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N. GHOUSSOUB AND P. SAAB

We characterize Banach spaces E such that E and E* have the
Radon-Nikodym property in terms of relatively weakly compact sets of
Lι[λ,E].

Introduction. It is well known [1] that if (Ω, Σ, λ) is a finite measure
space and E is a Banach space, then a relatively weakly compact subset K
of Lι[λ, E] is bounded, uniformly integrable and for every B E Σ, the set
{jBfdλ,fE: K) is relatively weakly compact in E. Moreover, it was shown
in [1] that if the Banach space E and its dual E* have the Radon-Niko-
dym property, then relatively weakly compact subsets of L][λ, E] are
completely characterized by the above three conditions. A question that
arises naturally is the following: Are the conditions on E and E* to have
the Radon-Nikodym property necessary in order that relatively weakly
compact subsets of Lι[λ, E] be exactly those bounded, uniformly integra-
ble subsets K such that for any B E Σ, the set {jBfd\, /E^Γ) is
relatively weakly compact in EΊ In [1], it was shown that the condition on
E to have the Radon-Nikodym property is indeed necessary. The object of
this paper is to show that the condition on £ * to have the Radon-Niko-
dym property is also necessary. This gives a new characterization of
Banach spaces E such that E and E* have the Radon-Nikodym property.
We also study bounded linear operators T between Banach spaces such
that T and its adjoint Γ* are strong Radon-Nikodym operators.

Definitions and Preliminaries.

DEFINITION 1. A closed bounded convex subset C of a Banach space
E is a Radon-Nikodym (R.N.P) set if for every finite measure space
(Ω, Σ, λ) and any vector measure G: Σ -> E such that the set {G(B)/λ(B),
2?EΣ, λ(2ί) > 0} is contained in C, there exists a Bochner integrable
Radon-Nikodym derivative/: Ω -» C such that G(B) — JBfdλ, for every
ΰeΣ.

For more on (R.N.P) sets see [3] and [4].
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DEFINITION 2. A bounded linear operator T from a Banach E into a
Banach space F is called a strong Radon-Nikodym operator if the closure of
{Tx9x E £ , llxll < 1} is an (R.N.P) set in E.

Accordingly, a Banach space E has the Radon-Nikodym property
(R.N.P) iff its closed unit ball is an (R.N.P) set or equivalently if the
identity operator on E is a strong Radon-Nikodym operator.

If T: E -» F is a strong Radon-Nikodym operator then T is an
(R.N.P) operator see [2] i.e., for every vector measure G: Σ -> E with
11(7(2?)|| < λ(2?) for all JS E Σ, there exists a Bochner integrable function

f:Ώ^F such that ΓG(5) = JBfdλ for all 5 E Σ. The converse is not
true as any quotient map Q from Z1 onto cQ is an (R.N.P) operator but is
not a strong Radon-Nikodym operator. But it follows from [4] if T: E -» F
is a bounded linear operator, then its adjoint Γ* is a strong Radon-Niko-
dym operator if and only if Γ* is an (R.N.P) operator.

Finally, given a finite measure space (Ω, Σ, λ) E and F two Banach
spaces and T: E -> F a bounded linear operator, we shall denote by f the
natural extension of T to a bounded linear operator from Lι[λ, E] to
Lι[λ9F].

For all undefined statements and notations we refer the reader to [1].
The following theorem extends the result of [1, p. 101] to operators T:

E -> F such that T and T* are strong Radon-Nikodym operators.

THEOREM 1. Let E and F be two Banach spaces and let T: E -> F be a
bounded linear operator such that T and T7* are strong Radon-Nikodym
operators. Then for any finite measure space (Ω, Σ, λ), the operator f:
L ][λ, E] -> L ][λ, F] sends into relatively weakly compact subsets of Lλ[\, F]
any bounded, uniformly integrable subsets K of Lι[λ, E] such that for every
B E Σ the set {fBfd\, f E K) is relatively weakly compact in E.

Proof. Let T: E -> F be a bounded linear operator such that T and Γ*
are strong Radon-Nikdoym operators. Let (Ω, Σ, λ) be a finite measure
space and let K C L][λ, E] be a bounded and uniformly integrable subset
of L ![λ, 2s] such that for any B E Σ the set {JBfdλ9 f E K) is relatively
weakly compact in 2?. Let (fn)n be a sequence in K. Proceed now as in [1,
p. 101] to get a countably generated σ-field Σ1? such that each fn is
measurable with respect to Σ1? find a subsequence (fnjk of (fn)n and
define a countably additive vector measure G:Σj -> 2? of bounded varia-
tion by

G(B) — weak limit / /„ dλ, for every
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Since Γ* is a Radon-Nikodym operator, it follows from [4] that there exist
a Banach space Z, such that Z* has RNP, and bounded linear operators
Tλ: E -» Z and T2: Z -* Fsuch that the following diagram commutes

1. Assume that for some a > 0 ||G(J5)|| < αλ(5), for all B G Σ l β

It follows that the set {T]G(B)/λ(B), λ(B) > 0, B G Σ J is contained in
the closure C in Z of the set {ΓjX, x G E, \\x\\ < α}. But a glance at the
construction of [4] reveals that the set C is affinely homeomorphic to the
closure in F of the set {Tx, x G E, \\x\\ < α}, and one can show that the
set C is an R.N.P. set. Therefore there exists a Bochner integrable function
h: Ω -» C such that

dλ, for all B e Σ , .

Moreover since Z* has R.N.P and since (jB Tλfnk d\)k converges weakly
to fβhdλ in Z for every B G Σl9 it follows that the sequence (f\fnk)k

converges weakly to h in Lι[Σx, λ, Z], thus (ff )k converges weakly to
f2h in Lι[Σu λ, F], and hence in L ![λ, i7]. An appeal to Eberlein's
theorem shows that {ff, f G K) is relatively weakly compact in L*[λ, F]
and completes the proof of Case 1.

General case. Let (Ωm)m be a partition of Ω of elements of Σx and
such that

\\G(B)\\<mλ(B)

for all elements B of Σj contained in Ωw. By restricting the sequence {fnι)k

to each of the sets Ωm, by Case 1, and by an appropriate diagonal process,
one can produce a subsequence (hj)j of (fn)k and a sequence (gm)m of
Bochner integrable functions gm: Ωw -> F such that:

(i) the sequence {fhm ) m converges weakly to gm in L![Ωm, λ, F\
(ii) ΓG(5 Π Ωm) - j B

m

n Q m gm dλ, for B G Σ,.
Let g: Ω -> Fbe defined as follows:
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It is clear that g E L^λ, F] for g is obviously measurable and it follows

from (ii) that

/ =\TG\(Q) < oo.

The proof will be complete when we show that the sequence (Thj)j

converges weakly to g in Lι[λ, F]. For this let L E (L][λ, i7])*. For each

m > 1 let Lm be the restriction of L to L1[Ωm, λ, F]. For every m > l we

have

1 = 1

+\\L\\[ \\fh,-g\\dλ.
J I /O l'"Sι*i

Since the sequence (Λ7)7 is uniformly integrable, there exists m > 1 such

that Juςi^i^mWfhj — g\\d\ is arbitrary small for all 7 > 1. Since fh^

converges weakly to gι9 it follows that | ΣΊLX L(fh^Ω — gt) | is arbitrary

small as j -» 00. Hence L(fhj — g) -> 0 as 7 ' ^ oc. This completes the

proof.

The following proposition establishes the fact that if Γ* fails to be a

strong Radon-Nikodym operator, then the conclusion of Theorem 1 is no

more valid.

PROPOSITION. // T is a bounded linear operator from a Banach space E

into a Banach space F such that Γ* fails to be a strong Radon-Nikodym

operator, then there exists a finite measure space (Ω, Σ, λ), a bounded

uniformly integrable subset K of Lι[λ, E] such that the set { fBfdλ, f G K)

is relatively weakly compact in E for any B G Σ, but the set [ff, f E K] is

not relatively weakly compact in L*[λ, F].

Proof. Suppose that Γ* fails to be a strong Radon-Nikodym operator.

Let Δ = {-1,1)N denote the Cantor group with Haar measure m and let

{ΔΛϊl, 1 < i < 2n) denote the standard flth partition of Δ with Δ0 1 = Δ,

Δ,M = Δ ^ ^ , , , U Δ n + l ι 2 l , ΔnJ is clopen, and m^nι) = 1/2". It follows

from the dichotomy theorem of Stegall [4] that the operator T must factor

the Haar operator H: I1 -> LJ^m) which takes the basis of Z1 into the

usual Haar basis of C(Δ) considered as a subspace of LJ^m). Indeed the

Haar operator is defined as follows:

ifΛ/.« = XΔ I I + U l_1-XΔ l i + U l, Λ > 0 , 1 < / < 2 Λ then Henι = hni9

here {enι, n > 0, 1 < / < 2n} is an enumeration of the usual l] basis. Let

U: I1 -^ E and V: F -> LJί^m) be bounded linear operators such that

H — V © T o U as illustrated in the following diagram.
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T

Consider the following sequence (/„)„ in L)[m, /'] with

The sequence (fn)n is easily seen [2] to have the following properties
(i)supj |/ n (/) | | - lm.a.e.

(ii) supu^ H-s! j\x* ° fn [dm approaches zero as n -> oo.
It follows that for every Borel B set in Δ the sequence (|| fBfn dm\\)n

approaches zero as n -> oo. The sequence {fn)n is bounded and uniformly
integrable in Lλ[m, I1] and (fBfn dm)n is a null sequence in lλ. We claim
that the sequence (Hfn) is not relatively weakly compact in Lι[m9 LJ^m)],
For this note that for each n > 1

=j; 2
j=\ 1=1

therefore Hfn(t) takes its values in C(Δ), to prove the claim all we need to
show is that (Hfn)n is not relatively weakly compact in Lι[m, C(Δ)]. To
this end note that since for every Borel set B the sequence (JBHfn dm)n

converges to zero in C(Δ), it follows that every weakly convergent
subsequence of {Hfn)n in L][m,C(Δ)] must converge to zero. Let L E
(L][m, C(Δ)])* be defined as follows: for ψ e V[m, C(Δ)]

then

Σ Σ M M

This shows that the sequence (Hfn)n has no weakly convergent subse-
quence in Lι[m9C(Δ)]. The sequence (Ufn)n is bounded and uniformly
integrable in Lλ[m, E) and the set [fB ϋfn dλ, n > 1} is relatively weakly
compact in E for all Borel sets B of Δ, yet since Γ factors the Haar
operator H, the sequence (fϋfn)n cannot have a weakly convergent
subsequence in l)\m, F\ This completes the proof.
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COROLLARY 3. A Banach space E and its dual E* have (R.N.P) if and

only if for every finite measure space (Ω, Σ, λ), any bounded and uniformly

integrable subset K of Lι[λ, E] is relatively weakly compact whenever for

every B E Σ, the set {fBfdλ, f E K) is relatively weakly compact in E.
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