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This paper answers a question posed by K. R. Parthasarathy: Let X
be a symmetric space of non-compact type and G the connected compo-
nent of the group of isometries of X. Let m be the canonical (7-invariant
measure on X and E a Borel set in X such that E is compact and
0 < m(E) < oo. If μ,v are probability measures on ^such that μ(g E)
= v(g - E) for all g E (7, then is μ — vΊ We answer the question in the
affirmative (Theorem A) and also find that the condition "E is compact"
is unnecessary. A special case of this problem (under the condition that μ
and v are ΛΓ-invariant probabilities on X, where AT is a maximal compact
subgroup of G) was settled by I. K. Rana.

1. It is interesting to consider the corresponding problem on the real
line: If E is a Borel subset of R such that 0 < m(E) < oo (where m is the
Lebesgue measure on R) and μ, v are two probabilities on R such that
μ(x + E) = v(x + E) for all x E R, then is μ — vΊ The answer to this is
6 yes' under some additional conditions on E — for example E compact or
E C R+ or E becomes " very thin at oo". (See [5].) However in general the
answer does not seem to be known. It is in view of this that Theorem A is
interesting because in the case of a symmetric space of non-compact type
all we require is 0 < m(E) < oo. We should also point out that Theorem
A does not hold in the case of symmetric spaces of compact type — see
[1]. Finally we take up briefly: (a) the question of what happens if the
measures are allowed to be infinite and get a strong negative result
(Theorem B) — (for more information on this problem see [1]); and (b)
the corresponding question for the group G itself and again get a negative
result (Theorem C).

2. Preliminaries. A symmetric space X of non-compact type is of
the form G/K where G is the connected component of the group of
isometries of X and K is a maximal compact subgroup of G. Moreover G
is semi-simple, non-compact and with finite centre. Thus instead of
working with measures on X we work with right /^-invariant measures on
G and we can therefore state all our results in terms of the group G. We
now fix some notation that will be used in the sequel — for any unex-
plained concepts see [2] or [3]. Throughout this paper G is an arbitrary
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connected, non-compact, semi-simple Lie group with finite centre and K a
fixed maximal compact subgroup of G. Let m be a fixed Haar measure on
G. L\G) will denote the set of complex valued functions on G integrable
with respect to m. A function / on G is said to be right K-invariant
(respectively left K-invariant) 'ήif(xk) — f{x) (respectively f{kx) =/(*)),
J C G G , k <ΞK. Let L\G/K) = {/ G L\G)\ f right AΓ-invariant} and
L\K\G/K) = {/G L\G)\ /both left and right ^-invariant}. For a set
E C G, let \E denote its indicator function. A set E C G is said to be right
AΓ-invariant (resp. left ΛΓ-invariant) iff \E is right AΓ-invariant (resp. left
AΓ-invariant). A measure μ on G is said to be right ΛΓ-invariant iff
μ(Ek) = μ(E) for all Borel sets E C G and all A: G #. If/ G L*(G) define
/ * G L\G/K) byfκ(x) = fκf(xk) dk where dk is the normalized Haar
measure on the compact group K. If/is a function on G, let/be defined
by f(x) =f(x~]). (Note that if / is right ^-invariant / will be left
/^-invariant and vice-versa.) If fX9f2 G LX(G) define fx * f2 G Ẑ YG) by

(/, * f2)(χ) = JMχy-ι)f2(y) My).

It is easy to see that (/, * / 2 ) ^ = /, * /2*.
Let G = Â 4iV be a fixed Iwasawa decomposition of G (see [3]) and let

a be the Lie algebra of A, α* the dual of α and α* the complexification of
a*. For each λ G α* let πλ be the irreducible unitary representation of G
on //λ where {(ττλ, ^λ)} λ e α * is the class-1 principal series representation
of G (see [2], p. 59). Then each Hλ contains a vector vλ9 \\υλ\\ = 1 and
πλ(k)vλ = t)λ for all k E K and, moreover, υ λ is unique up to a scalar
multiple of modulus one. If (77, //) is a unitary representation of G, then
7r "lifts" to a representation of L\G) and we also denote this by π. (Thus
τr(/) = fG f(x)π(x) dm(x)9 where the integral on the right has to be
suitably interpreted.) For each λ G α*, let φ λ be the elementary spherical
function corresponding to λ (see [2] or [3]) and if / G L\K\G/K) define
its spherical Fourier transform/on α* by

f(λ)=jf(x)φλ(χ-i)dm(x)

We now make three basic observations which will be needed in the
next section.

Observation 1. I f/G L\G/K) and ττλ(/) = 0 for almost all λ G α*
(with respect to Lebesgue measure on α*), then / = 0 a.e. with respect to
the Haar measure on G.
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(This follows from the Plancherel theorem for X-invariant functions
and the fact that the Plancherel measure on a* is absolutely continuous
with respect to Lebesgue measure on a* — see [2].)

Observation 2. Let / E U{G/K). Let vλ and Hλ be as before. Then

(This follows from the fact that if/is right ΛΓ-invariant and if v E Hλ

transforms according to a non-trivial irreducible representation of K, then
πλ(f)v = Q. Thus "all the information about ττλ(/) is contained in
ττλ(/K".See[2].)

Observation 3. If / E L\K\G/K\ then πλ(f)vλ = f(λ)vλ. Moreover
if 0 η£f9/is nonzero a.e. on a* with respect to Lebesgue measure on a*.

(For the first part see the discussion on pp. 69-70 of [2]. The second
part follows from the fact that / extends to a holomorphic function in a
certain "tube" in 0* containing a* — see [2].)

3. The main results. We are now in a position to prove the asser-
tion made in the introduction.

THEOREM A. Let E be a right K-invariant Borel set in G such that
0 < m(E) < oc. If μ is a complex (finite) right K-invariant measure on G
such that μ(g E) = 0 for all g E G, then μ = 0.

(This theorem can be interpreted as follows: Let X be the symmetric
space G/K and let G act (as isometries) on X in the usual manner. If μ, v
are probabilities on G/K, E a Borel set in X of finite G-invariant measure
and μ(g - E) = v(g E) for all g E G, then μ = v.)

Proof. It is enough to prove the theorem for μ — f E L\G/K). (Then
an easy approximate identity argument can be used to deduce the theorem
for a general right AΓ-invariant complex measure μ.) We have to prove that
i f fg Ef(x)dm(x) = 0 for all g e G, then / = 0 a.e. (m). The above
condition implies/ * \E = 0. Now (/ * \E)K = / * If and hence/ * if = 0.
Since \E is right ΛΓ-invariant, observe that \E is left jKT-invariant and hence
ϊf is ΛΓ-bi-invariant. To prove the theorem it is enough to show (by
Observation 1 in §2) that ττλ(/) = 0 for almost all λ E α*. Let vλ and Hλ

be as in §2. So by Observation 2, it is enough to show πλ(f)vλ = 0 a.e.
(λ). Since / * if Ξ 0 we have π λ ( / * ϊ f ) υ λ = 0 for all λ, i.e.
7Tλ(f)tJτx(^E)vλ — 0 f°Γ a ^ λ. Thus using the #-bi-invariance of if and
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using Observation 3 we have (ϊ£)(λ)π χ(f)v λ = 0 for all λ. But by the
second part of Observation 3, (ϊf)(λ)τ> ί=0 a.e. (λ) and hence we have
7Γ\(f)υλ = 0 a e (λ) and the proof of the theorem is complete.

However the situation changes drastically if we do not assume/to be
integrable in the above theorem — (of course in this case we have to
restrict ourselves to sets E with E compact). In fact we have the following
negative result.

THEOREM B. Let E be a K-bi-invariant Borel set in G with E compact
and m(E) > 0. Then there exists an elementary spherical function φ such
that jgEψ(x)dm(x) = 0 for all g E G.

Proof. It is well known that if h E L\K\G/K) and if h is of compact
support then h extends to an entire function on a* (where we identify a*
with Cn, n = raήk(G/K)). Further h satisfies an estimate of the following
type:

i.e., h is an entire function of exponential type. Also, since h E
L\K\G/K\ ίi restricted to α* vanishes at oo on α*. Using the Hada-
mard factorization theorem one can easily show that such a function must
necessarily have a zero, i.e., 3λ0 E α* such that Λ(λ0) = 0. If we apply
this discussion to \E9 we have (ϊ^) (λ 0 ) = 0. (Note that we have assumed
E is JK-bi-invariant and E is compact.) Thus:

JG W r 1 ) dm{g) = JG lE(g)ψχ0(g) dm{g) = 0.

Now

(<Pλ0* h)(x) = / φ\0(
χy)ϊE(y~l) dm(y)

= j <P\0(xy)\E(y)dm(y).

Making use of the left ΛT-invariance of E and the fact
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we get Vx E G,

(ψχ0χ0 *

by (*)• Thus the theorem is proved since we can take φ = φ λ o .
(Again Theorem B can be interpreted as follows: Let E be a ^-in-

variant set in G/K such that E has positive G-invariant measure and E is
compact. Then there exist distinct positive infinite measures μ,v on G/K
such that μ(gE) = v(gE) for all g E Cλ The "Euclidean" version of this
theorem (i.e. G = the set of rigid motions and X— R") was proved by
Brown-Schreiber-Taylor — see reference [4] in [1].

The problem considered in Theorem B is a special case of what is
known as the Pompeiu problem. For more information on this problem
we refer the reader to [1].)

A meaningful question to ask at the group level is: Let G be a
semi-simple, connected, non-compact Lie group (without compact factors).
If £ is a Borel set in G with 0 < m(E) < oo, / E L\G) and
fgEAx) dm(x) = fE.gf(x) ώn(x) = 0 for all g E G, then is / = 0 a.e.?
The answer to this turns out to be negative as the following theorem
shows:

THEOREM C. Let G be the group SL(2, R) and E a K-bi-inυariant Borel
set in G with 0 < m{E) < oo. Then there exists a non-trivialf E Lι(G) such
that

ί f(x)ώn(x) = [ f(x)dm(x) = 0 for all g E G .
JgE JEg

Proof. Let 0 φ f be the matrix element of an integrable discrete series
representation m of G. (It is known that such a π exists.) Then / E L\G)
Π L2(G) and it is also known that such an/ i s orthogonal to L2(G/K)
and L2(K\G). Using this and the Jt-bi-invariance of E it easily follows
that fg.Ef(x) dm{x) - fE.gf(x) dm{x) = 0.

We would like to end this article with the following question: What
can you say about the above problem if G does not have discrete series
representations (for example if G is a complex group)?.
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