Im(a, + ib,)*
=2a,(r? — 27t2) (mod5).
Subcase 2B. a = 7 (mod 12).
By (25) and (23),
x*(a) =G (x)x(—1)p'G(x*)/G(x)
=G ()x(=Dp7 !/ (2 (x)K* (X)) (mod a).
Thus, by (22),
Xla) =5 (= DI K A()  (mod a)
Replacing x by x°, we obtain
x(a) = p@ /(=1)/J V(3K D2 (x%)  (mod a),
SO
(28) S(x) = pe (1) Re e (x*)
XIm K@*V/2(x3) /b, (mod a).
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For example, when a = 7, (28) yields

S(x) =(—1)(4b,) " Re(r, + 3it,/3 ) Im(a, + ib,)*
=(- l)fa4(r32 - 27t32)(2a§ - P) (mod 7).
Subcase 2C. a = 11 (mod 12).
By (25) and (22),

x(a) =p~ 'x(—1)G*"(x)
Ep(a—ll)/llx(_I)J(a+l)/3(x4)K(a+1)/2(X3) (mod a).

Thus,

09) S(x) = /(= 1)/ Re D)
XIm K@*Y/2(x3} /b, (mod a).
For example, when a = 11, (29) yields
S(x) = (= 1)/ (16b,) "' Re(r, + 3it,3 ) Im(a, + ib,)°

=(—1)a,(3b} — 10a2b} + 3a})(r} — 1627212 + 7291%) /8

= Ta,(—1)’ (36§ + a2b? + 3a2)(r} + 3r222 + 312) (mod 11).

Subcase 2D. a = 1 (mod 12).
By (25) and (22),

X(a) = G“_‘()_() Ep(a—1)/12J(a—1)/3(>—<4)K(a—1)/2(—)-(3) (mod a).

Thus,

57

(30) S(x) = —p“ V/2ReJ " V(x*) Im K“~D/%(x*) /b, (mod a).

For example, when a = 13, (30) yields

S(x) = —p(16b,) "' Re(r, + 3ity3 ) m(a, + ib,)°

= —pa,(3bf — 10a2b2 + 3a%)(r{f — 162122 + 729t1) /8

= —2pa,(b + a2 + a})(r} + 7r2t2 +¢}) (mod13).
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Numerical examples.

al 5 5 5 7 7 7 11 11 11 13 13 13

p |13 37 157 61 73 157 61 193 337 37 193 229

Fy(a) 112 24 —-24 —-24 48 —12 —12 24 —96 24 -—-24 12
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