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RicuHarRD H. HUDSON

Let p be a prime = 24/ + 1. The author and Kenneth S. Williams
derived a criteria for 3 to be an eighth power (mod p) in terms of the
parameters in the Diophantine systems a> + »* and x2 + 3y2. A new
proof of this result is given which uses Jacobi sums. This proof is simpler
in that it does not require summing 36 cyclotomic numbers; moreover, it
leads simultaneously to new necessary and sufficient criteria for 3(»~ /8
to be congruent to b/a (mod p), a = 1 (mod 4), b > 0. Using this result,
criteria for 377Y/8 =1, b/a, ~1, or ~b/a (mod p) are given in terms
of the parameters in other well-known quadratic partitions of p or of 4p.

Let p be a prime = 20f + 1, 16p = x? + 50u* + 5007 + 125w?,
xw = v? — 4uv — u?. It is shown that 57~ /4 = [ (mod p) if and only
if 16{w or uv = 2 (mod 4). This result is of interest in relation to criteria
given by Emma Lehmer for 2 to be a fifth power (mod p) and for p to be
a hyperartiad.

1. Introduction and preliminaries. For a prime p = 24f+ 1 we
have the following quadratic partitions of p or of 4p:

(1) p= a’+b*a=1 (mod 4), (2) p= c2+2d% c=1 (mod 4),
(3) p=x>+3y ,x=1(mod3), (4) p=u’+ 60>, u=1(mod4),
(5) 4p =A%+ 27B*, A =1 (mod 3).

Using the law of octic reciprocity given by A. E. Western [8], the

value of 3%»7D/% has been given in terms of the Diophantine systems (1)
and (2); specifically, we have
(a)
_ a=c(mod3) ifp =1 (mod48),
3r—N/8 =1 d
(mod p) c’{a = ¢ (mod3) ifp =25 (mod 48),

(b)
b=c(mod3) ifp =1 (mod4),

3(p—H/8 = p d
/a (mod p) @{b = —(mod 3) if p =25 (mod 48).

Throughout we fix b to be positive in case (b), as in [1, p. 3.7], by fixing a
primitive root g( p) such that g% = b/a (mod p) for b > 0.
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Using cyclotomic numbers of order 12 [9] and an index formula due
to Muskat [7], Hudson and Williams [5] gave necessary and sufficient
criteria for 3 to be an eighth power modulo p (case (a) above) in terms of
the parameters in systems (1) and (3).

In this note we show that the Davenport-Hasse relation in a form
given by Yamamoto [11] and certain relations between Jacobi sums of
order 24 lead simultaneously to the result of Hudson and Williams [4]
(and more neatly as the proof does not necessitate summing 36 cyclotomic
numbers) and to a new criteria in case (b) (3 is not a fourth power (mod
p)); see Theorem 1. Using this theorem, we obtain in this paper similar
criteria in terms of parameters in (4) and (5), see Theorems 2 and 3.
Finally, in (3.3) and Theorem 4, we delineate criteria for 5 to be a quartic
residue (mod p = 20f + 1) in terms of the parameters in (3.1) in relation
to Lehmer’s [6] criteria for 2 to be a quintic residue.

As preliminaries, we require an easy modification of Wilson’s theorem
giving for a prime p = mnf + 1,

(1) mfinf1=(-1)"""'=(-1)""" (modp).

Next, see, e.g. [S], for 1 =s <r =<23,p =24f+ 1, we have
(1.2) (3;) E(—l)sf( (24 __s;+ s)f) (mod p).

Finally, for a prime p = mnf + 1 we have from the Davenport-Hasse
relation in the form given by Yamamoto [11, p. 488] that

nif 521 (mjf )!
2o (mj + 1)f!

(1.3) (n2=D/m) = (mod p).

Our notation for Jacobi sums is as follows. Let x,, be a character
(mod p) of order 24, let ¢,, = ¢>"/?*, and let g be a primitive root of p
with g/ = ¢,, (mod ©) where Q is a prime ideal divisor of p in Q(¢,,). For
x Z 0 (mod p), let ind ,(x) be the unique integer b such that x = g’ (mod
P), 0 =< b =< p — 2. Then the Jacobi sum J,,(r, s) of order 24 is defined by

p—1
2 ¢££ndg(x)+sindg(l Ax).

x=2

2 X24 x241—x
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2. Diophantine determinations of 37~ D/3,

THEOREM 1. Let p =24f+ 1 =a’> + b* = x> + 3y, a = 1 (mod 4),
b > 0. Then we have

a=1 (mod3) and y =0 (mod?3),

3p=D/8 =
(@) 1 (modp) Q{aEZ(mod 3) and y =4 (mod38),

and

_ b=1(mod3) and y =0 (modS3)
b) 3~ b/8=y
(b) /a (mOdp)':’{bsz(mow) and y = 4 (mod 8).

Proof. From [5, Th. 15.1] we have
21) 8f\ _|+1lor-1(modp) accordingasa =1 or2 (mod 3),
( 2f] “ |b/aor -b/a(mod p) according as b = 1 or 2 (mod 3).

Moreover, it follows from Gauss [3] that

(2.2) ( 162ff ) =24 (modp) fora=1(mod4),

Using (1.1), (1.2), and (1.3) we have

18f of
-1
2p=/4 = (2p=D/12)3 _6f'12f' ( 3f) ___( : (3f) (

3f115f1 ~ 18f) - (12f) mod p),
( 6f 6f

A

3(p=1/8 = 3f118f16f! = (- 1)/3f!7f! _ f

ARV f191! 9f

NE)
from which it follows that
7

23) 1§f =(-1)"*3¢"Y/% (mod p).

)

From Berndt [1, pp. 3.17, 3.25, 3.23] we have

24) (D= (D)% and 1,,(1,7) = (-1)7? 1,1, 1).
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Fixing a primitive root g( p) so that g% = b/a (mod p), b > 0, it follows
from [10, Lemma 6] that

) ) () mon

But clearly (¥ )() = (2ff )(3/) so that, using (2.3),

2f) _
&)

This completes the proof of Theorem 1.

)

3p=1/8 =

(-1)/* (mod p) = a =1 (mod 3),
(=1)"*b/a (mod p) = b =1 (mod 3).

THEOREM 2. Let p = 24f + 1 =a? + b2 = u? + 6v%, a = 1 (mod 4),
b > 0. Then we have

b=2v(mod8) anda=1(mod3),

1 3p—1H/8 =
(1) 1(m°dp)"’{bs_zv(mod8) and a = 2 (mod 3),

and
b=2v(mod8) andb =1 (mod3),

2 (r—1/8 =
( ) 3 b/a(mOdp)®{bE—2o(mod8) andbEZ(mOd3)

Proof. Theorem 2 is an immediate consequence of Theorem 1 and the
left-hand-side of (2.4).

THEOREM 3. Let p=24f+ 1=a>+ b* a =1 (mod 4) and b >0,

4p = A% + 27B? with A = 1 (mod 2). Then we have
= ={_ f
(2)3P~D/5 = 1 (mod p) = B=+3(mod8) anda=( 1)f+(fnod 3),
B=+1(mod8) anda=(-1)"" (mod3),

(b)
B
B

Il

+3(mod8) andb=(-1)'(mod 3),
*1

3=/ =p/a (modp)
(mod 8) andb=(-1)""" (mod 3).

Proof. Not that (-1)/ = +1 e x =1 (mod 8) (and (-1)/ = -1 = x
= 5 (mod 8)) as

(2.5) x =1 (mod8) & x?+ 3y? =1 (mod 16).
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It is easily seen that

B= x}(x—y) ify=1(mod3),
1
3

(2.6) B=xi(x+y) ify=2(mod3).

Theorem 3 now follows from (2.5), (2.6), and Theorem 1.

THEOREM 4. Let p =24f+ 1 =a’>+ b%* a=1 (mod 4) and b >0,
4p = A* + 27B* with A = 0 (mod 2). Then we have

B=0(mod 16) anda =1 (mod 3),

(»r=1/8 =] d
(a) 3 (mod p) Q{BE8(m0d 16) anda =2 (mod 3),

B=0(mod 16) andb =1 (mod 3),

(r—1/8 =

Proof. As B= *+2y if A =0 (mod 2), we have B =0 (mod 16) if
y =0 (mod 8) and B = 8 (mod 16) if y =4 (mod 8) so that Theorem 4
follows from Theorem 1.

REMARK 1. Criteria (a) and (b) in Theorems 1 and 4 may be refor-
mulated as

3p-0/8 = (=1)/4" (mod p) if 3|
and
3= 0/8 = (1) 1y /g (mod p) if 314,
and for A even (= 2¢?"D/3 =1 (mod p)) we have
3-8 = ()29 (modp) if3]b
and
3r=0/8 = (1) /g (mod p)  if 3 a.

REMARK 2. Putting together the criteria in Theorem 1 and the criteria
given at the beginning of this paper we see that the parameters ¢ and y,
¢ = 1 (mod 4), are related for all primes p = 24f + 1 = ¢? + 2d? = x* +
3y? as follows:

y= 0 (mod 8) ¢ E(—])f (mod 3)
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3. Ciriteria for 5 to be a fourth power (mod p). Letp =20f+ 1 =
a’+b*=e*+ [}, a=e=1(mod 4);
(3.1)  16p = x2 + 50u? + 500® + 125w?, x=1 (mod5),
xw = v — duv — u’.
Gauss [3] showed that 57~ D/4 =1 (mod p) < 5|b. Recently it has
been shown, see [2, p. 382], that 57~ D/4 = 1 (mod p) < 2 e, and that [4]

x=4 (mod 8),
(3.2) 577V/4=1(mod p) & or
x=+2w (mod 8).

Using results of Emma Lehmer [6] we show that (3.2) can be refor-
mulated as

(3.3) 5/°D/4 =1 (modp) & 16|w or wuv =2 (mod4).

Embodied in (3.3) is considerably more information than in simpler
criteria for 5 to be a fourth power (mod p) as is seen by the following
theorem.

THEOREM 5. Let p = 20f + 1 be a prime satisfying (3.1). Then we have
(a)
5=/ =1 (modp) and 27 Y/ =1(modp) = 16|w,
(b)
50°D/4 = _1 (modp) and 27" V/5S=1(modp) < 16|x,
(©)
570/4 =1 (modp) and 2?7 V/°=1(modp) < uv =2 (mod 4),
(d)
50°D/%= _1 (modp) and 27" V/5 =1 (modp) < 4|uv;
(e) in case (c), 2|v © x = 3w (mod 8) and 2|u < x = -3w (mod 8).
Proof. To prove = in (a) note that from [6, p. 13] we have x = 44 and
w = 4d, a = -d (mod 2), so that 8 |w in view of (3.2); moreover,u = v =0
(mod 4), so that if w = 0 (mod 16) we have, since xw = v — 4uv — u?,
that 32 =16 — 0 — 16 (mod 64), a clear impossibility. To prove < in (a)

we have only to note that 16 |w = 2|x and that a = -d (mod 2) = x =4
(mod 8). We omit the proof of (b) as it is entirely similar.



DIOPHANTINE DETERMINATIONS 55

To prove (c) and (e) we note first that x odd and x ==+ 3w (mod

8) @ p—x2— 125w? =10 (mod 16) ® u> + v> =5 (mod 8) ® uv =2
(mod 4), proving (c). Then (e) follows easily from xw = v? — duv — u’.
Finally (c) = (d) (u and v are of opposite parity as x is odd), completing
the proof.

ExampLE. Let p = 101 so that (-29, 3, 2, 1) is a solution of (3.1).

Since uv = 2 (mod 4) and 2 | v we have 57 Y/4 =1 (mod p), 27~ V7% = 1
(mod p), and x = 3w (mod 8).

(1]
(2]
3]
(4]
(5]
(6]
(7
(8]

(]
(10]

(11]

REFERENCES

Bruce C. Berndt, Gauss and Jacobi sums, unpublished course notes, University of
Illinois, Urbana, Illinois, 1978.

Bruce C. Berndt and Ronald J. Evans, Sums of Gauss, Jacobi, and Jacobsthal, J.
Number Theory, 11 (1979), 349-398.

Carl Friedrich Gauss, Theoria residuorum biquadraticorum, Comment. I, Comment.
Soc. Reg. Sci. Gottingensis rec., 6 (1828) (Werke, Gottingen, 1876).

Richard H. Hudson and Kenneth S. Williams, Some new residuacity criteria, Pacific
J. Math., 91 (1980), 135-143.

, Binomial coefficients and Jacobi sums, to appear in Trans. Amer. Math. Soc.
Emma Lehmer, The quintic character of 2 and 3, Duke Math. J., 18 (1951), 11-18.
Joseph B. Muskat, On the solvability of x¢ = e (mod p), Pacific J. Math., 14 (1964),
257-260.

A. E. Western, Some criteria for the residues of eighth and other powers, Proc. London
Math. Soc., (2) 9 (1911), 244-272.

A. L. Whiteman, The cyclotomic numbers of order 12, Acta Arith. 6 (1960), 53-76.
____, Theorems on Brewer and Jacobsthal sums. 1, Proc. Sympos. Pure Math., 8
(1965), 44-55.

Koichi Yamamoto, On a conjecture of Hasse concerning multiplicative relations of
Gaussian sums, J. Combinatorial Theory Ser. A, 1 (1966), 476—489.

Received December 9, 1981. Research supported by Natural Sciences and Engineering
Research Council Canada grant A-7233.

UNIVERSITY OF SOUTH CAROLINA
CoLuMBIA, SC 29208






PACIFIC JOURNAL OF MATHEMATICS

EDITORS
DONALD BaBBITT (Managing Editor) J. DUGUNDIJI
University of California Department of Mathematics
Los Angeles, CA 90024 University of Southern California
Los Angeles, CA 90089-1113
HuGo Rosst
University of Utah R. FINN and H. SAMELSON
Salt Lake City, UT 84112 Stanford University

C. C. MOORE and ARTHUR OGUS Stanford, CA 94305

University of California
Berkeley, CA 94720

ASSOCIATE EDITORS

R. ARENS E. F. BECKENBACH B. H. NEUMANN F. WoLF K. YOsSHIDA
(1906-1982)

SUPPORTING INSTITUTIONS

UNIVERSITY OF ARIZONA UNIVERSITY OF OREGON

UNIVERSITY OF BRITISH COLUMBIA UNIVERSITY OF SOUTHERN CALIFORNIA
CALIFORNIA INSTITUTE OF TECHNOLOGY STANFORD UNIVERSITY

UNIVERSITY OF CALIFORNIA UNIVERSITY OF HAWAII

MONTANA STATE UNIVERSITY UNIVERSITY OF TOKYO

UNIVERSITY OF NEVADA, RENO UNIVERSITY OF UTAH

NEW MEXICO STATE UNIVERSITY WASHINGTON STATE UNIVERSITY

OREGON STATE UNIVERSITY UNIVERSITY OF WASHINGTON



Pacific Journal of Mathematics
Vol. 111, No. 1 November, 1984

Harald Brandenburg and Adam Stefan Mysior, For every Hausdorff
space Y there exists a nontrivial Moore space on which all continuous

functions into Y are CoNStant ..............couuuieinnieeniieennnieennnn 1
Henry Dappa, A Marcinkiewicz criterion for L?-multipliers ................. 9
P. H. Doyle, III and John Gilbert Hocking, Bijectively related spaces. 1.

Manifolds ... ... 23
Joel Hass, Complete area minimizing minimal surfaces which are not totally

BEOABSIC ettt et e 35
Aarno Hohti, On Ginsburg-Isbell derivatives and ranks of metric spaces ..... 39
Richard Howard Hudson, Diophantine determinations of 3(?~1/8 and

S 49

A. F. 1z¢€ and A. Ventura, Asymptotic behavior of a perturbed neutral
functional-differential equation related to the solution of the unperturbed

linear SYStEIM .. ...ttt 57
Palle E. T. Jorgensen, Spectral representations of unbounded nonlinear

operators on Hilbert space ............ ... i i 93
Darrell Conley Kent and Gary Douglas Richardson, Cauchy spaces with

regular completions . ....... ...ttt e 105

Mark Mahowald, An addendum to: “bo-resolutions” ..................... 117
Stuart Wayne Margolis and Jean-Eric Pin, Minimal no i
varieties and power varieties ......................
Carla Massaza and Alfio Ragusa, Some conditions on t
groups of the Koszul complex .....................

Vicente Miquel Molina, Some examples of Riemannian
manifolds ........ .. ..

Roderic Murufas, Inverse spectral problems for certain d
OPETALOTS .. e v ettt et et et et e e eeaenn

Ulrich QOertel, Closed incompressible surfaces in comple
Hnks oo

Katsuro Sakai, A characterization of local equiconnected
William Victor Smith and Don Harrell Tucker, Weak i
convergence theorems and operator measures . ... ...


http://dx.doi.org/10.2140/pjm.1984.111.1
http://dx.doi.org/10.2140/pjm.1984.111.1
http://dx.doi.org/10.2140/pjm.1984.111.1
http://dx.doi.org/10.2140/pjm.1984.111.9
http://dx.doi.org/10.2140/pjm.1984.111.23
http://dx.doi.org/10.2140/pjm.1984.111.23
http://dx.doi.org/10.2140/pjm.1984.111.35
http://dx.doi.org/10.2140/pjm.1984.111.35
http://dx.doi.org/10.2140/pjm.1984.111.39
http://dx.doi.org/10.2140/pjm.1984.111.57
http://dx.doi.org/10.2140/pjm.1984.111.57
http://dx.doi.org/10.2140/pjm.1984.111.57
http://dx.doi.org/10.2140/pjm.1984.111.93
http://dx.doi.org/10.2140/pjm.1984.111.93
http://dx.doi.org/10.2140/pjm.1984.111.105
http://dx.doi.org/10.2140/pjm.1984.111.105
http://dx.doi.org/10.2140/pjm.1984.111.117
http://dx.doi.org/10.2140/pjm.1984.111.125
http://dx.doi.org/10.2140/pjm.1984.111.125
http://dx.doi.org/10.2140/pjm.1984.111.137
http://dx.doi.org/10.2140/pjm.1984.111.137
http://dx.doi.org/10.2140/pjm.1984.111.163
http://dx.doi.org/10.2140/pjm.1984.111.163
http://dx.doi.org/10.2140/pjm.1984.111.179
http://dx.doi.org/10.2140/pjm.1984.111.179
http://dx.doi.org/10.2140/pjm.1984.111.209
http://dx.doi.org/10.2140/pjm.1984.111.209
http://dx.doi.org/10.2140/pjm.1984.111.231
http://dx.doi.org/10.2140/pjm.1984.111.243
http://dx.doi.org/10.2140/pjm.1984.111.243

	
	
	

