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Suppose m is a bounded measurable function on the //-dimensional
Euclidean space R". Define a linear operator Tm by (Tmf) = mf , where
/ G L2 Π LP(R"), 1 </? < oo, and/ denotes the Fourier transform of

:= jf{x)e->«dx lxξ:=
j=\

(We omit the domain of integration if it is the whole Rn.) If Tm is
bounded from Lp(Rn) to LP(R"), then m is called an L ^-(Fourier)
multiplier, denoted m G Mp(R"). The norm of m coincides with the
operator norm of Tm.

THEOREM 1. Let m and m' be locally absolutely continuous on (0, oo)
and

2J+λsup j2J+λr\m"{r)\dr< co.

Then m(\ξ\) G Mp(Rn) for allp with 1 < 2n/(n 4- 3) <p < 2 Λ / ( Λ - 3)
< oo; in particular, \\m\\M ̂ Rn) < ci? ιvί/Λ c independent of rru

1. To prove Theorem 1 we need a result stated in Theorem 2 about

the following Littlewood-Paley function:

1/2

(1.1) gλ(/)(*) =

where
^ / i £ |2 \ λ

= max(0, r))

denotes the Bochner-Riesz means of / of order λ, u is a nonnegative

measurable function on (0, oo) satisfying

(1.2) / < R(t) = Cu{s) ds <ct, t> 0,
Jo

and / belongs to S, the space of all infinitely differentiable rapidly

decreasing functions on Rn.
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THEOREM 2. Let λ andp be such that

1 <p<2(n+ \)/{n + 3), λ>n(\/p- 1/2) - 1/2,

are valid. Then

\\gχ(f)\\P^c\\f\\p

holds uniformly for / E S .

By c or C we always denote a constant that may be different on
various occasions.

The above gλ-function is a modification of the g*-function of Bonami
and Clerc [1; p. 242], used by them for deriving sufficient criteria of
Marcinkiewicz type for zonal multipliers of expansions into spherical
harmonics, and can be regarded as a variant of Stein's gδ-function [7; p.
130], which in our context reads as follows:

= ( j f

Its L ̂ -behaviour has been investigated by Igari and Kuratsubo in [6]
where they have shown via analytic interpolation between the points

(λo> 1/Po) a n d (λi> λ/P\\ λo = (n~ ! ) / 2 + ε> 1/A> = 1 - e or \/p0 = ε,
and λ, = - { + ε, 1/p, = \ (ε -> 0 + ) that

(1.3) ^ ^ ^

1 </?< oo, λ > Λ 11//? — 1/21-1/2,

where each c, > 0 is independent of / E 5. Had we applied the interpola-
tion argument of [6] to the gλ-function defined in (1.1) as Bonami and
Clerc [1; pp. 240, 242] did for their g|-function, we could only take
(λ ι ? \/px), λx = ε, \/pλ — 1/2 (ε -> 0 + ) as a second interpolation point.
We should have then obtained

llgλ(/)ll, ^ *ll/ll,> K/^ < oo, λ > (n - 1) I \/p - 1/2 I

uniformly f o r / G S , hence the same result as that of Bonami and Clerc
for their g^-function, which is not a good estimate in view of (1.3). In
Theorem 2 we give an improvement of the above estimate in the sense of
(1.3). The method of proof used here is a modification of techniques
of Fefferman [2; pp. 28-33] in combination with the Tomas and
Stein restriction theorem [9] for the Fourier transform. This theorem
is applied at a crucial point of the proof and implies the restriction
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p < 2(n + \)/{n + 3), which is subsequently sharpened to p <
2{n + \)/{n + 3) after the use of the Marcinkiewicz interpolation theo-
rem. Proceeding analogously to Bonami and Clerc [1; pp. 246-7] we
derive Theorem 1 from Theorem 2.

The plan of the paper is the following. In §2 we prove Theorem 2. In
§3 we derive Theorem 1 and make several remarks; in particular we show
that Theorem 1 is best possible regarded as a Marcinkiewicz type crite-
rion.

2. Let us recall the following decomposition Lemma, which is an
essential tool for the proof of Theorem 2 (see [2; p. 15]).

LEMMA. Let f E Lp(Rn) and a>0 be given. Then there exist two
functions h and b and a collection {/, }, G N ofpairwise disjoint cubes with the
following properties:

(2.1) f=h + b, \\h\\p + \\b\\p<A\\f\\p.

(2.2) \h(x)\<Aa for almost every xGR".

(2.3) b(x) = 0 for every x & Ώ : = \J Ij.
y'GN

(2.4) f\b(x)rdx<Aap\Ij\, jb(x) dx = 0 for every Ip

where | Ij | denotes Lebesgue measure of Ij.

(2.5) |Q|= 2 \Ij\^Aa

(2.6) Each cube has diameter equal to 2k for some k E Z.

Let IJ be a cube with the same center as Ij but with

(2.7) sides twice as large. Then no point J C G R " belongs to more

than N of the cubes IJ.

Proof of Theorem 2. Let / E S be given. In view of the Marcinkiewicz
interpolation theorem [8; p. 21], it suffices to show that

holds uniformly in a and/ E S. By (2.1) we have

(2.8) \{x:gλ(f)(x)>a}\

<| {x: gx(h)(x) > a/2} + | {x: gλ(b)(x) > a/2}.
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Thus we may estimate each term on the right side separately. Let us begin
with the first one, to which we apply the standard argument (see [8; p. 20])

(2.9) \(x:g,(f)(x)>«}\^ot~2\\gx(h)\\l

Now by theorems of Fubini and Plancherel we obtain

Ux(h)\\l= Γ\\sri(h; )-5,λ(Λ; OllMO T

By (1.2) we may replace t by R(t) and estimate the inner integral by

i 2\2 λ<«(0
R(t)

Jo s

Hence, again by the Plancherel theorem, (2.2), and (2.1)

\\gχ(h)\\l ^ CJ\ h(x) p dx < Ca2'PJ\ h(x) f dx < Ca2

and thus, by (2.9),

\{x: gλ(h)(x) > a}\< Ca-P\\f\\r.

To estimate the second term on the right side of (2.8) let us define the
operators Tv t > 0, by the equation

(Ttf)\ξ) := (S,λ+1(/; •) - S,λ(/, )Π« = mχ(\£\/t)ftt)

Note that mλ(\ξ\) = -\ξ\2(l - |£|2)+ is a C°°-function for \£\¥= 1, vanish-
ing outside the unit ball. Then following Fefferman [2] decompose m by
means of a C00-function θ(s) defined on R such that 0 < θ(s) < 1,
θ(s) = 0 for I J | > \, θ(s) = 1 for I J | < i holds. Choose an arbitrary, small,
positive number δ. With the notation

-1)), Φ

the decomposition of m reads
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Obviously skί and rkt belong to S. In order to state the basic decomposi-
tion of Ttb, which modifies Fefferman's approach slightly, define the
operators Kkt by

(2.10)
>-*(l-«)-l

0, otherwise,

set Jk : = { j E N: diameter(/y) = 2k) and, denoting by χE the character-

istic function of the set E, put β; : = bχτ, bk : = ΣJ(Ξjkβj. Let [r] be

the largest integer not greater than r, set l g r : = l o g 2 r and kt'-~

^ * bk)2 Ttbk=
k<ΞZ

Hence, by Minkowski's inequality,

8x(b)(x) = If u{t) —

1/2

1/2

«(0y

I Σ [κo,, Σ (\t*βj)χR"\i;j(χ)
ί \ dtu{t) —

1/2

ί \dtu(t) —

1/2

Γ Σ (Zo.,2(so.,*βj)xΛx)

Λ)

( \ dt
u{t) —

dt_

t

1/2

1/2

= Σ gχ.,(χ).
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gλ 6 and gλ 5 are the essential contributions. gλ6 will be estimated with the
aid of the Tomas and Stein restriction theorem, which imphes the restric-
tions 1 </? < 2(n + \)/{n + 3) and λ > n(\/p - 1/2) - 1/2; the frac-
tional integration theorem used to estimate gλ5 requires the condition
p > 1. The remaining gλ^-functions will be estimated by /^-arguments.

and
2.1. Estimate of gλ6. Choose an arbitrary sequence {wk} with wk > 0

2

^ = 1 wk

2 == Cw< oo and apply Holder's inequality to obtain

fij)x

From (2.10) it follows that the //-operator norm of Kk t is bounded by
C2~ / C / ( 1"δ ) λ. Hence, after interchanging the order of integration,

dxu{t) —

kt

ήΣ \{{ski,*βj)χir){x)\2dxu{t)ή-

-2k,(\-δ)λ

For the second inequality we use Holder's inequality and (2.7), for the
third, PlanchereΓs theorem and an interchange of summation and integra-
tion. Introduce polar coordinates in the inner integral and apply the
restriction theorem [9] valid for/? < 2(n + \)/(n + 3) to derive
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where (2.4) and (2.6) are used for the last inequality. Observe that (1.2)
yields, for γ < 0,

)~ky

JcR(2~k) K\l)

Choose wk — 28k and note that in view of the condition λ > n{\/p — 1/2)
— 1/2, the number 8 can be determined so small that γ = 2n/p — n —
2(1 - <5)λ - 1 + 3δ < 0 holds. Then, by (2.6) and (2.5), we arrive at

| |g λ f 6 | | 2 < Ca2 2 2 2 2 Λ*/*- 2* ( 1-*> λ-*+ 3**

X
dtί t2n/p-n-2t\-δ)λ-\+3δu/t\ βί

Jc2-k t

< Ca2 2 I 1nk = Ca2 2 \Ij& Cα 2 -' | |/ | | ; .

Thus analogously to (2.9),

I {x G R-g λ ? 6 (x) > α) |< Cα

2.2. Estimate of gλ5. First recall that the ZΛoperator norm of KOΐ is
bounded by a constant, then interchange the order of integration and
apply Holder's inequality together with (2.7). Then

2

\\gχ,s\\l *
/ \ dt

dxu{t) —

7 dt

Again by the theorems of Fubini and Plancherel, after interchanging the
summation and integration, we obtain

By the definition of θ0,

otherwise

with a := n(l/p - 1/2), ^ < 2; thus, it follows that

,5ll2
2 ^ c 2 2 2-

k<ΞZj<ΞJk
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The integral represents the Fourier transform of the Riesz potential of
order a; thus, applying PlanchereΓs theorem, the theorem on fractional
integration [8, pp. 117], (2.4), (2.6) and (2.5), there holds for p > 1,

l l a d l l ^ c Σ Σ 2-2*k\\βj\\

<c«2 Σ 2 \ij\\ijΓ2/p\ijΐ/p

k<ΞZj(ΞJk

and finally,

2.3. Estimates of gλ , to gλ 4. The following inequalities are the starting
point.

(2.11) I {x: gKl(x) > a) |<|Ω* | + | {x G R«\Ω*: gλ<i(χ) > a) \

/ χ R n χ Ω , )(x) | 2 Jx, i= 1,2.

(2.12) I {x: gλιi(χ) > a) |< α- 2 /(g λ ,,(x)) 2 dx, i = 3,4.

Here we set Ω* = U y e N / * in (2.11), use (2.5) and the argument (2.9).
First note that for i — 1,2,

(2.13) (gλ>J χ I P χ D . ) ( * )

dt
1/2

Thus, provided we can show on the one hand for i — 1,2,

(2.14) = Σ, < Ca,

with C independent of JC, ί and a, and, on the other hand,

< 2 1 5 >
-dx
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we have established, via argument (2.9),

For the verification of (2.14) and (2.15) observe that, since rk{t G S9

(2.16) \rkjx) |< Cm/"(l + 2-^-δh\x\)'m = PkJχ)9

(2.17) |grad(ro,(.x))|< CtPOt(x),

where we may choose m so large that mδ > n + 1 holds. Further note that

(2.18) q \x -yj\<\x -y\< c2\x -yj\

is true for all x E If and y E IJy with j ^ denoting the center of Ijm Starting

with (2.14) apply (2.16), (2.4) and (2.18). Hence,

Σ i * Σ Σ

^ Σ Σ XR-\ι;{x)snp\rOt(χ-y)\f\βj(y)\dy
*s[ig(i//)] ye^ re/7

 J

Σ P o , ^ - ^

where we also used the fact that the /-'s are pairwise disjoint. Since

J\x\>c2h "

with C independent of k and t, we obtain analogously

/ /

< Cα Σ 2~*' < Ca.
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Now consider (2.15), apply (2.4), then interchange the order of integration
to derive

(2.19) β ,=/Γ

X u{t) — dx

J\βj(y)\

x
dt

l Ίr\/j» Ό '

The mean value theorem together with (2.17) yields for 0 < q < 1,

\roAx~y) ~ roΛx - yj)\- c\y - yj\tpoΛx ~ yj+ i(yj-y))

since | x — y} + q( y}•— y) | > c \ x — y} \ holds for all x & If, y G I} and POt

is nonincreasing. Replacing / by R(t) we estimate the expression in
brackets on the right side of (2.19) as follows:

/
JR"\ίJ*

 J0

<C2kί \χ-yΛ~"~]dx<C.
J\X-y)>c2k

Thus, by (2.4) and (2.5),

f\βj(y)\dy<Ca

Consider again (2.15); an interchange of the integration and summa-
tion orders gives

Q2 = Σ V V (

Δί A r \ i ; v

Σ IWy)U τJcJ%Λχ-y^u^τdx

t=«/^. [_ j

u(t) —dx

dy.
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Replace t by R(t) and use (2.16) to obtain

/ f
JRn\T* Jc2~

X {l + (R(t))82-k^'S)\x - y\Ym dR(t) dx

\x-y\-mdx<C.
k

J\x-y\>c2k

Hence, by (2.4) and (2.5),

k<ΞZ j(ΞJk

Next, (2.12) can be treated in the same manner as (2.11) if we first use the
same arguments as at the beginning of 2.1 (with wk = 2*(1~δ)λ) and 2.2.
Finally collecting all the gλ -estimates, the proof of Theorem 2 is com-
pleted by the observation

I {x: gλ(b)(x) > «} |< 2 I {*•• 8κAx) > «/6) I
1 = 1

3. Proof of Theorem 1. The general idea of the proof is to show

(3.1) g*(h; x) < CBgι(f; x), h\ξ) := m(\£\)ftt).

Then in view of (1.3) and Theorem 2 the following norm inequalities
prove Theorem 1 (F~ι denotes the inverse Fourier transformation):

p < C\\g*(h)\\p < cB\\g](f)\\p < cB\\f\\p.

To this end, set

f /r|' • x) d?,

introduce polar coordinates and integrate by parts to obtain
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where we used (cf. [4])

|mΓ(r)|<C, ί\r2 - s2)k(s) ds =

Since

0 + .

U'&i'-£!"•<'> <C{\rm'(r)\+\r2m"(r)\} =:v(r),

we obtain by Minkowski's and Holder's inequalities:

1/2

<sup|m(r)|g*(/)(x)
9

(Γ^(R\S^flx)-S)(f;x)\v(r)dr

r>0

+
R

'

Observing (cf. [1], [4]) that R'1}* v(r) dr < cB, choose u{r) : =
(ϋ(r) + # ) / # . Th e n M satisfies (1.2) and an interchange of the integration
order gives

< Bg*(f)(x)
1/2

which completes the proof.

REMARKS. 1. The differentiability-growth condition on m in Theorem
1 is equivalent to

sup |w(r) | + sup / r\dm'(r) |< oo

(see [8; p. 109]). Applying this to (1 - |£ | ) + , it follows that (1 - |£ | ) + G
Mp(Rn) if 2/I/(Λ + 3) <p < 2«/(w - 3), n > 3. On the other hand, it is
well known (see [3], [4], [9]) that these /abounds are necessary and
sufficient for (1 — | ξ | ) + to be a bounded multiplier.
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2. Let us mention that we may interpolate between Theorem 1 and a
result due to Bonami and Clerc [1] and Gasper and Trebels [5] to obtain
sharp Marcinkiewicz criteria in the range 1 <p ^ 2n/(n + 3) and
2n/(n — 3) </? < oo. In particular it will be shown that Theorem 1
already implies an improvement of the following result of Igari and
Kuratsubo. Let m(r) be an absolutely continuous function on (0, oo)
satisfying

sup|m(r) | + sup ( / r\m'(r)\2 dr
1/2

< 00.

Thenm(|£|) G Mp(W) if 2n/(n + 1) <p < 2n/(n - 1).
3. Modifications of the above techniques lead to: Let {η} be any

sequence of positive real numbers, {f.} any sequence in S. Then with λ, p
as in Theorem 2 there holds

)P
l / 2

/y( )P)
1/2

where C depends only on λ, p and the dimension n.
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