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Let (A,G, a) be a C*-dynamical system. Suppose G is discrete,
archimedian-linearly ordered, and A is simple with unit. In this paper we
prove that the subalgebra of analytic elements A(G, ά) C C*(A,G, a) is
a maximal subalgebra of the crossed product C*(A, G, a).

The same question is solved for a C* -dynamical system associated
with a von Neumann algebra with a homogeneous periodic state. Finally,
if G — Z we prove the converse of this result.

1. Introduction. In [12] Wermer proved that the algebra of all

continuous functions on the unit circle \z\— 1 which can be extended to

the unit disk | z | < 1, so as to be analytic in the interior, is a maximal

subalgebra of the Banach algebra C(T) of all continuous, complex-valued

functions on the unit circle.

In [1] Arens and Singer presented a generalisation of part of the

theory of analytic functions in the unit disc, established by observing the

role played in the classical theory by the group of integers, then replacing

this group by a locally compact abelian group G possessing a suitably

distinguished semigroup G + .

Further, in [6] Hoffman and Singer extended to this context the

maximality theorem of Wermer. In this paper we extend the same theorem

to the context of C*-crossed products. We mention that the analogous

study for W* -crossed products was successfully made in [8] for the case

G — Z. In §4 we solve the same question for a C*-dynamical system

associated with a von Neumann algebra with a homogeneous periodic

state.

2. Preliminaries and notations.

2A. Dynamical systems and spectra. Let (A, G, a) be a C*-dynamical

system with G abelian, i.e. a C*-algebra and an abelian locally compact

group G of * -automorphisms of A with the property that for each ύ G i ,

the function g h-» ag{cι) is continuous.

We define a representation α( ) of L\G) into the bounded operators

on A by a(f)a = ff(g)ag(a) dg (a G A), where/ G L\G). For/ G L\G)
we put Z(/) = {p G G\f(p) = 0}, where G is the dual of G and/is the
Fourier transform of/.
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Let Sp a be defined as Π (Z(/) \f E L\G), a(f) = 0). If a E A let

We refer the reader to [3] for the elementary properties of spectra and

spectral subspaces.

Throughout this paper we suppose G discrete and, hence, G compact.

Suppose there exists a subsemigroup 6 + C G with the following proper-

ties:

Let (5 , G, β) be a C*-dynamical system. Denote β(G, β) = {b E 51

Spβ(b) C G + } . By [3], &(G, β) is a norm-closed non-selfadjoint subalge-

bra of B.

Now, for each g E G, we consider the weak integration

= [(g,p)βp(b)dp,

where φ is the normalised Haar measure on b. Then eg is a bounded

linear mapping from B onto Bg = {6 E B\βp(b) = (g~p)b, p E G}. We

also have the following properties:

(hereδ g g 2 is the Kronecker symbol)

εg(αλbα2) = αλεg(b)α2, αλ9 α2 G B0,b E B.

Clearly 5 0 = S(G, j8) Π β(G, /?)* is the algebra of all fixed points with

respect to β, and ε0 is a faithful, jβ-invariant projection of norm one from

B onto Bo.

The following lemma is a slight generalisation of [9, Lemma 1].

2.1. LEMMA (i) For any g l , g2, £ g i £ g 2 = Bgχ+g2 and B* = B_g].

(ii) Let bv b2 E B. Ifeg(bx) = εg(b2) for all g E G ί/*e« 6j = fe2.

(iii) Ffl/ Z? E 5, w^Λαt e Spβ(b) = {g <Ξ G\εg(b) Φ 0}.

(iv) ForgG G, 5 g = {b ϊΞB\Spβ(b) - {g}}.

The following lemma is well known and easy to prove:

2.2. LEMMA. B is linearly spanned by Ug(ΞGBg in the norm topology.
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2.3. REMARK. If b G B is such that ego(b) = 0 for some g0 G G, then
there exists a sequence £„ = Σgb

n(g), bn{g) G 2^, which converges to b
(in norm) such that bn(g0) = 0 for all w. Indeed, by Lemma 2.2 there
exists a sequence cn — Σgc

n(g), cn(g) G Bg, which converges to b. Since
εg(cn) = cn(g) (by Lemma 1.1 (iii)) and εg is bounded for all g G G, we
have that εgo(cn) converges to εg0(&) = 0. Therefore bn — cn — εgo(cn)
satisfies the desired property.

2B. C*-crossedproducts. Let (A, G, a) be a C*-dynamical system with
G discrete, abelian. Assume >4 C B(H) for some Hubert space H. Let

4) denote the set of "trigonometric polynomials":

<3>(G, A) = {/:GH>A \f{g) = 0 for all but finitely many gEG}.

Define a faithful representation of <&(G, A) on /2(G, i/) by

(1) (yξ)(g) = Σ « - g ( ^ ) ) ^ ( g " ^), ^ ^(G, ̂ 4), ί e /2(G, i

We identify <3>(G, >4) with its image in J5(/2(G, i/)) and denote by
C*(G, α, ̂ 4) the C*-algebra generated by <3(G, A). It can be shown that
C*(G, a, A) does not depend no the representation of A on H. We say
that C*(G, a, A) is the crossed product of G with A.

The following element of <3>(G, A):

y(g) = h y(s) = 0 for all s φg

will be denoted by λG.
Also, the elementy GΦ(G,A):

y(0) = Λ for some a GA9

y(g) = 0 foral lg^O,

will be denoted by a.
We denote by (C*(G, α, A), G, a) the dual system of {A, G, α) [10].
If G is ordered by a subsemigroup G+ as in 2A, then we may apply

the results of 2A to (C*(G, α, A)9 G, ά).

3. The main results. We say that a C*-algebra A is simple if it has
no nontrivial closed two-sided ideals. We say that A is G-simple if it has
no nontrivial, closed, G-invariant two-sided ideals. If G is ordered by the
subsemigroup G+ , we say that G is archimedean ordered if for any
gl9 g2 G G+ \{0} there exists n G N such that ngx > g2. Then it is well
known that G is isomoφhic with a subgroup of R.
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Let B be a C*-algebra with unit. We say that a closed subalgebra

& C B with the unit of B is a Dirichlet subalgebra if & + & * is norm dense

in B. Let ε be a faithful projection of norm one in B. A Dirichlet

subalgebra & C B is said to be C*-subdiagonal if the pair ( $ , ε) satisfies

the following conditions:

(i) ε is multiplicative on &.

(ϋ)ε(β) = βn#*.

We call the C*-subalgebra & Π β* the diagonal of &. Then using [7,

Theorem 3.1], the proof of [7, Theorem 2.4] can be adapted to prove:

3.1. THEOREM. Let A be a C*-algebra with unit, and G a discrete,

commutative group of automorphisms of A.

Suppose G is archimedean-linearly ordered. The έ£(G, a) is a maximal

C*-subdiagonal subalgebra of C*(G, α, A) with respect to the projection ε0

(§1).

The following theorem gives a sufficient condition for &(G9 ά) to be a

maximal subalgebra of C*(G, α, A).

3.2. THEOREM. Let A be a simple C*-algebra with unit and G an

automorphism group of A. Suppose G is discrete and archimedean-linearly

ordered. Then &(G, a) is a maximal subalgebra of C*(G, α, A).

Proof. The proof is inspired from Cohen's proof in the classical case

([5]). Let ® C C*(G, α, A) be a subalgebra which contains &(G9 a). Then

there exist b E ® and t0 E G + \{0} such that £-to(b) φ 0. It is easy to see

that the set / = {a E A \ (3)b E ©, λtoε_ίo(b) = a) is a non-zero two-sided

ideal in ̂ 4. Since Λ is simple, it follows that J — A. Therefore, there exists

b0 E φ such that λ,oε_,o(Z>o) = 1.

By definition of the crossed product and Remark 2.3, there exist two

"trigonometric polynomials" py q E 6B(G, a) and A E C*(G, α, Λl) such

that

for some /,, t2 E G+ \{0}.

Let 5 0 E G + be 50 = min{/0, tX912). We also set bx = λtQ_Sobo E

pλ = λ^^/7 E β(G, ά), and 9 l = q\ti_SQ E β(G, ά). Then

<l
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Let M=\\qxλSo-λ_Soqϊ\\. Since qγλSQ-λ-Soqf = * ' h> w h e r e h i s

selfadjoint, we have, for every δ > 0,

(1) ||l

Further, we have

(2) * λ

where g = δb{ — pλ G %.

Let #ί G β(G, a) be such that ^ \ J o = λSoq[. From (1), (2) and the

fact that ||A|| < i , it follows that

(3) ||1 + δ + λJo(-g + 8q[)\\ < 1 + δ 2 M 2 + δ/2.

If δ < 1/2M2, then from (3) we obtain

(4) ||1 + δ + λ j - g + 8q[)\\ < 1 + δ.

Since, obviously, λjQ(-g + δ^ί) G ®, from (4) it follows that this

element has an inverse k in %. So λSo(g + δq[)k = 1. From this it follows

o

Let s G G+ be arbitrary. Since G is archimedean ordered, there exists

n G N such that Π5O > 5. Then
λ_s = λns _s λ_ns G ®.

It follows that ® = C*(G, α, >4).

In what follows we discuss some partial converses of the preceding

theorem.

3.3. PROPOSITION. Let A be a unital C*-algebra, and a a * 'automor-

phism of A. If (£(Z, ά) is a maximal subalgebra of C*(Z, α, A), then A is

simple.

Proof. Suppose A is not simple and let / C A be a non-trivial

two-sided ideal. We show that 6E(Z, ά) is not maximal by producing a

subspace 9IL C C*(Z, α, A) with the following properties:

(i) 69H C 9H for every b G (£(Z, ά).

(ii) There exists g G C*(Z, α, ^4)\(£(Z, ά) such that g9H C 911.

(iii) 911 is not a left ideal of C*(Z, α, >4).
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Let 9H be the closure of the set of polynomials b: Z ι-» A with the

property that b{n) G a"(J) for all n < 0.

Let p G N and/ G 911 a polynomial. Then (λ^ f)(n) = αV(n - /?).

Hence, if n < 0 we have (λpf)(n) G «"(/). Also, if flGi, we have

( Λ . / ) ( Λ ) = α -/(/I) G αΛ(/). Hence Z>9H C 911 for all b G 0(Z, a) and

(i) is proved.

To prove (ii) let x G a~~ι(J). Then the element x λ_, satisfies (ii).

Obviously λ_,91l £ 911, whence (iii).

Therefore έ£(Z, ά) is not maximal. It follows that A is simple.

3.4. PROPOSITION. Let A be a unital C*-algebra and G a discrete,

commutative, linearly ordered group of * -automorphisms of A. If&(G, ά) is

a maximalsubalgebra ofC*(G,a,A), then:

(i) The order on G is archimedean.

(ii) A is G-simple.

Proof. Suppose the order on G is not archimedean. Then there exist

tχjt2E. G+ \{0} such that ntx < t2 for every n G N. Then the algebra %

generated by &(G9 a) and λ__, satisfies &(G9 ά) C ® C C*(G, α, A). Hence

&(G, a) is not maximal, and (i) is proved.

Now we show that A is G-simple. Suppose A is not G-simple. Then

there exists a non-trivial G-invariant two-sided ideal J C A. Set ® =

[b G C*(G, α, A) \εt(b) G /, / < 0}. Then φ is an algebra and

, ά) C © C C*(G, α, .4). Therefore Λ is G-simple.

3.5. PROPOSITION. Le/ A be a unital C*-algebra and G a discrete,

commutative, linearly ordered group of * -automorphisms of A. Suppose:

(i) A is primitive and postliminar.

(ii) &(G, ά) is a maximal subalgebra of C*(G, a, A).

Then we have:

(iii) G is archimedean ordered.

(iv) A is a finite-dimensional factor.

Proof, (iii) follows from Proposition 3.4. Let us prove (iv). Let A be

the space of irreducible representations of A and Prim(y4) the space of

primitive ideals of A with the Jacobson topology. Then by [4, Theoreme

4.3.7] the mapping π ι-> kerTr is a bijection between A and Prim(τ4). By

[4, Theoreme 4.4.5] there exists a maximal open set U C Prim(^4) which is

separated. Since A is primitive, it follows that (0) G Prim(^4). Obviously,
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(0) is dense in Prim(yl). Therefore, (0) E £Λ Since every open set VC

Prim(Λ) contains (0), it follows that (0) = U. Therefore C(0) = {/ e
Prim(Λ) \J φ (0)} is closed in Prim(^ί). Thus Π C(0) = Jo φ 0. Now it is

easy to see that Jo is G-invariant. Since by Proposition 3.4, A is G-simple,

it follows that Jo = (0). This contradiction shows that A is simple. Since A

is unital, primitive and postliminar, it follows that A is a finite-dimen-

sional factor.

4. Subalgebras of a von Neumann algebra with a homogeneous
periodic state. Let M be a von Neumann algebra. Suppose M has a

homogeneous periodic state φ in the sense that G(φ) = {σ E Aut(M)|

φ o σ = φ} acts ergodically on M and the modular automorphism group

σt

φ of M associated with φ is a periodic flow. A penetrating study of such

algebras was made by Takesaki [11]. Let T > 0 be the period of σt

φ. Put

p = e'2w/τ

9 0 < p < 1. Set Mn = {x E M|σ*(jc) = pintx}, « 6 Z . For

each n E Z, we consider the integration

εΛ(x) = ̂  fTp-inΓσ?(x) Λ9 x^M.
1 Jo

Then

ell(M) = Mll, ii EZ,

en°εm = Snmεn> m,W E Z ,

εn(axb) = aεn(x)b, a, b E Af0, JC E M.

MnMm = Mn+m, « , m E Z .

MΪ=M_n, « G Z .

We collect some results from [11] in the following

4.1. THEOREM, (i) 7%e subspace Mx of M contains an isometry u such

that for n > 1, Mn = Mow" andM_n = w*"M0.

(ii) /« /Ae pre-Hilbert space structure induced by the state φ, M is

decomposed into an orthogonal direct sum as follows:

M = . . ΘM*"M 0 θ - θw*M0 θ Mo θ Λfow θ • - @Mou" θ .

(iii) Mo is of type II,.

(iv) M /5 0/ (y/ra III.

Let 5 denote the C*-subalgebra of M generated by Mo and u.

Obviously B is σ^-invariant, ί E R .
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Moreover since the mapping / h^ ot

φ(x) is norm-continuous for every

x E Mn9 n E Z, it follows that it is norm-continuous for every x E B.

Therefore, we can consider the C*-dynamical system (B, σ,φ, R). By Lemma

2.1 and Theorem 4.1(i) it follows that Sp(σφ) is isomorphic with Z.

As in §2 let 6£(Z, σφ) denote the algebra of all elements of B with
non-negative spectrum.

4.2. PROPOSITION. (£(Z, σφ) is a maximal subalgebra of B if and only if

Mo is a factor.

Proof. Suppose M o is a factor. We follow the proof of Theorem 3.2.

Let % C B be such that S ( Z , σ φ ) d Then there exist b0 E % and

n E N such that ε_n(b0) Φ 0. We may assume n — 1. Let K — {x E Mo \

(3)b E ©, β_!(Z>) = w*x}. iΓis a linear subspace of Mo. If we put e = ww*,

it can be easily shown that the mapping Ad(u)(x) = uxu* is an isomor-

phism of Mo onto eMoe.

We claim that eKe is a two-sided ideal of eMoe. Indeed, if b E % is

such that e_x(b) = Λ; E eXe and α E eMoe, then

(u*au)u*x = w*α E x = w * E α E x = u*ax.

Therefore, since w*αw E M o C £(Z, σφ) C Φ, we have

ε_](u*au b) = u*ax, so UDC E eίCe.

Similarly

ε_!(δα) = u*xa, so xaGeKe.

Since Mo is a finite factor it follows that eMoe is a finite factor. Therefore

eMoe is simple. Hence eKe — eMoe. Then there exists b0 E % such that

ε_1(fo0) = u*e = u*.

By definition of B, there exist two "polynomials" p, q E (£(Z, σφ)

and h G B such that

6 0 M = 1 +/?w + w*<7* + A, | |A| |< 1/2.

The rest of the proof of the "if" part is the same as that of Theorem

3.2. Now suppose 6£(Z, σφ) is maximal in B.

If Mo is not a factor, let θ be the automorphisms of the center Z o of

M o defined as follows:

uzu* — θ (z)e (see [11, Lemma 1.20]).

There are the following possibilities:

I. θ is not ergodic.
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In this case there exists a projection g E Z 0 such that θ(q) — q. Then
q belongs to the center Z of M. Therefore, the algebra © generated by
<£(Z, σφ) and qB is such that &(Z, σ φ ) c S c δ , a contradiction. Hence

Φ Φ
Mo is a factor.

II. θ is ergodic.
In this case there exists q G Zo such that ##(#) = 0. Then it can

easily be verified that the algebra % generated by 6£(Z, σφ) and the set

{U*θ(q)y\y <ΞM0} is such that ί ( Z , α φ ) c S c ί . This contradiction

shows that Mo is a factor.
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