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If a 3-manifold has non-negative Ricci curvature, then a complete
area minimizing minimal surface in the 3-manifold is totally geodesic.
The main theorem gives a method of constructing non-totally geodesic
examples of such surfaces in certain manifolds which do not satisfy the
Ricci curvature conditions. In particular, examples are described for
hyperbolic space.

It has recently been shown by Fischer-Colbrie and Schoen, and
independently by Do Carmo and Peng, that if F is a complete stable
minimal surface in R3 then F is a plane. Fischer-Colbrie and Schoen
[FC-S] have obtained a similar result for 3-manifolds of non-negative
Ricci curvature, showing that complete stable minimal surfaces in such
manifolds are either totally geodesic planes or totally geodesic cylinders.

The corresponding result is false for general metrics on R3. Anderson
has obtained examples of complete stable minimal surfaces in hyperbolic
3-space, using the techniques of geometric measure theory [A]. However
Anderson's methods do not specify the topological type of these examples.
The main theorem of this paper will enable the construction of complete
stable minimal surfaces which are not totally geodesic in a wide range of
3-manifolds. In fact the surfaces constructed will be area minimizing on
any compact subset, a much stronger condition than stability. In hyper-
bolic space, we will obtain stable, embedded minimal surfaces whose limit
sets are the entire sphere at infinity. The theorem is also applied to
construct complete stable, embedded minimal surfaces which are not
toally geodesic in another of the geometries on R3, in which R3 is
metrically the product of hyperbolic 2-space and the reals. Finally two
examples are given of non-totally geodesic area minimizing minimal
surfaces in non-simply connected 3-manifolds.

We will work in the category of smooth manifolds and maps. An
immersed surface is minimal if the first variation of area is zero on any
compact subset of F. A minimal surface F is stable if the second variation
of area is non-negative on any compact subset of F. A minimal surface F
is area minimizing if any compact subsurface Fλ of F minimizes area in
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the class of all surfaces in M homotopic to Fλ (rel dF). This in particular
implies that the first non-zero derivative of area for any variation is
positive, if it exists. A mapping of a compact surface /: F -> M is called
least area if it minimizes area in its homotopy class.

The first ingredient in the proof is a result of Freedman-Hass-Scott
[F-H-S] saying that a compact cover of an area minimizing surface is also
area minimizing.

LEMMA 1. Let M be a P1-irreducible 3-manifold which covers a compact

Riemannian 3-manifold. Let f: F -* M be a 2-sided map which induces an

injection of the fundamental group. Let Mx be a cover of M and let Fx be a

finite k-fold cover of Fsuch that fx: Fx -» Mx is a lift off. Then f is least area

if and only if fλ is least area.

The next ingredient is a property of surfaces, called subgroup separa-
bility, which is proved for surface groups in [S].

LEMMA 2. Surface groups are subgroup separable.

This property is equivalent to a geometric condition, given in Lemma
1.4, of [S], which we state below.

LEMMA 3. Let Y be a Hausdorff topological space with a regular

covering Y and covering group Γ. Then Γ is subgroup separable if and only if

given a finitely generated subgroup GofT and a compact subset X of Y/G

there is a finite cover Yx of Y such that the projection Y/G -> Y factors

through Yx and Xprojects injectively into Yx.

THEOREM 1. Let M be a P7-irreducible Riemannian 3-manifold which

covers a compact Riemannian 3-manifold and which admits a least area,

2-sided, incompressible surface F that is not totally geodesic. Let M be a

cover of M with the induced metric. Then M contains an area minimizing

complete not totally geodesic minimal surface. Furthermore, any lift of F is

such a surface.

Proof. Let /: F ^ M b e a least area immersion which is not totally
geodesic. Let F be the cover of F of smallest degree such that there exists a
map f:F-*M covering /. If F is a finite cover of F9 then /is a least area
immersion by Lemma 1, and therefore is area minimizing. If F is an
infinite cover of F9 suppose that it is not area minimizing. Then there is a
compact subset K of F and a variation supported on K such that the
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variation of area is negative. By Lemma 3, there exists a space Fx such that
F covers Fx and Fx is a finite cover of F9 and such that the covering
projection of F to Fλ is 1-1 on K. Let Kx be the projection of K in Fx.

By Lemma 1, fx = /° /? is a least area immersion. But .RΓj supports a
variation yielding a mapping homotopic to /, but having less area. This
contradiction shows that/is indeed area minimizing.

REMARK. If we restrict to the case where M is the universal cover of M
then the weaker condition of residual finiteness of surface groups would
suffice.

REMARK. The condition of i>2-irreducibility is not necessary. If we
take surfaces minimizing area in a class of surfaces having a given action
on the fundamental group, rather than in a homotopy class, then a similar
result holds.

We now look at some applications.

EXAMPLE 1. The first will take M to be hyperbolic 3-space. For M we
take a compact hyperbolic 3-manifold which fibers over S1. Examples of
these were constructed by Jorgenson [J]. For F we take a least area surface
homotopic to a fiber. Such a surface exists and is embedded [F-H-S]. F
can be taken to be any lift of F. Then F has the topological type of a
plane, is embedded and is stable. Since πx(F) is a normal subgroup of
πx(M) it follows that the two groups acting on hyperbolic 3-space as
covering transformations have the same limit set on the sphere at infinity.
But M is compact and so irx(M) has dense limit set on the sphere at
infinity. If F were totally geodesic its limit set on the sphere at infinity
would be a single circle. Cannon and Thurston have recently shown that
the limit set of F is a space filling curve.

EXAMPLE 2. For the next example consider M = R3 with the metric
obtained by taking the product of hyperbolic 2-space with the real line.
Then M covers M9 a trivial circle bundle over a hyperbolic surface S of
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genus greater than one, with the product metric. We can find in M an

embedded incompressible surface Fo, of genus greater than one, not

homotopic to S X pt or a cover of S X pt. As above, we can then

minimize in the homotopy class of Fo to obtain an embedded least area

surface F. Since F is not a torus or a cover of S X pt it must be tangent to

S X p for some point p. If F, like S X p, was totally geodesic, its image

would then agree everywhere with that of S X /?, which would mean that

F covers S X p. Thus F satisfies the hypothesis of Theorem 1.

EXAMPLES 3 AND 4. For the final two examples we consider a pair of

non-simply-connected spaces, each covering the M of the previous exam-

ple. We take Mλ to be the product of the hyperbolic plane with Sι and M2

to be the product of S with the real line. In each case the arguments of the

previous example apply to give area minimizing minimal surfaces which

are not totally geodesic.
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