Pacific Journal of Mathematics

THE *p*-EQUIVALENCE OF SO(2n + 1) AND Sp(n)

ALBERT THOMAS LUNDELL

THE *p*-EQUIVALENCE OF SO(2n + 1) AND Sp(n)

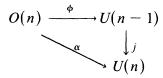
ALBERT T. LUNDELL

Elementary homotopy methods are used to construct homotopy equivalences of the localized spaces $SO(2n+1)_{\mathfrak{P}}$ and $Sp(n)_{\mathfrak{P}}$, where \mathfrak{P} is the set of odd primes. The equivalences are H-maps.

Serre [1] conjectured a \mathcal{C} -isomorphism $\pi_k(\operatorname{Sp}(n)) \approx \pi_k(\operatorname{SO}(2n+1))$ where \mathcal{C} is the class of 2-primary abelian groups. This was proved by Harris [3]. Since the development of localization techniques for spaces [4, 8], other proofs of equivalence via decomposition as products have been given [6]. Friedlander [2] has proved the *p*-equivalence of BSO(2*n* + 1) and BSp(*n*), for odd primes *p*, by the use of etale homotopy theory. None of these methods prove the equivalence by actually giving a map.

The purpose of this note is to use the results of Harris [3], a map described in [5], and elementary homotopy theory to construct homotopy equivalences of the localized spaces $SO(2n+1)_{\mathfrak{P}}$ and $Sp(n)_{\mathfrak{P}}$, where \mathfrak{P} is the set of odd primes. These equivalences are H-maps, but the author does not know if they can be delooped to obtain Friedlander's result.

The author wishes to thank the referee, whose comments helped to improve the exposition of this result.


1. Notation. The unitary group U(n) is the group of non-singular complex $n \times n$ matrices with inverse the conjugate transpose. The orthogonal group O(n) is the subgroup of U(n) left pointwise fixed under complex conjugation, i.e. the subgroup of real matrices. We denote by $SO(n) \subset O(n)$ and $SU(n) \subset U(n)$ the subgroups of elements of determinant 1, and by $\alpha: O(n) \to U(n)$ (or $\alpha: SO(n) \to SU(n)$) the inclusion monomorphism.

If $J \in SU(n)$ is the matrix with 2×2 blocks $\binom{1}{1}{0}$ down the diagonal, then Sp(n) is the subgroup of SU(2n) left pointwise fixed by the automorphism $g \to J\bar{g}J^{-1}$, where \bar{g} is the complex conjugate matrix of g (i.e. $(\bar{g}_{ij}) = (\bar{g}_{ij})$). We denote the inclusion monomorphism by $\beta \colon Sp(n) \to SU(2n)$.

The monomorphisms α , β are natural with respect to inclusions $U(n-k) \to U(n)$ described in matrix notation by $A \to \binom{A \ 0}{0 \ I_k}$ where I is the $k \times k$ identity.

If \S is a set of prime numbers and X is a space which admits localizations, then X_{\S} will denote a localization of X at \S and $e_{\S} \colon X \to X$ a localization map.

2. The map ϕ . In [5] the author defined a map ϕ : $O(n) \to U(n-1)$ so that the diagram

homotopy commutes. For the reader's convenience we repeat the definition here.

Let u be a complex number with |u|=1 and define a cross-section σ_u : $S^{2n-1}-\{ue_n\}\to U(n)$ by the formula

$$\sigma_{u}(x_{1}, x_{2}, \ldots, x_{n}) = \left[\frac{\left[\delta_{pq} - x_{p} Q^{-1} \overline{x}_{q} \right] \right] \vdots x_{n-1}}{P \overline{x}_{1} P \overline{x}_{2} \cdots P \overline{x}_{n-1} x_{n}} \right],$$

where $Q = 1 - \bar{x}u$ and $P = u\bar{Q}Q^{-1}$. Taking u = i in this formula $j\phi(x) = [\sigma_i p\alpha(x)]^{-1}\alpha(x)$, where $p: U(n) \to S^{2n-1}$ is the bundle projection which picks out the last column of a matrix in U(n). A proof of the homotopy commutativity of the diagram above as well as other properties of ϕ can be found in [5].

We first remark that det $\sigma_u(x) = -P$, so if we multiply $\sigma_u(x)$ on the right by the matrix

$$\begin{pmatrix} I_{n-2} & & \\ & -\overline{P} & \\ & & 1 \end{pmatrix}$$

we obtain a cross-section σ'_n : $S^{2n-1} - \{ue_n\} \to SU(n)$. For $x \in SO(n)$, the map ϕ' : $SO(n) \to SU(n-1)$ such that $j\phi'(x) = [\sigma'_i p\alpha(x)]^{-1}\alpha(x)$ factors α : $SO(n) \to SU(n)$ through SU(n-1) up to homotopy and has properties analogous to ϕ . From now on we will suppress primes, writing $\sigma_n = \sigma'_n$ and $\phi = \phi'$.

PROPOSITION 2.1. The map ϕ and its complex conjugate $\overline{\phi}$ are homotopic maps $SO(n) \to SU(n-1)$.

Proof. One easily sees that for the complex conjugate, $\overline{\sigma_i p \alpha(x)} = \sigma_{-i} p \alpha(x)$, and that

$$\bar{\phi}(x) = [\sigma_{-i} p \alpha(x)]^{-1} [\sigma_{i} p \alpha(x)] \phi(x).$$

For $y \in S^{2n-1} - \{\pm ie_n\}$, we have $[\sigma_{-i}(y)]^{-1}[\sigma_i(y)] \in SU(n-1)$, and if we set

$$h(x,t) = \left(\cos\frac{\pi t}{2}\right)p\alpha(x) + i\left(\sin\frac{\pi t}{2}\right)e_{n-1},$$

and $H(x, t) = [\sigma_{-i}h(x, t)]^{-1}[\sigma_{i}h(x, t)]\phi(x)$, we have $H: SO(n) \times I \to SU(n-1)$ with $H(x, 0) = \phi(x)$, $H(x, 1) = \phi(x)$.

3. Construction of the map. We will be concerned with the fibre bundles

(*)
$$SO(2n+1) \stackrel{\alpha}{\rightarrow} SU(2n+1) \stackrel{p_1}{\rightarrow} SU(2n+1)/SO(2n+1)$$

and

(**)
$$\operatorname{Sp}(n) \xrightarrow{\beta} \operatorname{SU}(2n) \xrightarrow{p_2} \operatorname{SU}(2n) / \operatorname{Sp}(n).$$

Harris [3] showed that the maps

$$q_1: SU(2n+1)/SO(2n+1) \to SU(2n+1)$$

and

$$q_2: SU(2n)/Sp(n) \rightarrow SU(2n)$$

defined by $q_1p_1(x) \to x \cdot x^t$ and $q_2p_2(x) = x \cdot J \cdot x^t \cdot J^{-1}$ have the property that p_1q_1 and p_2q_2 induce \mathcal{C} isomorphisms in homotopy, where \mathcal{C} is the Serre class of 2-primary abelian groups. If we let \mathcal{P} be the set of odd prime integers, the result of Harris implies that after \mathcal{P} -localization of spaces and maps, p_1q_1 and p_2q_2 induce isomorphisms of homotopy groups and are therefore homotopy equivalences [7, p. 405]. Let h_i be a (\mathcal{P} -local) homotopy inverse of the \mathcal{P} -localization of p_iq_i . Of course the localized maps q_ih_i can be deformed to cross-sections of the \mathcal{P} -local versions of (*) and (**).

LEMMA 3.1. If W is a connected CW-complex, the maps of based homotopy sets

$$\alpha_{\mathfrak{G}^*}: [W, SO(2n+1)_{\mathfrak{G}}] \to [W, SU(2n+1)_{\mathfrak{G}}]$$

 $\beta_{\mathfrak{G}^*}: [W, Sp(n)_{\mathfrak{G}}] \to [W, SU(2n)_{\mathfrak{G}}]$

are monomorphisms of groups.

Proof. We give the proof for $\beta_{\mathfrak{P}^*}$; the proof for $\alpha_{\mathfrak{P}^*}$ is similar. We consider a portion of the long exact homotopy sequence of (**):

$$\cdots \to \left[\sum W, SU(2n)_{\mathfrak{P}}\right]^{\beta_{2},\mathfrak{P}^{*}}_{q_{2},\mathfrak{P}^{*}}\left[\sum W, \left(SU(2n)/\operatorname{Sp}(n)\right)_{\mathfrak{P}}\right],$$

$$\stackrel{d_{*}}{\to} \left[W, \operatorname{Sp}(n)_{\mathfrak{P}}\right]^{\beta_{\mathfrak{P}^{*}}}\left[W, \operatorname{SU}(2n)_{\mathfrak{P}}\right].$$

Since $p_{2,\mathfrak{P}}q_{2,\mathfrak{P}}$ is a homotopy equivalence, d_* is the trivial map and $\beta_{\mathfrak{P}^*}$, is injective.

Let ψ be the composite monomorphism $\psi \colon \operatorname{Sp}(n) \xrightarrow{\beta} \operatorname{SU}(2n) \xrightarrow{j} \operatorname{SU}(2n+1)$, and J' = j(J) so that $\overline{\psi(x)} = J' \cdot \psi(x) \cdot J'^{-1} = \psi(\overline{x})$.

PROPOSITION 3.2. Let \mathfrak{P} be the set of odd primes.

- (i) There is a map $\Phi: SO(2n+1) \to Sp(n)_{\oplus}$ such that $\beta_{\oplus}\Phi$ is homotopic to $SO(2n+1) \xrightarrow{\phi} SU(2n) \xrightarrow{e_{\oplus}} SU(2n)_{\oplus}$.
- (ii) There is a map Ψ : $\operatorname{Sp}(n) \to \operatorname{SO}(2n+1)_{\operatorname{g}}$ such that $\alpha_{\operatorname{g}}\Psi$ is homotopic to $\operatorname{Sp}(n) \to \operatorname{SU}(2n+1) \to \operatorname{SU}(2n+1)_{\operatorname{g}}$.

Proof. Using a path in SU(2n) from J to the identity and the homotopy of ϕ with $\overline{\phi}$ of Proposition 2.1, we have

$$q_2 p_2 \phi = \phi \cdot J \cdot \phi^t \cdot J^{-1} \simeq \phi \cdot \phi^t \simeq \overline{\phi} \cdot \phi^t = I_{2n}$$
 (constant).

Thus (partially suppressing the subscript 9),

$$p_2 e_{\varphi} \phi \simeq h_2 p_2 q_2 p_2 e_{\varphi} \phi \simeq h_2 p_2 e_{\varphi} (q_2 p_2 \phi) \simeq \text{constant}.$$

By the covering homotopy property, there is a map Φ : $SO(2n + 1) \rightarrow Sp(n)_{\varphi}$ so that $\beta_{\varphi}\Phi$ is homotopic to $e_{\varphi}\Phi$.

Similarly,

$$q_1 p_1 \psi = \psi \cdot \psi^t \simeq \psi \cdot J' \cdot \psi^t \cdot J'^{-1} = I_{2n+1}$$
 (constant).

An analogous argument completes the proof of (ii).

Note that this proposition implies that $\alpha_{\mathfrak{P}}\Psi_{\mathfrak{P}}\simeq\psi_{\mathfrak{P}}$ and $\beta_{\mathfrak{P}}\Phi_{\mathfrak{P}}=\phi_{\mathfrak{P}}$.

Since ψ : Sp(n) \rightarrow SU(2n + 1) is a homomorphism and the localization of an H-space is an H-space, we obtain

PROPOSITION 3.3. The map Ψ : $Sp(n) \to SO(2n+1)_{\mathfrak{P}}$ is an H-map of H-spaces.

Proof. Let $\mu_G: G \times G \to G$ be multiplication. Then since $\alpha_{\mathfrak{P}}, e_{\mathfrak{P}}$ and ψ are H-maps,

$$\begin{split} \alpha_{\mathfrak{P}} \Psi \mu_{\mathrm{Sp}} &\simeq e_{\mathfrak{P}} \psi \mu_{\mathrm{Sp}} \simeq \mu_{\mathrm{SU},\mathfrak{P}} (e_{\mathfrak{P}} \psi \times e_{\mathfrak{P}} \psi) \simeq \mu_{\mathrm{SU},\mathfrak{P}} (\alpha_{\mathfrak{P}} \Psi \times \alpha_{\mathfrak{P}} \Psi) \\ &\simeq \alpha_{\mathfrak{P}} \mu_{\mathrm{SO},\mathfrak{P}} (\Psi \times \Psi). \end{split}$$

Since $\alpha_{\mathbb{P}^*}$ is injective, taking $W = \mathrm{Sp}(n) \times \mathrm{Sp}(n)$ in 3.1, we have $\Psi \mu_{\mathrm{Sp}} \simeq \mu_{\mathrm{SO},\mathbb{P}}(\Psi \times \Psi)$.

COROLLARY 3.4. The localized map $\Psi_{\mathfrak{P}}$: $\operatorname{Sp}(n)_{\mathfrak{P}} \to \operatorname{SO}(2n+1)_{\mathfrak{P}}$ is an H-map of H-spaces.

Proof. This follows by localizing the homotopy of 3.3.
$$\Box$$

A proof for Φ analogous to the one above fails because ϕ is not a group homomorphism.

We are now ready to state the main result.

THEOREM 3.5. If \mathfrak{P} is the set of odd primes there exist maps Φ : $SO(2n+1) \rightarrow Sp(n)_{\mathfrak{P}}$ and Ψ : $Sp(n) \rightarrow SO(2n+1)_{\mathfrak{P}}$ whose \mathfrak{P} -localizations

$$\Phi_{\mathfrak{P}} \colon \mathrm{SO}(2n+1)_{\mathfrak{P}} \to \mathrm{Sp}(n)_{\mathfrak{P}},$$

$$\Psi_{\mathfrak{P}} \colon \mathrm{Sp}(n)_{\mathfrak{P}} \to \mathrm{SO}(2n+1)_{\mathfrak{P}}$$

are inverse homotopy equivalences and H-maps.

Proof. By Proposition 3.2 we have a commutative diagram of homotopy sets

$$[W, \operatorname{Sp}(n)_{\mathscr{G}}] \xrightarrow{\beta_{\mathscr{G}^*}} [W, \operatorname{SU}(2n)_{\mathscr{G}}]$$

$$\Psi_{\mathscr{G}^*} \downarrow \uparrow \Phi_{\mathscr{G}^*} \qquad \qquad \downarrow j_{\mathscr{G}^*}$$

$$[W, \operatorname{SO}(2n+1)_{\mathscr{G}}] \xrightarrow{\alpha_{\mathscr{G}^*}} [W, \operatorname{SU}(2n+1)_{\mathscr{G}}].$$

We have

$$\alpha_{\mathfrak{P}} \simeq j_{\mathfrak{P}} \phi_{\mathfrak{P}} \simeq j_{\mathfrak{P}} \beta_{\mathfrak{P}} \Phi_{\mathfrak{P}} \simeq \psi_{\mathfrak{P}} \Phi_{\mathfrak{P}} \simeq \alpha_{\mathfrak{P}} \Psi_{\mathfrak{P}} \Phi_{\mathfrak{P}}.$$

Taking $W = SO(2n+1)_{\mathfrak{P}}$ and using brackets to denote homotopy class, we have $\alpha_{\mathfrak{P}^*}[1_{SO(2n+1)_{\mathfrak{P}}}] = \alpha_{\mathfrak{P}^*}[\Psi_{\mathfrak{P}}\Phi_{\mathfrak{P}}]$, or $\Psi_{\mathfrak{P}}\Phi_{\mathfrak{P}} \simeq 1_{SO(2n+1)_{\mathfrak{P}}}$, since $\alpha_{\mathfrak{P}^*}$ is injective by 3.1. Thus $\Psi_{\mathfrak{P}^*}\Phi_{\mathfrak{P}^*}$ is the identity, $\Psi_{\mathfrak{P}^*}$ is surjective and $\Phi_{\mathfrak{P}^*}$ is injective.

Now

$$j_{\mathfrak{P}}\beta_{\mathfrak{P}}\simeq\psi_{\mathfrak{P}}\simeq\alpha_{\mathfrak{P}}\Psi_{\mathfrak{P}}\simeq j_{\mathfrak{P}}\phi_{\mathfrak{P}}\Psi_{\mathfrak{P}}\simeq j_{\mathfrak{P}}\beta_{\mathfrak{P}}\Phi_{\mathfrak{P}}\Psi_{\mathfrak{P}}.$$

Take $W = S^k$ so the sets are homotopy groups, and

$$j_{\mathfrak{P}^*}\beta_{\mathfrak{P}^*} = j_{\mathfrak{P}^*}\beta_{\mathfrak{P}^*}(\Phi\Psi)_{\mathfrak{P}^*} \colon \pi_k(\operatorname{Sp}(n)_{\mathfrak{P}}) \to \pi_k(\operatorname{SU}(2n+1)_{\mathfrak{P}}).$$

Since $\beta_{\mathbb{P}^*}$ is a monomorphism and $j_{\mathbb{P}^*}$ is an isomorphism for k < 4n, $(\Phi_{\mathbb{P}}\Psi_{\mathbb{P}})_*$ is the identity on homotopy groups in dimensions k < 4n. By the results of Harris [3], $\pi_k(\mathrm{SO}(2n+1)_{\mathbb{P}})$ and $\pi_k(\mathrm{Sp}(n)_{\mathbb{P}})$ are finite groups of the same order in dimension $k \ge 4n$. Since $\Psi_{\mathbb{P}^*}$ is an epimorphism, it is an isomorphism (as is $\Phi_{\mathbb{P}^*}$). Thus $\Phi_{\mathbb{P}}$ and $\Psi_{\mathbb{P}}$ induce isomorphisms on homotopy groups, and are therefore homotopy equivalences. But $\Phi_{\mathbb{P}}$ is a right homotopy inverse for the homotopy equivalence $\Psi_{\mathbb{P}}$, hence is a left homotopy inverse for $\Psi_{\mathbb{P}}$ and $\Phi_{\mathbb{P}}\Psi_{\mathbb{P}} \simeq 1_{\mathrm{Sp}(n)_{\mathbb{P}}}$.

Finally, since $\Phi_{\mathfrak{P}}$ is a homotopy inverse for $\Psi_{\mathfrak{P}}$ and $\Psi_{\mathfrak{P}}$ is an H-map, $\Phi_{\mathfrak{P}}$ is an H-map. \square

REMARKS. Since $\Phi = \Phi_{\mathfrak{P}} e_{\mathfrak{P}}$ and both $\Phi_{\mathfrak{P}}$ and $e_{\mathfrak{P}}$ are H-maps, Φ is an H-map.

By Theorem 6.6 of [4], there exist maps Φ' : $SO(2n+1) \to Sp(n)$ and Ψ' : $Sp(n) \to SO(2n+1)$ so that Φ'_{θ} and Ψ'_{θ} are homotopy equivalences. We do not know if Φ' and Ψ' can be chosen to be *H*-maps or if they can be delooped to maps on the classifying spaces.

REFERENCES

- [1] A. Borel, *Topology of Lie groups and characteristic classes*, Bull. Amer. Math. Soc., **61** (1955), 397–432.
- [2] E. Freidlander, Exceptional isogenies and the classifying spaces of simple Lie groups, Ann. of Math., 101 (1975), 510-520.
- [3] B. Harris, On the homotopy of the classical groups, Ann. of Math., 74 (1961), 407-413.
- [4] P. Hilton, G. Mislin and J. Roitberg, Localization of Nilpotent Groups and Spaces, North-Holland, Amsterdam, 1975.
- [5] A. Lundell, The embeddings $O(n) \subset U(n)$ and $U(n) \subset \operatorname{Sp}(n)$ and a Samelson product, Michigan Math. J., 13 (1966), 133–145.
- [6] M. Mimura, G. Nishida and H. Toda, Mod p decomposition of compact Lie groups, Res. Inst. for Math. Sci., Kyoto 13 (1977), 627–680.
- [7] E. Spanier, Algebraic Topology, McGraw Hill, New York, 1966.
- [8] D. Sullivan, Geometric Topology, M.I.T. Notes, 1971.

Received October 8, 1981 and in revised form May 10, 1982.

University of Colorado Boulder, CO 80309

PACIFIC JOURNAL OF MATHEMATICS **EDITORS**

DONALD BABBITT (Managing Editor)

University of California Los Angeles, CA 90024

Hugo Rossi University of Utah Salt Lake City, UT 84112

C. C. MOORE and ARTHUR OGUS University of California Berkeley, CA 94720

J. Dugundji

Department of Mathematics University of Southern California Los Angeles, CA 90089-1113

R. FINN and H. SAMELSON Stanford University Stanford, CA 94305

ASSOCIATE EDITORS

R. ARENS E. F. BECKENBACH (1906 - 1982)

B. H. NEUMANN

F. Wolf

K. YOSHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF ARIZONA UNIVERSITY OF BRITISH COLUMBIA CALIFORNIA INSTITUTE OF TECHNOLOGY UNIVERSITY OF CALIFORNIA MONTANA STATE UNIVERSITY UNIVERSITY OF NEVADA, RENO NEW MEXICO STATE UNIVERSITY OREGON STATE UNIVERSITY

UNIVERSITY OF OREGON UNIVERSITY OF SOUTHERN CALIFORNIA STANFORD UNIVERSITY UNIVERSITY OF HAWAII UNIVERSITY OF TOKYO UNIVERSITY OF UTAH WASHINGTON STATE UNIVERSITY UNIVERSITY OF WASHINGTON

Pacific Journal of Mathematics

Vol. 110, No. 1 September, 1984

Wojciech Abramczuk, A class of surjective convolution of	operators1
K. Adachi, Extending bounded holomorphic functions fro	om certain
subvarieties of a weakly pseudoconvex domain	
Malvina Florica Baica, An algorithm in a complex field a	and its application
to the calculation of units	21
Giuliana Bianchi and Robert Cori, Colorings of hyperm	aps and a
conjecture of Brenner and Lyndon	41
Ronald James Evans, Determinations of Jacobsthal sums	
Leslie Foged, Characterizations of ℵ-spaces	59
Nassif A. Ghoussoub and Paulette Saab, Weak compact	ness in spaces of
Bochner integrable functions and the Radon-Nikodýn	property65
J. Gómez Gil, On local convexity of bounded weak topolo	ogies on Banach
spaces	
Masaru Hara, On Gamelin constants	77
Wilfried Hauenschild, Eberhard Kaniuth and Ajay Ku	The state of the s
analysis on central hypergroups and induced represen	tations 83
Eugenio Hernandez, An interpolation theorem for analytic	
operators acting on certain H^p spaces	
Thomas Alan Keagy, On "Tauberian theorems via block-	
matrices"	
Thomas Landes, Permanence properties of normal structu	
Daniel Henry Luecking, Closed ranged restriction operat	
Bergman spaces	
Albert Thomas Lundell, The p -equivalence of $SO(2n +$	
Mark D. Meyerson, Remarks on Fenn's "the table theore	
Marvin Victor Mielke, Homotopically trivial toposes	
Gerard J. Murphy, Hyperinvariant subspaces and the top	
Subhashis Nag, On the holomorphy of maps from a comp	
manifold	191
Edgar Milan Palmer and Robert William Robinson, Er	
self-dual configurations	
John J. Walsh and David Clifford Wilson, Continuous d	A
into cells of different dimensions	
Walter John Whiteley, Infinitesimal motions of a bipartit	e framework233