Pacific Journal of Mathematics

A MARCINKIEWICZ CRITERION FOR L^p-MULTIPLIERS

HENRY DAPPA

Vol. 111, No. 1

November 1984

A MARCINKIEWICZ CRITERION FOR *L^p*-MULTIPLIERS

HENRY DAPPA

Suppose *m* is a bounded measurable function on the *n*-dimensional Euclidean space \mathbb{R}^n . Define a linear operator T_m by $(T_m f) = mf$, where $f \in L^2 \cap L^p(\mathbb{R}^n)$, $1 \le p \le \infty$, and f denotes the Fourier transform of *f*:

$$f^{\hat{}}(\xi) := \int f(x) e^{-ix\xi} dx \qquad \left(x\xi := \sum_{j=1}^{n} x_j \xi_j\right).$$

(We omit the domain of integration if it is the whole \mathbb{R}^n .) If T_m is bounded from $L^p(\mathbb{R}^n)$ to $L^p(\mathbb{R}^n)$, then *m* is called an L^{p} -(Fourier) multiplier, denoted $m \in M_p(\mathbb{R}^n)$. The norm of *m* coincides with the operator norm of T_m .

THEOREM 1. Let m and m' be locally absolutely continuous on $(0, \infty)$ and

$$B:=\|m\|_{\infty}+\sup_{j\in Z}\int_{2^{j}}^{2^{j+1}}r|m''(r)|\,dr<\infty.$$

Then $m(|\xi|) \in M_p(\mathbb{R}^n)$ for all p with $1 \le 2n/(n+3)$ $<math>\le \infty$; in particular, $||m||_{M_p(\mathbb{R}^n)} \le cB$ with c independent of m.

1. To prove Theorem 1 we need a result stated in Theorem 2 about the following Littlewood-Paley function:

(1.1)
$$g_{\lambda}(f)(x) = \left(\int_0^\infty |S_t^{\lambda+1}(f;x) - S_t^{\lambda}(f;x)|^2 u(t) \frac{dt}{t}\right)^{1/2},$$

where

$$S_t^{\lambda}(f;x) = \int \left(1 - \frac{|\xi|^2}{t^2}\right)_+^{\lambda} f^{*}(\xi) e^{i\xi x} d\xi \qquad (r_+ = \max(0,r))$$

denotes the Bochner-Riesz means of f of order λ , u is a nonnegative measurable function on $(0, \infty)$ satisfying

(1.2)
$$t \le R(t) = \int_0^t u(s) \, ds \le ct, \quad t > 0,$$

and f belongs to S, the space of all infinitely differentiable rapidly decreasing functions on \mathbf{R}^n .

THEOREM 2. Let λ and p be such that

$$1 n(1/p - 1/2) - 1/2,$$

are valid. Then

$$\|g_{\lambda}(f)\|_{p} \leq c\|f\|_{p}$$

holds uniformly for $f \in S$.

By c or C we always denote a constant that may be different on various occasions.

The above g_{λ} -function is a modification of the g_{δ}^* -function of Bonami and Clerc [1; p. 242], used by them for deriving sufficient criteria of Marcinkiewicz type for zonal multipliers of expansions into spherical harmonics, and can be regarded as a variant of Stein's g_{δ} -function [7; p. 130], which in our context reads as follows:

$$g_{\lambda}^{*}(f)(x) = \left(\int_{0}^{\infty} |S_{t}^{\lambda+1}(f;x) - S_{t}^{\lambda}(f;x)|^{2} \frac{dt}{t}\right)^{1/2}.$$

Its L^p -behaviour has been investigated by Igari and Kuratsubo in [6] where they have shown via analytic interpolation between the points $(\lambda_0, 1/p_0)$ and $(\lambda_1, 1/p_1), \lambda_0 = (n-1)/2 + \epsilon, 1/p_0 = 1 - \epsilon \text{ or } 1/p_0 = \epsilon$, and $\lambda_1 = -\frac{1}{2} + \epsilon, 1/p_1 = \frac{1}{2} (\epsilon \to 0 +)$ that

(1.3)
$$c_1 \|f\|_p \le \|g_{\lambda}^*(f)\|_p \le c_2 \|f\|_p,$$

 $1 n |1/p - 1/2| - 1/2,$

where each $c_j > 0$ is independent of $f \in S$. Had we applied the interpolation argument of [6] to the g_{λ} -function defined in (1.1) as Bonami and Clerc [1; pp. 240, 242] did for their g_{δ}^* -function, we could only take $(\lambda_1, 1/p_1), \lambda_1 = \epsilon, 1/p_1 = 1/2 \ (\epsilon \to 0 +)$ as a second interpolation point. We should have then obtained

$$\|g_{\lambda}(f)\|_{p} \le c\|f\|_{p}, \quad 1 (n-1)|1/p - 1/2|$$

uniformly for $f \in S$, hence the same result as that of Bonami and Clerc for their g_{δ}^* -function, which is not a good estimate in view of (1.3). In Theorem 2 we give an improvement of the above estimate in the sense of (1.3). The method of proof used here is a modification of techniques of Fefferman [2; pp. 28-33] in combination with the Tomas and Stein restriction theorem [9] for the Fourier transform. This theorem is applied at a crucial point of the proof and implies the restriction $p \le 2(n + 1)/(n + 3)$, which is subsequently sharpened to p < 2(n + 1)/(n + 3) after the use of the Marcinkiewicz interpolation theorem. Proceeding analogously to Bonami and Clerc [1; pp. 246-7] we derive Theorem 1 from Theorem 2.

The plan of the paper is the following. In §2 we prove Theorem 2. In §3 we derive Theorem 1 and make several remarks; in particular we show that Theorem 1 is best possible regarded as a Marcinkiewicz type criterion.

2. Let us recall the following decomposition Lemma, which is an essential tool for the proof of Theorem 2 (see [2; p. 15]).

LEMMA. Let $f \in L^{p}(\mathbb{R}^{n})$ and $\alpha > 0$ be given. Then there exist two functions h and b and a collection $\{I_{j}\}_{j \in \mathbb{N}}$ of pairwise disjoint cubes with the following properties:

(2.1) $f = h + b, ||h||_p + ||b||_p \le A ||f||_p.$

(2.2) $|h(x)| \le A\alpha$ for almost every $x \in \mathbb{R}^n$.

(2.3) b(x) = 0 for every $x \notin \Omega := \bigcup_{j \in \mathbb{N}} I_j$.

(2.4)
$$\int_{I_j} |b(x)|^p dx \le A\alpha^p |I_j|, \quad \int_{I_j} b(x) dx = 0 \quad \text{for every } I_j,$$

where $|I_i|$ denotes Lebesgue measure of I_i .

(2.5)
$$|\Omega| = \sum_{j \in \mathbb{N}} |I_j| \le A \alpha^{-p} ||f||_p^p$$

- (2.6) Each cube has diameter equal to 2^k for some $k \in Z$. Let I_i^* be a cube with the same center as I_i but with
- (2.7) sides twice as large. Then no point $x \in \mathbb{R}^n$ belongs to more than N of the cubes I_i^* .

Proof of Theorem 2. Let $f \in S$ be given. In view of the Marcinkiewicz interpolation theorem [8; p. 21], it suffices to show that

$$|\{x:g_{\lambda}(f)(x) > \alpha > 0\}| \leq c\alpha^{-p} ||f||_{p}^{p}$$

holds uniformly in α and $f \in S$. By (2.1) we have

(2.8)
$$|\{x: g_{\lambda}(f)(x) > \alpha\}|$$

 $\leq |\{x: g_{\lambda}(h)(x) > \alpha/2\} + |\{x: g_{\lambda}(b)(x) > \alpha/2\}.$

Thus we may estimate each term on the right side separately. Let us begin with the first one, to which we apply the standard argument (see [8; p. 20])

(2.9)
$$|\{x: g_{\lambda}(f)(x) > \alpha\}| \leq \alpha^{-2} ||g_{\lambda}(h)||_{2}^{2}.$$

Now by theorems of Fubini and Plancherel we obtain

$$||g_{\lambda}(h)||_{2}^{2} = \int_{0}^{\infty} ||S_{t}^{\lambda+1}(h; \cdot) - S_{t}^{\lambda}(h; \cdot)||_{2}^{2}u(t) \frac{dt}{t}$$
$$= \int |\hat{h}(\xi)|^{2} \left\{ \int_{0}^{\infty} \left(\frac{|\xi|}{t}\right)^{4} \left(1 - \frac{|\xi|^{2}}{t^{2}}\right)_{+}^{2\lambda}u(t) \frac{dt}{t} \right\} d\xi.$$

By (1.2) we may replace t by R(t) and estimate the inner integral by

$$\{\cdots\} \leq C \int_0^\infty \left(\frac{|\boldsymbol{\xi}|}{R(t)}\right)^4 \left(1 - \left(\frac{|\boldsymbol{\xi}|}{R(t)}\right)^2\right)_+^{2\lambda} \frac{dR(t)}{R(t)}$$
$$= C \int_0^\infty s^4 (1 - s^2)_+^{2\lambda} \frac{ds}{s} = C_{\lambda}.$$

Hence, again by the Plancherel theorem, (2.2), and (2.1)

$$\|g_{\lambda}(h)\|_{2}^{2} \leq C \int |h(x)|^{2} dx \leq C \alpha^{2-p} \int |h(x)|^{p} dx \leq C \alpha^{2-p} \|f\|_{p}^{p},$$

and thus, by (2.9),

$$|\{x:g_{\lambda}(h)(x)>\alpha\}|\leq C\alpha^{-p}||f||_{p}^{p}.$$

To estimate the second term on the right side of (2.8) let us define the operators T_t , t > 0, by the equation

$$(T_t f)^{\hat{}}(\xi) := \left(S_t^{\lambda+1}(f; \cdot) - S_t^{\lambda}(f, \cdot)\right)^{\hat{}}(\xi) = m_{\lambda}(|\xi|/t)f^{\hat{}}(\xi).$$

Note that $m_{\lambda}(|\xi|) = -|\xi|^2(1 - |\xi|^2)^{\lambda}_+$ is a C^{∞} -function for $|\xi| \neq 1$, vanishing outside the unit ball. Then following Fefferman [2] decompose *m* by means of a C^{∞} -function $\theta(s)$ defined on **R** such that $0 \leq \theta(s) \leq 1$, $\theta(s) = 0$ for $|s| \geq \frac{1}{2}$, $\theta(s) = 1$ for $|s| \leq \frac{1}{4}$ holds. Choose an arbitrary, small, positive number δ . With the notation

$$heta_k(|\xi|) := hetaig(2^{k(1-\delta)}(|\xi|-1)ig), \quad \Phi_k(|\xi|) := 1 - heta_k(|\xi|), \qquad k \in \mathbb{N},$$

the decomposition of *m* reads

$$m_{\lambda}(|\xi|/t) = m_{\lambda}(|\xi|/t)\theta_{k}(|\xi|/t) + m_{\lambda}(|\xi|/t)\Phi_{k}(|\xi|/t)$$

= $m_{\lambda}(|\xi|/t)(s_{k,t})(\xi) + (r_{k,t})(\xi), \quad t > 0.$

Obviously $s_{k,t}$ and $r_{k,t}$ belong to S. In order to state the basic decomposition of $T_t b$, which modifies Fefferman's approach slightly, define the operators $K_{k,t}$ by

(2.10)
$$(K_{k,t}f)(\xi) := \begin{cases} m_{\lambda}(|\xi|/t)f(\xi), & \text{if } ||\xi|/t - 1| \le 2^{-k(1-\delta)-1}, \\ 0, & \text{otherwise,} \end{cases}$$

set $J_k := \{j \in \mathbb{N}: \text{diameter}(I_j) = 2^k\}$ and, denoting by χ_E the characteristic function of the set E, put $\beta_j := b\chi_{I_j}$, $b_k := \sum_{j \in J_k} \beta_j$. Let [r] be the largest integer not greater than r, set $\lg r := \log_2 r$ and $k_t := (k - [\lg(1/t)])_+$. Then

$$T_t b = \sum_{k \in \mathbb{Z}} T_t b_k = \sum_{k \le [\lg(1/t)]} \{ K_{0,t}(s_{0,t} * b_k) + r_{0,t} * b_k \} + \sum_{k \ge [\lg(1/t)]} \{ K_{k_t,t}(s_{k_t,t} * b_k) + r_{k_t,t} * b_k \}.$$

Hence, by Minkowski's inequality,

$$\begin{split} g_{\lambda}(b)(x) &= \left(\int_{0}^{\infty} \Big| \sum_{k \leq [\lg(1/t)]} (r_{0,t} * b_{k})(x) \Big|^{2} u(t) \frac{dt}{t} \right)^{1/2} \\ &+ \left(\int_{0}^{\infty} \Big| \sum_{k \geq [\lg(1/t)]} (r_{k,t} * b_{k})(x) \Big|^{2} u(t) \frac{dt}{t} \right)^{1/2} \\ &+ \left(\int_{0}^{\infty} \Big| \sum_{k \leq [\lg(1/t)]} \left(K_{0,t} \sum_{j \in J_{k}} (s_{0,t} * \beta_{j}) \chi_{\mathbf{R}^{n} \setminus I_{j}^{*}} \right)(x) \Big|^{2} u(t) \frac{dt}{t} \right)^{1/2} \\ &+ \left(\int_{0}^{\infty} \Big| \sum_{k \geq [\lg(1/t)]} \left(K_{k,t} \sum_{j \in J_{k}} (s_{k,t} * \beta_{j}) \chi_{\mathbf{R}^{n} \setminus I_{j}^{*}} \right)(x) \Big|^{2} u(t) \frac{dt}{t} \right)^{1/2} \\ &+ \left(\int_{0}^{\infty} \Big| \sum_{k \leq [\lg(1/t)]} \left(K_{0,t} \sum_{j \in J_{k}} (s_{0,t} * \beta_{j}) \chi_{I_{j}^{*}} \right)(x) \Big|^{2} u(t) \frac{dt}{t} \right)^{1/2} \\ &+ \left(\int_{0}^{\infty} \Big| \sum_{k \leq [\lg(1/t)]} \left(K_{k,t} \sum_{j \in J_{k}} (s_{k,t} * \beta_{j}) \chi_{I_{j}^{*}} \right)(x) \Big|^{2} u(t) \frac{dt}{t} \right)^{1/2} \\ &+ \left(\int_{0}^{\infty} \Big| \sum_{k \geq [\lg(1/t)]} \left(K_{k,t} \sum_{j \in J_{k}} (s_{k,t} * \beta_{j}) \chi_{I_{j}^{*}} \right)(x) \Big|^{2} u(t) \frac{dt}{t} \right)^{1/2} \\ &= \sum_{i=1}^{6} g_{\lambda,i}(x). \end{split}$$

 $g_{\lambda,6}$ and $g_{\lambda,5}$ are the essential contributions. $g_{\lambda,6}$ will be estimated with the aid of the Tomas and Stein restriction theorem, which implies the restrictions $1 \le p \le 2(n+1)/(n+3)$ and $\lambda > n(1/p - 1/2) - 1/2$; the fractional integration theorem used to estimate $g_{\lambda,5}$ requires the condition p > 1. The remaining $g_{\lambda,i}$ -functions will be estimated by L^1 -arguments.

2.1. Estimate of $g_{\lambda,6}$. Choose an arbitrary sequence $\{w_k\}$ with $w_k > 0$ and $\sum_{k=1}^{\infty} w_k^{-2} = C_w < \infty$ and apply Hölder's inequality to obtain

$$(g_{\lambda,6}(x))^{2} \leq C_{w} \int_{0}^{\infty} \sum_{k>[\lg(1/t)]} w_{k_{t}}^{2} \left| \left(K_{k_{t},t} \sum_{j \in J_{k}} \left(s_{k_{t},t} * \beta_{j} \right) \chi_{I_{j}^{*}} \right) (x) \right|^{2} u(t) \frac{dt}{t}$$

From (2.10) it follows that the L^2 -operator norm of $K_{k_{i},t}$ is bounded by $C2^{-k_t(1-\delta)\lambda}$. Hence, after interchanging the order of integration,

For the second inequality we use Hölder's inequality and (2.7), for the third, Plancherel's theorem and an interchange of summation and integration. Introduce polar coordinates in the inner integral and apply the restriction theorem [9] valid for $p \le 2(n + 1)/(n + 3)$ to derive

$$\begin{bmatrix} \cdots \end{bmatrix} = \int_0^\infty \left| \theta_{k_i} \left(\frac{r}{t} \right) \right|^2 r^{n-1} \left[\int_{|\xi'|=1} |\beta_j(r\xi')|^2 d\xi' \right] dr$$

$$\leq C ||\beta_j||_p^2 \int_0^\infty \left| \theta_{k_i} \left(\frac{r}{t} \right) \right|^2 r^{2n/p-n-1} dr$$

$$\leq C \alpha^2 2^{2nk/p-k_i(1-\delta)} t^{2n/p-n},$$

where (2.4) and (2.6) are used for the last inequality. Observe that (1.2) yields, for $\gamma < 0$,

$$\int_{2^{-k}}^{\infty} t^{\gamma} u(t) \frac{dt}{t} \leq C \int_{cR(2^{-k})}^{\infty} (R(t))^{\gamma} \frac{dR(t)}{R(t)} \leq C 2^{-k\gamma}.$$

Choose $w_k = 2^{\delta k}$ and note that in view of the condition $\lambda > n(1/p - 1/2) - 1/2$, the number δ can be determined so small that $\gamma = 2n/p - n - 2(1 - \delta)\lambda - 1 + 3\delta < 0$ holds. Then, by (2.6) and (2.5), we arrive at

$$||g_{\lambda,\delta}||_{2}^{2} \leq C\alpha^{2} \sum_{k \in \mathbb{Z}} \sum_{j \in J_{k}} 2^{2nk/p - 2k(1-\delta)\lambda - k + 3\delta k}$$
$$\times \int_{c2^{-k}}^{\infty} t^{2n/p - n - 2(1-\delta)\lambda - 1 + 3\delta} u(t) \frac{dt}{t}$$
$$\leq C\alpha^{2} \sum_{k \in \mathbb{Z}} \sum_{j \in J_{k}} 2^{nk} = C\alpha^{2} \sum_{j \in \mathbb{N}} |I_{j}| \leq C\alpha^{2-p} ||f||_{p}^{p}.$$

Thus analogously to (2.9),

$$|\{x \in \mathbf{R}^n \colon g_{\lambda,6}(x) > \alpha\}| \leq C\alpha^{-p} ||f||_p^p.$$

2.2. Estimate of $g_{\lambda,5}$. First recall that the L^2 -operator norm of $K_{0,t}$ is bounded by a constant, then interchange the order of integration and apply Hölder's inequality together with (2.7). Then

$$\|g_{\lambda,5}\|_{2}^{2} \leq C \int_{0}^{\infty} \left|\sum_{k \leq [\lg(1/t)]} \sum_{j \in J_{k}} \left(\left(s_{0,t} * \beta_{j}\right) \chi_{I_{j}^{*}} \right)(x) \right|^{2} dx \, u(t) \, \frac{dt}{t} \\ \leq C N \int_{0}^{\infty} \int \sum_{k \leq [\lg(1/t)]} \sum_{j \in J_{k}} \left| \left(\left(s_{0,t} * \beta_{j}\right) \chi_{I_{j}^{*}} \right)(x) \right|^{2} dx \, u(t) \, \frac{dt}{t} \, .$$

Again by the theorems of Fubini and Plancherel, after interchanging the summation and integration, we obtain

$$\|g_{\lambda,5}\|_{2}^{2} \leq C \sum_{k \in \mathbb{Z}} \sum_{j \in J_{k}} \int \int_{0}^{2^{-k+1}} \left| \theta_{0} \left(\frac{|\xi|}{t} \right) \right|^{2} u(t) \frac{dt}{t} |\beta_{j}(\xi)|^{2} d\xi.$$

By the definition of θ_0 ,

$$\int_{0}^{2^{-k+1}} \left| \theta_0 \left(\frac{|\xi|}{t} \right) \right|^2 u(t) \frac{dt}{t} \le \begin{cases} 0, & 2^k |\xi| \ge 3 \\ C & \text{otherwise} \end{cases} \le C \left(2^k |\xi| \right)^{-2a}$$

with $a := n(1/p - 1/2), p \le 2$; thus, it follows that

$$\|g_{\lambda,5}\|_{2}^{2} \leq C \sum_{k \in \mathbb{Z}} \sum_{j \in J_{k}} 2^{-2ak} \int |\xi|^{-2a} |\beta_{j}(\xi)|^{2} d\xi.$$

The integral represents the Fourier transform of the Riesz potential of order *a*; thus, applying Plancherel's theorem, the theorem on fractional integration [8, pp. 117], (2.4), (2.6) and (2.5), there holds for p > 1,

$$||g_{\lambda,5}||_{2}^{2} \leq C \sum_{k \in \mathbb{Z}} \sum_{j \in J_{k}} 2^{-2ak} ||\beta_{j}||_{p}^{2}$$

$$\leq C \alpha^{2} \sum_{k \in \mathbb{Z}} \sum_{j \in J_{k}} |I_{j}| |I_{j}|^{-2/p} |I_{j}|^{2/p} \leq C \alpha^{2-p} ||f||_{p}^{p},$$

and finally,

$$|\{x:g_{\lambda,5}(x)>\alpha\}|\leq C\alpha^{-p}||f||_p^p.$$

2.3. Estimates of $g_{\lambda,1}$ to $g_{\lambda,4}$. The following inequalities are the starting point.

$$(2.11) | \{x: g_{\lambda,i}(x) > \alpha\} | \leq |\Omega^*| + | \{x \in \mathbb{R}^n \setminus \Omega^*: g_{\lambda,i}(x) > \alpha\} |$$

$$\leq A 2^n \alpha^{-p} ||f||_p^p + \alpha^{-2} \int |(g_{\lambda,i} \chi_{\mathbb{R}^n \setminus \Omega^*})(x)|^2 dx, \quad i = 1, 2.$$

(2.12)
$$|\{x: g_{\lambda,i}(x) > \alpha\}| \le \alpha^{-2} \int (g_{\lambda,i}(x))^2 dx, \quad i = 3, 4.$$

Here we set $\Omega^* = \bigcup_{j \in \mathbb{N}} I_j^*$ in (2.11), use (2.5) and the argument (2.9). First note that for i = 1, 2,

$$(2.13) \quad (g_{\lambda,i}\chi_{\mathbf{R}^n\setminus\Omega^*})(x)$$

$$\leq \left(\int_0^\infty \left|\sum_{k\geq (-1)'[\lg(1/t)]}\sum_{j\in J_k} \left(\left(r_{k_i,t}*\beta_j\right)\chi_{\mathbf{R}^n\setminus I_j^*}\right)(x)\right|^2 u(t)\frac{dt}{t}\right)^{1/2}.$$

Thus, provided we can show on the one hand for i = 1, 2,

(2.14)
$$\left|\sum_{k\geq (-1)'[\lg(1/t)]}\sum_{j\in J_k}\left(\left(r_{k_i,t}*\beta_j\right)\chi_{\mathbf{R}^n\setminus J_j^*}\right)(x)\right|=\Sigma_i\leq C\alpha,$$

with C independent of x, t and α , and, on the other hand,

$$(2.15) \quad \iint_{0}^{\infty} \bigg| \sum_{k \ge (-1)' [\lg(1/t)]} \sum_{j \in J_{k}} \left(\left(r_{k_{i},t} * \beta \right) \chi_{\mathbf{R}^{n} \setminus I_{j}^{*}} \right) (x) \bigg| \frac{u(t)}{t} dx$$
$$= Q_{i} \le C \alpha^{1-p} \|f\|_{p}^{p},$$

we have established, via argument (2.9),

$$|\{x:g_{\lambda,i}(x)>\alpha\}|\leq C\alpha^{-p}||f||_p^p, \quad i=1,2.$$

For the verification of (2.14) and (2.15) observe that, since $r_{k_{t},t} \in S$,

(2.16)
$$|r_{k_{i},t}(x)| \leq C_{m}t^{n}(1+2^{-k_{i}(1-\delta)}t|x|)^{-m} = P_{k_{i},t}(x),$$

(2.17)
$$|\operatorname{grad}(r_{0,t}(x))| \leq CtP_{0,t}(x),$$

where we may choose m so large that $m\delta \ge n + 1$ holds. Further note that

(2.18)
$$c_1 | x - y_j | \le | x - y | \le c_2 | x - y_j |$$

is true for all $x \in I_j^*$ and $y \in I_j$, with y_j denoting the center of I_j . Starting with (2.14) apply (2.16), (2.4) and (2.18). Hence,

$$\begin{split} \Sigma_{1} &\leq \sum_{k \leq [\lg(1/t)]} \sum_{j \in J_{k}} \chi_{\mathbf{R}^{n} \setminus I_{j}^{*}}(x) \int |r_{0,t}(x-y)| |\beta_{j}(y)| \, dy \\ &\leq \sum_{k \leq [\lg(1/t)]} \sum_{j \in J_{k}} \chi_{\mathbf{R}^{n} \setminus I_{j}^{*}}(x) \sup_{y \in I_{j}} |r_{0,t}(x-y)| \int |\beta_{j}(y)| \, dy \\ &\leq C \alpha \sum_{k \leq [\lg(1/t)]} \sum_{j \in J_{k}} P_{0,t}(x-y_{j}) |I_{j}| \\ &\leq C \alpha \sum_{k \leq [\lg(1/t)]} \sum_{j \in J_{k}} \int_{I_{j}} P_{0,t}(x-y) \, dy \\ &\leq C \alpha \int P_{0,t}(x-y) \, dy \leq C \alpha, \end{split}$$

where we also used the fact that the I_i 's are pairwise disjoint. Since

$$\int_{|x|>c2^{k}} P_{k_{i},t}(x) \, dx \leq C2^{-k_{i}},$$

with C independent of k and t, we obtain analogously

$$\begin{split} \Sigma_2 &\leq C\alpha \sum_{k \geq [\lg(1/t)]} \int_{\bigcup_{j \in J_k} I_j} P_{k_i, t}(x-y) \, dy \\ &\leq C\alpha \sum_{k \geq [\lg(1/t)]} \int_{|x-y| \geq c2^k} P_{k_i, t}(x-y) \, dy \\ &\leq C\alpha \sum_{k \geq [\lg(1/t)]} 2^{-k_i} \leq C\alpha. \end{split}$$

Now consider (2.15), apply (2.4), then interchange the order of integration to derive

$$(2.19) \quad Q_{1} = \int \int_{0}^{\infty} \left| \sum_{k \leq [\lg(1/t)]} \sum_{j \in J_{k}} \chi_{\mathbf{R}^{n} \setminus I_{j}^{*}}(x) \right. \\ \left. \times \int (r_{0,t}(x-y) - r_{0,t}(x-y_{j})) \beta_{j}(y) \, dy \left| u(t) \, \frac{dt}{t} \, dx \right. \\ \leq \sum_{k \in \mathbb{Z}} \sum_{j \in J_{k}} \int |\beta_{j}(y)| \\ \left. \times \left[\int_{\mathbf{R}^{n} \setminus I_{j}^{*}} \int_{0}^{\infty} |r_{0,t}(x-y) - r_{0,t}(x-y_{j})| u(t) \, \frac{dt}{t} \, dx \right] \, dy.$$

The mean value theorem together with (2.17) yields for 0 < q < 1,

$$|r_{0,t}(x-y) - r_{0,t}(x-y_j)| \le C |y-y_j| t P_{0,t} (x-y_j + q(y_j - y))$$

$$\le C 2^k t^{n+1} (1+t |x-y_j|)^{-m},$$

since $|x - y_j + q(y_j - y)| \ge c |x - y_j|$ holds for all $x \notin I_j^*$, $y \in I_j$ and $P_{0,t}$ is nonincreasing. Replacing t by R(t) we estimate the expression in brackets on the right side of (2.19) as follows:

$$[\cdots] \le C2^k \int_{\mathbf{R}^n \setminus I_j^*} \int_0^\infty (R(t))^n (1 + R(t) | x - y_j|)^{-m} dR(t) dx$$
$$\le C2^k \int_{|x-y_j| \ge c2^k} |x - y_j|^{-n-1} dx \le C.$$

Thus, by (2.4) and (2.5),

$$Q_1 \leq C \sum_{k \in \mathbb{Z}} \sum_{j \in J_k} \int |\beta_j(y)| \, dy \leq C \alpha \sum_{j \in \mathbb{N}} |I_j| \leq C \alpha^{1-p} ||f||_p^p.$$

Consider again (2.15); an interchange of the integration and summation orders gives

$$Q_{2} = \int \int_{0}^{\infty} \left| \sum_{k \ge [\lg(1/t)]} \sum_{j \in J_{k}} \chi_{\mathbf{R}^{n} \setminus I_{j}^{*}}(x) \int r_{k_{i},t}(x-y_{j})\beta_{j}(y) dy \right| u(t) \frac{dt}{t} dx$$
$$\leq \sum_{k \in \mathbb{Z}} \sum_{j \in J_{k}} \int |\beta_{j}(y)| \left[\int_{\mathbf{R}^{n} \setminus I_{j}^{*}} \int_{c2^{-k}}^{\infty} |r_{k_{i},t}(x-y)| u(t) \frac{dt}{t} dx \right] dy.$$

Replace t by R(t) and use (2.16) to obtain

$$[\cdots] \leq C \int_{\mathbf{R}^n \setminus I_j^*} \int_{c2^{-k}}^{\infty} (R(t))^{n-1} \\ \times \left\{ 1 + (R(t))^{\delta} 2^{-k(1-\delta)} |x-y| \right\}^{-m} dR(t) dx \\ \leq C 2^{mk-nk} \int_{|x-y| \geq c2^k} |x-y|^{-m} dx \leq C.$$

Hence, by (2.4) and (2.5),

$$Q_2 \leq C \sum_{k \in \mathbb{Z}} \sum_{j \in J_k} \int |\beta_j(y)| \, dy \leq C \alpha^{1-p} ||f||_p^p.$$

Next, (2.12) can be treated in the same manner as (2.11) if we first use the same arguments as at the beginning of 2.1 (with $w_k = 2^{k(1-\delta)\lambda}$) and 2.2. Finally collecting all the $g_{\lambda,i}$ -estimates, the proof of Theorem 2 is completed by the observation

$$|\{x: g_{\lambda}(b)(x) > \alpha\}| \leq \sum_{i=1}^{6} |\{x: g_{\lambda,i}(x) > \alpha/6\}|.$$

3. Proof of Theorem 1. The general idea of the proof is to show

(3.1)
$$g_1^*(h; x) \le CBg_1(f; x), \quad \hat{h}(\xi) := m(|\xi|)\hat{f}(\xi).$$

Then in view of (1.3) and Theorem 2 the following norm inequalities prove Theorem 1 (F^{-1} denotes the inverse Fourier transformation):

 $\|F^{-1}\{m(|\xi|)\hat{f}(\xi)\}\|_{p} \le C\|g_{1}^{*}(h)\|_{p} \le cB\|g_{1}(f)\|_{p} \le cB\|f\|_{p}.$ To this end, set

$$k(r) := \frac{-r^{n+1}}{R^2} \int_{|\xi'|=1} f(r\xi') \exp(i r\xi' \cdot x) d\xi',$$

introduce polar coordinates and integrate by parts to obtain

$$S_R^2(h; x) - S_R^1(h; x) = \int_0^R \left(1 - \frac{r^2}{R^2}\right) m(r) k(r) dr$$

= $-\int_0^R \frac{\partial}{r \partial r} \left\{ \left(1 - \frac{r^2}{R^2}\right) m(r) \right\} \left\{ r \int_0^r k(s) ds \right\} dr$
= $m(R) \int_0^R \left(1 - \frac{r^2}{R^2}\right) k(r) dr$
+ $\frac{1}{R} \int_0^R \frac{r^4}{2R} \frac{\partial}{\partial r} \left\{ \frac{\partial}{r \partial r} \left\{ \left(1 - \frac{r^2}{R^2}\right) m(r) \right\} \right\} \left\{ S_r^2(f; x) - S_r^1(f; x) \right\} dr,$

where we used (cf. [4])

$$|rm'(r)| \leq C, \quad \int_0^r (r^2 - s^2)k(s) \, ds = O(r^3), \quad r \to 0 + .$$

Since

$$\left|\frac{1}{2}\frac{1}{R}r^4\frac{\partial}{\partial r}\left\{\frac{\partial}{r\partial r}\left\{\left(1-\frac{r^2}{R^2}\right)m(r)\right\}\right\}\right| \leq C\left\{|rm'(r)|+|r^2m''(r)|\right\} = :v(r),$$

we obtain by Minkowski's and Hölder's inequalities:

$$g_{1}^{*}(h)(x) = \left(\int_{0}^{\infty} |S_{R}^{2}(h;x) - S_{R}^{1}(h;x)|^{2} \frac{dR}{R}\right)^{1/2}$$

$$\leq \sup_{r>0} |m(r)|g_{1}^{*}(f)(x)$$

$$+ \left(\int_{0}^{\infty} \left|\frac{1}{R} \int_{0}^{R} |S_{r}^{2}(f;x) - S_{r}^{1}(f;x)|v(r) dr\right|^{2} \frac{dR}{R}\right)^{1/2}$$

$$\leq Bg_{1}^{*}(f)(x) + \left(\int_{0}^{\infty} \left\{\frac{1}{R} \int_{0}^{R} v(r) dr\right\}$$

$$\times \left\{\frac{1}{R} \int_{0}^{R} |S_{r}^{2}(f;x) - S_{r}^{1}(f;x)|^{2}v(r) dr\right\} \frac{dR}{R}\right)^{1/2}.$$

Observing (cf. [1], [4]) that $R^{-1}\int_0^R v(r) dr \le cB$, choose u(r) := (v(r) + B)/B. Then u satisfies (1.2) and an interchange of the integration order gives

$$g_1^*(h)(x) \le Bg_1^*(f)(x) + cB\left(\int_0^\infty |S_r^2(f;x) - S_r^1(f;x)|^2 u(r) \frac{dr}{r}\right)^{1/2} \le cBg_1(f)(x),$$

which completes the proof.

REMARKS. 1. The differentiability-growth condition on m in Theorem 1 is equivalent to

$$\sup_{r>0} |m(r)| + \sup_{j\in Z} \int_{2^{j-1}}^{2^{j}} r |dm'(r)| < \infty$$

(see [8; p. 109]). Applying this to $(1 - |\xi|)_+$, it follows that $(1 - |\xi|)_+ \in M_p(\mathbb{R}^n)$ if $2n/(n+3) , <math>n \ge 3$. On the other hand, it is well known (see [3], [4], [9]) that these *p*-bounds are necessary and sufficient for $(1 - |\xi|)_+$ to be a bounded multiplier.

2. Let us mention that we may interpolate between Theorem 1 and a result due to Bonami and Clerc [1] and Gasper and Trebels [5] to obtain sharp Marcinkiewicz criteria in the range $1 and <math>2n/(n-3) \le p < \infty$. In particular it will be shown that Theorem 1 already implies an improvement of the following result of Igari and Kuratsubo. Let m(r) be an absolutely continuous function on $(0, \infty)$ satisfying

$$\sup_{r>0} |m(r)| + \sup_{j\in\mathbb{Z}} \left(\int_{2^{j-1}}^{2^j} r |m'(r)|^2 dr \right)^{1/2} < \infty.$$

Then $m(|\xi|) \in M_p(\mathbb{R}^n)$ if 2n/(n+1) .

3. Modifications of the above techniques lead to: Let $\{r_j\}$ be any sequence of positive real numbers, $\{f_j\}$ any sequence in S. Then with λ , p as in Theorem 2 there holds

$$\left\|\left(\sum_{j\in\mathbf{N}}|S_{r_j}^{\lambda}(f_j;\cdot)|^2\right)^{1/2}\right\|_p\leq C\left\|\left(\sum_{j\in\mathbf{N}}|f_j(\cdot)|^2\right)^{1/2}\right\|_p$$

where C depends only on λ , p and the dimension n.

Acknowledgement. With greatest pleasure I acknowledge Professor W. Trebels for his mathematical and moral support during the whole work.

References

- A. Bonami and J.-L. Clerc, Sommes de Cesàro et multiplicateurs des développements en harmoniques spheriques, Trans. Amer. Math. Soc., 183 (1973), 223-263.
- [2] C. Fefferman, Inequalities for strongly singular convolution operators, Acta Math., 124 (1970), 9-36.
- [3] _____, A note on spherical summation multipliers, Israel J. Math., 15 (1973), 44-52.
- [4] G. Gasper and W. Trebels, A characterization of localized Bessel potential spaces and applications to Jacobi and Hankel multipliers, Studia Math., 65 (1979), 243–278.
- [5] _____, Multiplier criteria of Hörmander type for Fourier series and applications to Jacobi series and Hankel transforms, Math. Ann., 242 (1979), 225–240.
- [6] S. Igari and S. Kuratsubo, A sufficient condition for Fourier multipliers, Pacific J. Math., 38 (1971), 85–88.
- [7] E. Stein, Localization and summability of multiple Fourier series, Acta Math., 100 (1958), 93-147.
- [8] _____, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, 1970.
- P. Tomas, A restriction theorem for the Fourier transform, Bull. Amer. Math. Soc., 81 (1975), 477-478.

Received March 26, 1981 and in revised form January 6, 1982.

TECHNISCHE HOCHSCHULE D-6100 Darmstadt, West Germany

PACIFIC JOURNAL OF MATHEMATICS

EDITORS

DONALD BABBITT (Managing Editor) University of California Los Angeles, CA 90024

HUGO ROSSI University of Utah Salt Lake City, UT 84112

C. C. MOORE and ARTHUR OGUS University of California Berkeley, CA 94720 J. DUGUNDJI Department of Mathematics University of Southern California Los Angeles, CA 90089-1113

R. FINN and H. SAMELSON Stanford University Stanford, CA 94305

ASSOCIATE EDITORS

R. Arens

E. F. BECKENBACH E (1906–1982)

B. H. NEUMANN I

F. WOLF K. YOSHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF ARIZONA UNIVERSITY OF BRITISH COLUMBIA CALIFORNIA INSTITUTE OF TECHNOLOGY UNIVERSITY OF CALIFORNIA MONTANA STATE UNIVERSITY UNIVERSITY OF NEVADA, RENO NEW MEXICO STATE UNIVERSITY OREGON STATE UNIVERSITY UNIVERSITY OF OREGON UNIVERSITY OF SOUTHERN CALIFORNIA STANFORD UNIVERSITY UNIVERSITY OF HAWAII UNIVERSITY OF TOKYO UNIVERSITY OF UTAH WASHINGTON STATE UNIVERSITY UNIVERSITY OF WASHINGTON

Pacific Journal of MathematicsVol. 111, No. 1November, 1984

Harald Brandenburg and Adam Stefan Mysior, For every Hausdorff space Y there exists a nontrivial Moore space on which all continuous functions into Y are constant 1 Henry Dappa, A Marcinkiewicz criterion for L ^p -multipliers 9 P. H. Doyle, III and John Gilbert Hocking, Bijectively related spaces. I. 3 Manifolds 23 Joel Hass, Complete area minimizing minimal surfaces which are not totally geodesic geodesic 35 Aarno Hohti, On Ginsburg-Isbell derivatives and ranks of metric spaces 39 Richard Howard Hudson, Diophantine determinations of $3^{(p-1)/8}$ and $5^{(p-1)/4}$ 49 A. F. Izé and A. Ventura, Asymptotic behavior of a perturbed neutral functional-differential equation related to the solution of the unperturbed linear system 57 Palle E. T. Jorgensen, Spectral representations of unbounded nonlinear operators on Hilbert space 93 Darrell Conley Kent and Gary Douglas Richardson, Cauchy spaces with regular completions 105 Mark Mahowald, An addendum to: "bo-resolutions" 117 Stuart Wayne Margolis and Jean-Eric Pin, Minimal noncommutative varieties and power varieties 125 Carla Massaza and Alfio Ragusa, Some conditions on the homology groups of the Koszul complex 137 Vicente Miquel Molina, Some examples of Riemannian almost-product manifolds	
space Y there exists a nontrivial Moore space on which all continuous functions into Y are constant	Harald Brandenburg and Adam Stefan Mysior, For every Hausdorff
functions into Y are constant 1 Henry Dappa, A Marcinkiewicz criterion for L ^p -multipliers 9 P. H. Doyle, III and John Gilbert Hocking, Bijectively related spaces. I. 33 Manifolds 23 Joel Hass, Complete area minimizing minimal surfaces which are not totally geodesic 35 Aarno Hohti, On Ginsburg-Isbell derivatives and ranks of metric spaces 39 Richard Howard Hudson, Diophantine determinations of 3 ^{(p-1)/8} and 5 ^{(p-1)/4} 49 A. F. Izé and A. Ventura, Asymptotic behavior of a perturbed neutral functional-differential equation related to the solution of the unperturbed linear system 57 Palle E. T. Jorgensen, Spectral representations of unbounded nonlinear operators on Hilbert space 93 Darrell Conley Kent and Gary Douglas Richardson, Cauchy spaces with regular completions 105 Mark Mahowald, An addendum to: "bo-resolutions" 117 Stuart Wayne Margolis and Jean-Eric Pin, Minimal noncommutative varieties and power varieties 125 Carla Massaza and Alfio Ragusa, Some conditions on the homology groups of the Koszul complex 137 Vicente Miquel Molina, Some examples of Riemannian atmost-product manifolds 163 Roderic Murufas, Inverse spectral problems for certain differential operators 179 Ulrich Oertel, Closed incompressible surfaces in complements of star links <td< td=""><td>space Y there exists a nontrivial Moore space on which all continuous</td></td<>	space Y there exists a nontrivial Moore space on which all continuous
Henry Dappa, A Marcinkiewicz criterion for L ^p -multipliers 9 P. H. Doyle, III and John Gilbert Hocking, Bijectively related spaces. I. 23 Manifolds 23 Joel Hass, Complete area minimizing minimal surfaces which are not totally geodesic 35 Aarno Hohti, On Ginsburg-Isbell derivatives and ranks of metric spaces 39 Richard Howard Hudson, Diophantine determinations of 3 ^{(p-1)/8} and 5 ^{(p-1)/4} 49 A. F. Izé and A. Ventura, Asymptotic behavior of a perturbed neutral functional-differential equation related to the solution of the unperturbed linear system 57 Palle E. T. Jorgensen, Spectral representations of unbounded nonlinear operators on Hilbert space 93 Darrell Conley Kent and Gary Douglas Richardson, Cauchy spaces with regular completions 105 Mark Mahowald, An addendum to: "bo-resolutions" 117 Stuart Wayne Margolis and Jean-Eric Pin, Minimal noncommutative varieties and power varieties 125 Carla Massaza and Alfio Ragusa, Some conditions on the homology groups of the Koszul complex 137 Vicente Miquel Molina, Some examples of Riemannian almost-product manifolds 163 Roderic Murufas, Inverse spectral problems for certain differential operators 209 Katsuro Sakai, A characterization of local equiconnected ness 231	functions into Y are constant1
 P. H. Doyle, III and John Gilbert Hocking, Bijectively related spaces. I. Manifolds	Henry Dappa, A Marcinkiewicz criterion for L^p -multipliers
Manifolds 23 Joel Hass, Complete area minimizing minimal surfaces which are not totally geodesic 35 Aarno Hohti, On Ginsburg-Isbell derivatives and ranks of metric spaces 39 Richard Howard Hudson, Diophantine determinations of $3^{(p-1)/8}$ and $5^{(p-1)/4}$. 49 A. F. Izé and A. Ventura, Asymptotic behavior of a perturbed neutral functional-differential equation related to the solution of the unperturbed linear system 57 Palle E. T. Jorgensen, Spectral representations of unbounded nonlinear operators on Hilbert space 93 Darrell Conley Kent and Gary Douglas Richardson, Cauchy spaces with regular completions 105 Mark Mahowald, An addendum to: "bo-resolutions" 117 Stuart Wayne Margolis and Jean-Eric Pin, Minimal noncommutative varieties and power varieties 125 Carla Massaza and Alfio Ragusa, Some conditions on the homology groups of the Koszul complex 137 Vicente Miquel Molina, Some examples of Riemannian almost-product manifolds 163 Roderic Murufas, Inverse spectral problems for certain differential operators 179 Ulrich Oertel, Closed incompressible surfaces in complements of star links 209 Katsuro Sakai, A characterization of local equiconnectedness 231	P. H. Doyle, III and John Gilbert Hocking, Bijectively related spaces. I.
Joel Hass, Complete area minimizing minimal surfaces which are not totally geodesic	Manifolds
geodesic 35 Aarno Hohti, On Ginsburg-Isbell derivatives and ranks of metric spaces 39 Richard Howard Hudson, Diophantine determinations of $3^{(p-1)/8}$ and $5^{(p-1)/4}$	Joel Hass, Complete area minimizing minimal surfaces which are not totally
Aarno Hohti, On Ginsburg-Isbell derivatives and ranks of metric spaces	geodesic
Richard Howard Hudson, Diophantine determinations of $3^{(p-1)/8}$ and $5^{(p-1)/4}$	Aarno Hohti, On Ginsburg-Isbell derivatives and ranks of metric spaces 39
5 ^{(p-1)/4}	Richard Howard Hudson, Diophantine determinations of $3^{(p-1)/8}$ and
A. F. Izé and A. Ventura, Asymptotic behavior of a perturbed neutral functional-differential equation related to the solution of the unperturbed linear system .57 Palle E. T. Jorgensen, Spectral representations of unbounded nonlinear operators on Hilbert space .93 Darrell Conley Kent and Gary Douglas Richardson, Cauchy spaces with regular completions .05 Mark Mahowald, An addendum to: "bo-resolutions" .117 Stuart Wayne Margolis and Jean-Eric Pin, Minimal noncommutative varieties and power varieties .125 Carla Massaza and Alfio Ragusa, Some conditions on the homology groups of the Koszul complex .137 Vicente Miquel Molina, Some examples of Riemannian almost-product manifolds .163 Roderic Murufas, Inverse spectral problems for certain differential operators .179 Ulrich Oertel, Closed incompressible surfaces in complements of star links .209 Katsuro Sakai, A characterization of local equiconnectedness .231	$5^{(p-1)/4}$
functional-differential equation related to the solution of the unperturbed linear system	A. F. Izé and A. Ventura, Asymptotic behavior of a perturbed neutral
linear system 57 Palle E. T. Jorgensen, Spectral representations of unbounded nonlinear operators on Hilbert space 93 Darrell Conley Kent and Gary Douglas Richardson, Cauchy spaces with regular completions 105 Mark Mahowald, An addendum to: "bo-resolutions" 117 Stuart Wayne Margolis and Jean-Eric Pin, Minimal noncommutative varieties and power varieties 125 Carla Massaza and Alfio Ragusa, Some conditions on the homology groups of the Koszul complex 137 Vicente Miquel Molina, Some examples of Riemannian almost-product manifolds 163 Roderic Murufas, Inverse spectral problems for certain differential operators 179 Ulrich Oertel, Closed incompressible surfaces in complements of star links 209 Katsuro Sakai, A characterization of local equiconnectedness 231	functional-differential equation related to the solution of the unperturbed
Palle E. T. Jorgensen, Spectral representations of unbounded nonlinear operators on Hilbert space 93 Darrell Conley Kent and Gary Douglas Richardson, Cauchy spaces with regular completions 105 Mark Mahowald, An addendum to: "bo-resolutions" 117 Stuart Wayne Margolis and Jean-Eric Pin, Minimal noncommutative varieties and power varieties 125 Carla Massaza and Alfio Ragusa, Some conditions on the homology groups of the Koszul complex 137 Vicente Miquel Molina, Some examples of Riemannian almost-product manifolds 163 Roderic Murufas, Inverse spectral problems for certain differential operators 179 Ulrich Oertel, Closed incompressible surfaces in complements of star links 209 Katsuro Sakai, A characterization of local equiconnectedness 231	linear system
operators on Hilbert space	Palle E. T. Jorgensen, Spectral representations of unbounded nonlinear
Darrell Conley Kent and Gary Douglas Richardson, Cauchy spaces with 105 Mark Mahowald, An addendum to: "bo-resolutions" 117 Stuart Wayne Margolis and Jean-Eric Pin, Minimal noncommutative 125 Carla Massaza and Alfio Ragusa, Some conditions on the homology 137 Vicente Miquel Molina, Some examples of Riemannian almost-product 163 Roderic Murufas, Inverse spectral problems for certain differential 163 Vorentel, Closed incompressible surfaces in complements of star 179 Ulrich Oertel, Closed incompressible surfaces in complements of star 209 Katsuro Sakai, A characterization of local equiconnectedness 231	operators on Hilbert space
regular completions105Mark Mahowald, An addendum to: "bo-resolutions"117Stuart Wayne Margolis and Jean-Eric Pin, Minimal noncommutative varieties and power varieties125Carla Massaza and Alfio Ragusa, Some conditions on the homology groups of the Koszul complex137Vicente Miquel Molina, Some examples of Riemannian almost-product manifolds163Roderic Murufas, Inverse spectral problems for certain differential operators179Ulrich Oertel, Closed incompressible surfaces in complements of star links209Katsuro Sakai, A characterization of local equiconnectedness231William Victor Smith and Don Harrell Tusker, Wask interval204	Darrell Conley Kent and Gary Douglas Richardson, Cauchy spaces with
Mark Mahowald, An addendum to: "bo-resolutions" 117 Stuart Wayne Margolis and Jean-Eric Pin, Minimal noncommutative 125 Varieties and power varieties 125 Carla Massaza and Alfio Ragusa, Some conditions on the homology 137 Vicente Miquel Molina, Some examples of Riemannian almost-product 163 Roderic Murufas, Inverse spectral problems for certain differential 169 Ulrich Oertel, Closed incompressible surfaces in complements of star 179 Katsuro Sakai, A characterization of local equiconnectedness 231 William Victor Smith and Don Harrell Tuckor, Wask interval 201	regular completions105
Stuart Wayne Margolis and Jean-Eric Pin, Minimal noncommutative 125 Varieties and power varieties 125 Carla Massaza and Alfio Ragusa, Some conditions on the homology 137 groups of the Koszul complex 137 Vicente Miquel Molina, Some examples of Riemannian almost-product 163 Roderic Murufas, Inverse spectral problems for certain differential 163 operators 179 Ulrich Oertel, Closed incompressible surfaces in complements of star 209 Katsuro Sakai, A characterization of local equiconnectedness 231 William Victor Smith and Don Harrell Tucker, Wask interval 201	Mark Mahowald, An addendum to: "bo-resolutions"
varieties and power varieties 125 Carla Massaza and Alfio Ragusa, Some conditions on the homology groups of the Koszul complex 137 Vicente Miquel Molina, Some examples of Riemannian almost-product manifolds 163 Roderic Murufas, Inverse spectral problems for certain differential operators 163 Ulrich Oertel, Closed incompressible surfaces in complements of star links 209 Katsuro Sakai, A characterization of local equiconnectedness 231	Stuart Wayne Margolis and Jean-Eric Pin, Minimal noncommutative
Carla Massaza and Alfio Ragusa, Some conditions on the homology groups of the Koszul complex 137 Vicente Miquel Molina, Some examples of Riemannian almost-product manifolds 163 Roderic Murufas, Inverse spectral problems for certain differential operators 163 Ulrich Oertel, Closed incompressible surfaces in complements of star links 209 Katsuro Sakai, A characterization of local equiconnectedness 231	varieties and power varieties
groups of the Koszul complex	Carla Massaza and Alfio Ragusa, Some conditions on the homology
Vicente Miquel Molina, Some examples of Riemannian almost-product manifolds 163 Roderic Murufas, Inverse spectral problems for certain differential operators 179 Ulrich Oertel, Closed incompressible surfaces in complements of star links 209 Katsuro Sakai, A characterization of local equiconnectedness 231 William Victor Smith and Don Harrell Tuckor, Work integral	groups of the Koszul complex
manifolds 163 Roderic Murufas, Inverse spectral problems for certain differential operators 163 Ulrich Oertel, Closed incompressible surfaces in complements of star links 179 Katsuro Sakai, A characterization of local equiconnectedness 209 Katsuro Sakai, A characterization of local equiconnectedness 231	Vicente Miquel Molina, Some examples of Riemannian almost-product
Roderic Murufas, Inverse spectral problems for certain differential operators 179 Ulrich Oertel, Closed incompressible surfaces in complements of star links 209 Katsuro Sakai, A characterization of local equiconnectedness 231 William Victor Smith and Don Harrell Tuckor, Wask integral	manifolds
operators	Roderic Murufas. Inverse spectral problems for certain differential
Ulrich Oertel, Closed incompressible surfaces in complements of star links	operators
links	Ulrich Oertel, Closed incompressible surfaces in complements of star
Katsuro Sakai, A characterization of local equiconnectedness	links
William Victor Smith and Don Harroll Tucker, Weak integral	Katsuro Sakai, A characterization of local equiconnectedness
Winnann Victor Sinnth and Don Harren Tucker, Weak in Cera	William Victor Smith and Don Harrell Tucker, Weak integral
convergence theorems and operator measures	convergence theorems and operator measures