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Two simultaneous generalizations of metric spaces and K0-spaces,
the N-spaces introduced by O'Meara and the cs-σ-spaces of Guthrie, are
shown to be the same.

It was shown by Guthrie [2] that a regular space is an K0-space if and

only if it has a countable cs-network (see definitions below). We show

here that, in parallel manner, O'Meara's N-spaces may be characterized as

the regular spaces admitting σ-locally finite cs-networks; that is, the

classes of N-spaces and cs-σ-spaces coincide. While this equivalence has

been proved by Guthrie [3] for paracompact spaces, the fact that these

classes contain non-paracompact examples [6] makes our result an honest

improvement.

DEFINITION 1. A collection 9 of subsets of a topological space X is a

k-network for X if, given any compact subset C of X and any neighbor-

hood U of C, there is a finite subcollection <?* of 9 so that C C U ^ * C ί / .

A collection 9 is a cs-network for X if, given any sequence σ converging to

x G X and any neighborhood U of x9 there is a P E 9 so that P C U and

σ is eventually in P. A regular space is an #0-space [5] (S-space [6], [7],

cs-σ-space [3]) if it has a countable λ -network (σ-locally finite ^-network,

σ-locally finite cs-network); because of regularity, these collections can be

chosen to consist of closed sets.

We say that a subset W of a topological space X is a sequential

neighborhood of a subset F of Wϊί every sequence converging to a member

of F is eventually in W.

LEMMA 2. A discrete family {Fa: a G A} of subsets of an tt-space X

admits a pairwise disjoint family {Wa: a G A) of sequential neighborhoods.

Proof. For every n < ω, let $*n be a locally finite collection of closed

sets so that U r t < ω % is a ^-network for X. For n < ω and B C A, let

T(n,B) = U {P G%:P Π U {Fa: a G B) = 0} .
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For every a E A, let

K = U [Γ(Λ,A{α})\Γ(ιi , {«})]•

It is simple to verify that the Wa's are pairwise disjoint. To see that Wa is a

sequential neighborhood of Fα, note that for a sequence σ converging to a

member of .Fα there is an n < ω so that σ is eventually in T(n9 A\{a});

hence σ is eventually in T(n, A\{ά])\T(n9 {a}) C Wa.

LEMMA 3. Assume X has a point-countable k-network 9 of closed sets so

that 9 is closed under finite intersections. If x E X9 if W is a sequential

neighborhood of x9 and if σ is a sequence converging to c, then there is a

finite subset <?* of 9 so that U^P* C Wand U ^ * contains a tail ofσ.

Proof. Let {Φn: n < ω) be the family of all finite subsets ^P* of 9 such

that x E (ΊίP* and σ is eventually in U^P*. If no finite subset of 9

satisfies the conclusion of the lemma, then we could find a yn E

Γ\j<n( U 9t)\W for every n < ω. This sequence {yn: n < ω} converges to

x; indeed, if ί/ is a neighborhood of x9 we could find a P̂m so that {j>w:

« > ^ } c U ? m C ί / . The convergence of {>>„: n < ω} contradicts that W

is a sequential neighborhood of x.

THEOREM 4. The following are equivalent for a regular space X.

(a) X has a σ-discrete cs-network.

(b) X has a σ-discrete k-network.

(c) X has a σ-locally finite cs-network.

(d) X has a σ-locally finite k-network.

Proof. It is clear that (a) implies (c) and (b) implies (d). As Guthrie

observed in [3], his proof of the countable case in [2] can be adapted to

show (c) implies (d), and the same is true for (a) implies (b). It therefore

suffices to show (d) implies (a).

For every m < ω let 9m be a locally finite collection of closed sets (our

only use of regularity) which is closed under finite intersections, so that

% c ^ + i a n d ^ = Um<ω % = {pa' a £ A} is a λ -network for X.

For each m let Gllm be an open cover of X that witnesses the local

finiteness of ^Pm. Since a space X satisfying (d) is clearly subparacom-

pact [1], it follows from [1] that Gllm has a σ-discrete closed refinement

Un<ω{Fβ: βSΞBmn), where {Fβ: β E Bm „} is discrete for each n. It

follows that, if β E Un<ωBm n, then Fβ Π Pa φ 0 for only finitely many

/v ^— *-' w\ *
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By Lemma 2 we can find, for every (m, n) E ω2, a pairwise disjoint
family {Wβ: β E Bm n) of sequential neighborhoods for {Fβ: β E Bm „}.

For every pair ( m, ft ) E ω2 let

Let us check that the collection {Pa Π Wβ\ (α, jβ)G Cw „} is star-
finite. Indeed, if <α, β> E Cmn and (Pα Π Wβ) Π (Pγ Π Wδ) Φ 0 (where
<γ, δ) E Cw „), the fact that β and δ are in Bmn with WβC\WδΦ0
forces β = δ. Consequently, (γ, /?) E Cw „; it follows that ? γ Π F ^ 0 .
So Py is one of the finitely many members of P̂m which meets Fβ. So there
are only finitely many pairs (γ, δ) E Cm n for which (Pα Π ^ ) ίl (P y ίl
Wb)φ0.

Fix (m, «) E to2. Now if <α, β) E Cm n and r < <o, let

5 ( α ? i β , r ) - U { ? β n ? γ : ? y ε ^ a n d ? γ C ^ }

and

S(m, π, r) = {S(α, β, r ) : (α, 0 ) e Cm>li}.

Since 5(α, j 8 , r ) C P α Π ^ for every r < co, the collections §(m, «, r)
inherit the star-finite property from {PαΠ Wβ\ {a, β)€Ξ Cmn). Note too
that every member of S(m, n, r) is the union of a subcollection of the
locally finite collection {Pa Π Pγ: PΛ E ̂ Pw, Pγ E ̂ .} and thus §(m, «, r)
is closure-preserving. Because a star-finite collection of sets is σ-disjoint
and because a disjoint and closure-preserving collection of closed sets is
discrete, we have that §(m, «, r) is σ-discrete.

Thus § = U (§(m, n, r): (m, π, r) E co3} is σ-discrete; write § =
U K ω §Λ so that every Sk is a discrete collection of closed sets and

ξ>j Π ξ>k = 0 if 7 ^ k. Let

F = { f : f is a finite subset of §, Π ^ φ 0 } ,

and for every finite subset Φ of ω, let

Fφ= {fGF: {k<ω\$Γ\%kΦ 0} =Φ}.

Note that for a particular fc < ω, a collection f G F may contain at most
one member of SΛ, as %k is pairwise disjoint.

Now for a given finite subset Φ of ω consider the collection {Πf:
5 Έ Fφ). It is locally finite because it is comprised of finite intersections
of the locally finite family U ^ φ S .̂ It is also pairwise disjoint: if ̂  φ §2

are members of Fφ, then ®ϊλ Π §^ φ Φ2 Π ξ>k for some fcGΦ; i.e. if
{Sx} =% Πξ>k and {̂ 2} =%Πξ>k9 then 5, Φ S2. Pairwise disjointness
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of ξ>k gives Sx Π S2 = 0, and thus ( Π ^ ) Π ( Π ^ ) - 0 . So { Π ^ :
5 Έ Fφ} is both pairwise disjoint and a locally finite collection of closed
sets; therefore it is discrete.

Again we apply Lemma 2 to find, for every finite subset Φ of ω, a
pairwise disjoint family {V(^): f G F φ ) of sequential neighborhoods of
{ΓW: ^ G Fφ). Fory < ω and ^ E Fφ let

,j)= U { S n P δ : S G f , P δ G ^ , P δ

Now F(f, j) C F(f) , so for a fixed y < ω the collection

is pairwise disjoint. Further, every V(^9 j) E Ύ(Φ, j) is the union of a
subcollection of the locally finite family of closed sets {S Π Pδ: S E
U Λ e φ S Λ , P , e 9 > } . Hence

= U {Ύ(Φ, j): Φ is a finite subset of ωj < ω]

is σ-discrete. We will now verify that Ύis a cs-network for X.
Suppose U is open and σ is a sequence converging to x E U. Because

P̂ is a /c-network for X, we can find an m < ω and a finite subset 9* of ^Pw

so that U ̂ * C ί/, σ is eventually in U ̂ , and, because the members of
P̂ are closed, we may choose such a ^ so that x E Π ̂ J .

Since X C Un < ω{i^: )β E 5 m >π}, we can find a n n < ω and a /? E 5 m „
so that x E: Fβ. Now H^ is a sequential neighborhood of /^, hence of JC, so
by applying Lemma 3 we can find an r < ω and a finite subset ^Pr** of tyr

so that U^Pr** C Ŵg and σ is eventually in U^**. Because the members
of P̂ are closed, necessarily x E U (3)

r**.
If Pα E 6^, the fact that x (ΞPaΠ Fβ implies (α, β) E Cw rt. If, in

addition, i>γ E ^Pr**, then Pγ E P̂r and Py C H^, and thus Pa Π Py C
S(a,β,r). From this we see that (U9*) Π ( U ^ * * ) C U {S(α, jβ, r):
Pα E ^ } and, because there is a γ so that x E Pγ E ^Pr**, that x E
Π {S(α, jβ, r): Pα E 9*}, Let ff= {S(α, β, r): Pa E m̂*} (a finite subset
of §). The previous sentence implies σ is eventually in U ^ (since σ is
eventually in U<3^ Π U*Pr**) and Π f ^ 0 (since x E Π ^ ) . In particu-
lar, f G F .

As F ί ^ ) is a sequential neighborhood of ΓW, hence of x, Lemma 3
enables us to find a j < ω and a finite subset <3̂ *** of φ so that
^**« c F ί ^ ) and σ is eventually in U^/**.

Now if Pδ E #y***, then Pδ E 9j and Pδ C F(^) ; therefore for any
S G f w e have S Π Pδ C F(^, y). It follows that (U ̂ ) Π (U #/**) C

, 7). As a result, σ is eventually in F(5", j).
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In addition,

= U {S(a9β,r):PaEi9Z} C U3>m* C

So Ύis a cs-network for X.

Our Theorem 4, taken with Theorem 2 of [3], gives the following

answer to Michael's question in [4].

COROLLARY 5. If X is an ϊ$0-space and Y is an tt-space, then the space

of continuous functions from X to Y equipped with the compact-open topology

is an tt-space.
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