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Let J( be a separable complex oo-dimensional Hilbert space and let
% be the Fock space of symmetric tensors over JC. We consider non-lin-
ear operators T from J( to ¥ defined on a dense subspace ) in JC with
range in %. A symmetry and reality condition is imposed on the operators
T under consideration. They are generally unbounded and have different
extensions 7 defined on subspaces % in I containing 9. Generalizing a
result of Arveson for bounded operators (alias functions from J( to %),
we show that if T is affiliated with a maximal abelian von Neumann
algebra in B(J(), then it follows that there is an extension T of T which
is unitarily equivalent to a (non-linear) multiplication operator.
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1. Introduction. Work on spectral theory of non-linear filters has
been restricted so far to filters f which satisfy one of several possible
boundedness conditions. In the expansion into power series f ~ ( f,)°,,
when the coefficients f, are sure functions, the finiteness condition
3| £,lI32 < oo is customarily assumed (cf. [Wi] and [McK]), and this is
done for important mathematical reasons. Recently, Arveson [Ar: 1,2]
established a spectral theorem for non-linear “normal” processes. Here a
different boundedness was assumed. The coefficients f, were treated as
operators on the space of symmetric n-tensors, n = 1,2,..., and the
boundedness was expressed in terms of the resulting operator norms.

The various boundedness conditions, in the literature, seem to have
been dictated by the mathematical framework, rather than the applica-
tions.

In this note we consider the spectral representations of non-linear
processes where the boundedness condition is dropped.

The mathematical formulation is that of [Ar: 2]. We consider non-lin-
ear functions T from a given oco-dimensional complex Hilbert space 3
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into the symmetric Fock space % over J(. But our function T is only
defined on a dense linear subspace % in JC. Generalizing Arveson, we
drop the assumption that 7 be holomorphic (in the weak sense, i.e., for all
n=1,..,allz,...,z, €9, and f € ¥, the function

a,,...,a, »(T(a;zy + --- +a,z,), f)s [inner product in F]

is entire analytic in the n complex variables a,,...,a,).

Moreover, we do not place any boundedness condition on T but
instead, we restrict attention to symmetric functions. The symmetry condi-
tion is expressed in terms of coherent vectors in 4. These are vectors of

the form
n fold

(1) Q+z+222@z+---+(n)"z2® - @z +---

where Q is the normalized basis vector in %, (ground state), and z is a
fixed vector in JC. The vector in (1) is denoted by e, and we have

2
lle?|= exp(41lI").-
We say that T is symmetric if
(T(z),e”) = (e, T(w)) forallz,w € D.

2. Symmetric functions and holomorphy. Arveson considered

bounded holomorphic functions T i.e.,
Sup, IT(2)]| < oo.

Such a function is said to be normal if it is affiliated with a maximal
abelian von Neumann algebra @ in B(JC) (cf. [Ar: 2] for the definition of
affiliation).

Multiplication operators are examples of such normal functions 7. Let
(X, n) be a finite separable measure space, and let ¢, = ¢,(x,,...,x,) be a
sequence of measurable symmetric functions (7, on X") with a certain
growth condition on ||z, [|,. Let (X, n) be the symmetric Fock space over
L*( X, p). Define

) T(z)(xp, . 0x,) = t,(xp, 0 0x,)2(x)) -+ - 2(x,)
for z € L*( X, p). Then
T(z) = Ty(z) + Ty(2) + - -~

is a multiplication operator.
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THEOREM A ( Arveson [Ar: 2]). Let T: 3C — % be a bounded holomorphic
normal function. Then T is unitarily equivalent to a multiplication operator
based on some finite separable measure space; and conversely.

It follows that every T, satisfying the conditions in Arveson’s theo-
rem, can be expressed in the form

T=F+iG

where F and G are commuting (see below) symmetric functions from J( to
%. Simply, let F be a unitarily equivalent copy of the multiplication
operator, given in (2) with 7 (x,,...,x,) replaced by Re ¢,(x,,...,x,), and
similarly

G~ {Im¢t,(x,...,x,)}.

A simple application of Segal’s duality transform [Se: 1, §4] shows
that every bounded symmetric function 7 9 — ¥ extends to a symmetric
(i.e., hermitian) linear operator T in F. However, even if T is bounded, the
extension 7" may be unbounded.

Suppose a function T from JC to % can be expressed in the form
T(z) = F(z) + iG(z) where each of the functions F and G is symmetric.
We then say F and G commute if the hermitian linear extensions F, resp.
G, satisfy (Ff, Gf ) = (Gf, Ff) for all fin the common domain.

It follows that every T, satisfying the conditions in Theorem A, has a
decomposition of the above form.

DerINITION 1. A function T: 3 - F(I() is said to be strongly
bounded if there is a bounded linear operator 7: F(C) — %(I(C) such that

(3) T(e*) = T(z) forallz € .

PROPOSITION 2. Every strongly bounded function is bounded and holo-
morphic.

Proof. Assume T is strongly bounded, and let 7" be a bounded linear
operator in % which satisfies (3). Then

sup | 7(z)|| <] Tllexp(3)

where the supremum is taken over z in 9C, ||z]| < 1. Hence T is bounded.
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For f €% we have (T(z), f) = (T(€?), f) = (e, T*(f)), and the
entire analytic property is clear from the following:

LEMMA 3. Let % be the Fock space over a given complex Hilbert space
IC. Then foralln = 1,2,..., all z,,...,z, € X, and all f € F, the function

(4) a,,...,a, > (exp( X a,z,), f)

is entire analytic on C".

Proof. There are three steps in the reasoning. Consider first f = e" for
w € 3(, second f = some linear combination of coherent vectors e”, and
third f € %, || f — f,|lg = 0, where f, is a sequence in the algebraic linear
span of the e"’s.

Consider now f = e”, and z = T a,z;. Then

o0 [>o}

(e, f) = % (n)'(z® - ®z,w® --- ®w), = % (n))'(z,w)"

= exp(z,w) = exp(a,(z,,w) + -+ +a,(z,,w)).

Hence, if f is chosen as in the first and second steps, the inner product
(e? f)is entire analytic in the complex variables a,,...,qa,,.
In the third step we note that if || f — f, || — O, then

(e%, £) = (5, NI = exp( 3| Saz ) s, = 71~ 0.

We have thus an approximation of the function a,,...,a, — (€, f), given
in (4), with entire analytic scalar functions, and the approximation is
uniform on compact subsets of C”, i.e., the variables a,...,a,,.

The lemma follows now from the Montel theorem.

At an important point in the proof of our Theorem 5 (§3), Lemma 3
yields a corresponding automatic holomorphic property of unbounded
symmetric functions (T from JC to %) which are affiliated with a maximal
abelian von Neumann algebra @ C B( ().

EXAMPLE 4. Let JC be a complex Hilbert space with Fock space &. Let
A be a linear operator in I and let Q(A) be the corresponding “quan-
tized” operator in ¥, defined in [Co, Definition 3]:

o0 n
Q(4) = 2 2 AN @ ... @ 4%

n=0 i=1
where 8(i, j) = 1if i =, and 0 if i # j (we define A° to be the identity
operators I in ().
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Then define T,(z) = Q(A)(e?) for all z in the domain of 4.

(i) The function 7;: JC - ¥ is symmetric, bounded, but not strongly
bounded. Moreover, 7; is holomorphic.

(ii) Let the operator A in J( be hermitian, i.e.,
(Az,w) = (z, Aw) for all z,w € 9(A), the domain of 4. Then T, is
symmetric and, moreover, 7, is bounded if and only if 4 is bounded.

Proof. By [Co, Theorem 2] the operator (A4) is never bounded in ¥
when A4 # 0. It is unbounded in particular when 4 = I. Note that
Q(I) = N is the number operator; indeed

Q)= 2l =N.
n=0

The function z — (e, f) is entire analytic on every finite-dimensional
subspace I C IC, for all fixed vectors f in ¥, according to Lemma 3.
Fixing 9 and an orthonormal basis z,,...,z,, set z(a) = 2 a,z, and

s%ns

f = e”. We may then use the chain rule on the composed mapping from
a-m=z(a):C"-> M
and

m—(N(e™),e"): M - C.

Each of the two mappings is entire analytic so the chain rule applies.
The analyticity of the second map is clear from the identity

(N(e™),e*) = X n!'n(m,w)" = (m, w)exp((m,w)).

The analyticity of (T,(z), f) for all f € ¥ now follows from the approxi-
mation argument at the end of the proof in Lemma 3. This concludes the
proof of (i).

(11) Suppose first that 7, is bounded. Then we have

sup ||, (z)|| = M < oo,

where the supremum is taken over all z in JCsuch that||z|| < 1, and e” is in
the domain of 2(A4). We have

(T,(2),€*) = 3 (n)'n(dz, 2)|z| """

= (4z, z)exp(|l2||").
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Hence:
2
[(4z, z)| = exp(-||z|)|(T,(2), )|

2 2
< exp(-1z[")I7,(2) lexp(]121")-
Taking the supremum over z € D(A4), ||z|| < 1, we get
sup [(4z, z)|< M.

Since 4 is hermitian, this implies boundedness of 4, and ||4|| < M.
Assume, conversely, that 4 is bounded. Then

1T =3 (n) " nlaz)’ 2]
+3 () "n(n — 1)(4z, 2)*|]

= (42|’ + (4z, 2)*)exp(|2]").-

2n—1)

2(n—2)

It follows that 7, is bounded, and for the norm M we have
M= (2)a]’ ).
To check that the hermitian symmetry of 4 implies symmetry of
non-linear function 7, a more general observation is appropriate.

Observation 1. Let T be a function from JC to % with domain ), and
suppose there is a hermitian symmetric operator 7 in ¥ such that ¢* €
D(T) and T(e®) = T(z) for all z € 9. Then it follows that T is symmet-
ric.

Proof. Obvious.

Note that the observation applies to 7 = Q(A) for hermitian A, since
then Q(A) is hermitian in % by [Co, §1].

3. The extension theorem for unbounded symmetric functions. The
verbatim parallel in the formulation of the spectral theorem for linear, and
non-linear, operators (which is so striking in Arveson’s theorem) is broken
when the boundedness condition is dropped. Affiliation to a maximal
abelian von Neumann algebra in B(J() is not enough to insure a spectral
representation (2) when 7' is unbounded symmetric, and non-linear, but is
for unbounded linear operators, as is reflected in the interesting theorem
of Stone [St].
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THEOREM B (Stone [St]). Let T be a densely defined linear operator in a
complex Hilbert space 3 and assume T is affiliated with a maximal abelian
von Neumann algebra @ in B(().

Then it follows that T is unitarily equivalent to a multiplication operator
(in particular, T is essentially normal, i.e., the closure T~ is a normal
operator).

Our main result is an analogy to Theorem B (just as Arveson’s
theorem generalizes the spectral theorem for bounded linear normal
operators). But for unbounded 7, additional structure is needed for
establishing a spectral representation.

We need the presence of a conjugation J on ¥, i.e., J conjugate-linear,
and satisfying J> = I, and (Jz, w) = (Jw, z), z, w € I(.

We have

THEOREM C (von Neumann [VN; RS)). Let S be a hermitian symmetric
linear operator which commutes with a conjugation in a Hilbert space J.
Then it follows that S has selfadjoint extensions in 3.

A given conjugation J on JC clearly extends to a conjugation J on
Fock space ¥ over JC (by direct summing appropriate tensor powers of J).

We say that a function 7 from JC to & commutes with J if the domain
) of T is J-invariant and

T(Jz) =JT(z) forallz € 9.

THEOREM 5. Let JC be a separable complex Hilbert space (oo-dimen-
sional), F the symmetric Fock space over 3, J a conjugation in 3, T a
symmetric function from I to F with dense domain, and @ C B(X) a
maximal abelian von Neumann algebra. Assume

(1) JAJ = A* for all A € &.

(i) T commutes with J.

(iii) 7T is affiliated with &.

Then it follows that T has a selfadjoint extension, unitarily equivalent to
a multiplication operator, which is affiliated with @. There is a spectral
representation (2) based on some finite separable measure space ( X, p) and
on a sequence {t,(x,,...,X,)}x-, of measurable symmetric functions with
values in the reals.

Proof. We first note that T extends canonically to the linear subspace
in % which is spanned by the (coherent) vectors {e’: z € D}. We denote
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this subspace by E(“D) and note that it is dense in the Fock space ¥ over
JC. Indeed, the density follows from a known ([Se 1, Theorem 3]) and easy
algebraic argument coupled with the density of %) in J(.

The following is a direct converse to Observation 1 in §2.

Observation 1’. There is a unique hermitian, symmetric, linear opera-
tor 7 in % which is defined on E(%)) and satisfies

(5) T(e?) = T(z) forz € 9P.

Proof. Consider a finite linear combination f = Z, c,e*, where ¢, € C,
and z, €9 for k = 1,2,.... If T is given as a linear operator satisfying
(5), then necessarily

(6) T(f) = %ckT(Zk)'

Hence, the uniqueness!
But it is possible to define a linear operator T via the formula (6). For
if f = 2 c,e’* =0, then

(Sat(z), o) = Ser(z), )
= zk:ck(ez", T(w)) = (Ek:ckezk, T(w))

=(0,T(w))=0 forallwe .’

But the vectors in ¥ of the form e* span a dense subspace in %, and it
follows that T is well defined through formula (6). If we consider
f=Zce”, and g = T de™ (¢;, d, €C, z;, w, € D), then the argument
used in showing that T is well defined as a linear operator with domain
E(%)) yields the identity

(T(f), g) = (f, T(g)).

' Note that the extension argument works more generally for any function T from ¥ to &
(symmetric or not) which satisfies (T(z), e”) = (T(Jw), e’?) for all z, w € D. The
resulting linear extension operator T with domain E(®D) C ¥ is formally normal, and 7
decomposes, T = F + iG, as a sum of commuting symmetric functions F, G, each
commuting with J. If selfadjoint commuting extensions F and G can be found, for example
by [Ne, Corollary 9.1], or [St] Theorem 21, alias Theorem B above, then the resulting joint
spectral representation can be restricted to a spectral representation for 7.
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Indeed, the verification reduces to the identity
(T(z,), e*) = (e, T(w;))

in view of the sesquilinearity of the inner product (-, -). Hence, the
symmetry of T carries over to the extension 7.

Observation 2. If U is a unitary operator in JC satisfying
(7) T(Uz) = T(U)T(z)
for all z € 9, then it follows that T(U) commutes with T.

Proof. 1t is assumed that T is symmetric, and 7 denotes the linear
hermitian symmetric extension constructed in Observation 1’. For f €
E(D),f=Zcie” (¢; € C,z; €D), we have

LU)f =2 T(U)(e%) = D eV,

Since U commutes with 7 it follows that the domain %) is invariant under
U. Hence, T'(U)(f) € E(D), and

TT(U)(f) = T(Ecjeu(zf)) = Ech(U(zj))
= 2 T(U)T(z)) = TW)T(/).

The commutativity of the linear operators I'(U) and T follows.

Since commutativity for linear operators is preserved under closure, it
follows that the closure of 7 commutes with T(U ). We shall therefore, in
the sequel, use the same symbol 7 for (7°)".

We now have commutativity of 7" and I'(U) for all unitaries U in the
commutant of

@inB(H): Ue @ ={X€B(H): XA =AXforall4 € @}.
Since @ is maximal abelian, @ = @’.

Observation 3. There is a selfadjoint extension operator T, of T which
commutes with I'(U) for all unitaries U in &.

Proof. By general theory the given conjugation J on J( extends to a
conjugation J on % (by direct summing appropriate tensor powers of J (cf.
[Se: 1, 2])). By assumption we have

(8) T(Jz) =JT(z) forz € 9D,



102 PALLE E. T. JORGENSEN

and
9) JAJ = A4* forA € Q.

It follows from Observation 2 and (8) that J commutes with 7. The
conjugation J restricts to an isometry of the space %, = {f, € F: T*f,
= if , } onto

={LEF: T* =]},

the von Neumann deficiency spaces for 7. Consider the closed linear
subspaces %,(f.) generated by {(I'(U)f.: U E @ unitary}, where f.
denotes a pair of vectors in the respective spaces ¥, and % . We have

(10) JT(U)f, = T(JUI)Jf, = T(U*)Jf, € Fo(Jf.),

and it follows that the vectors f, and Jf, occur in pairs.

If ¥, = 0, then T is already selfadjoint and there is nothing to prove.
If not, we may choose a family of normalized vectors f, € ¥ such that
the spaces %,y( f, ) form a maximal orthogonal family in ¥, . It follows
from (9) and (10) that the corresponding family ¥( Jf,) is maximally

orthogonal in % . For finite linear combinations

(11) Py = 22 Cjkr(Uk)fj(j)
withc, € C, U, € @,j = 1,2,..., we may define
(12) W(e,) =33 e, T(U)IfY.

We claim W is well defined as a partial isometry of the orthogonal direct
sum 2°® ,(f,) onto 3® F,(Jf,), and W commutes with T(U) for all
unitaries U in @. Finally, we have 2® Fy(f,) = ¥, and 3® G,(Jf,) =
by the maximality of the chosen family { £, }. The reader is refered to [Jo]
and [SI] for details of the proof at this point.

The essential step in the above argument is the following identity:

||22ch L(U)Jf U)” =222 iuf ,s( (U*U,)JIfY , JfD)
= 333 ¢,&(TUFUI) D, 19)
= D33 ¢, (CWRU) 19, £49)
= 333 ¢, (T(U,) /9, T(U,) /D)
=22, W

Commutativity of U, and U, € @ is used.
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Returning to formulas (11) and (12), we see that

1W(e. )| =l

The asserted properties of W follow quite easily from this. )
Let T, be the selfadjoint operator in ¥ which extends 7 and has
Cayley transform

we (f—i)T+i)' =W,
Then 7, is the desired extension operator. It is selfadjoint since it has
deficiency indices ([RS]) equal to (0,0). Indeed, it is the inverse Cayley
transform of the isometry W with initial space, and final space, equal to
%.
Moreover, the operator F: ¢ — F defined by F(z) = W,(e*) satisfies
the assumptions in Arveson’s theorem (Theorem A). Indeed, the bounded-

ness and the analyticity are clear from Proposition 2 and Lemma 3. For
U € @ (unitary) and z € %), we have

F(Uz) = W(e"®) = WiT(U)(e*) = T(U)W,(e*) = T(U)F(z).

There is then, by Theorem A, a unitary isomorphism R of J( onto
L*(X, p) (for some finite separable measure space (X, u)) such that
G = RFR* is a multiplication operator. Let G(u) = Gy(u) + G(u) +---
be the decomposition of G in

F(X,p) = L(X°p°) ®@ LA X, p) ® LYX*, p*) ® - --
Then
G (u)(xy,...,x,) = g (x1,-..,x,)u(x,) - -u(x,)

where the function g, on X" satisfies

ne

lg.(x),...,x,)|=1 forae.x,,...,x

The function

f(x1ex,) = i1+ 8,)(1 = 8,)7 (xp,000x,,)

is defined, a.e., in X", n = 1,2,.... Indeed, N(I — W,) = N(I — RW,R*)
= {0}. From easy properties of multiplication operators, it follows that
the set {(x,,...,x,)|8,(x,...,x,) = 1} has p"-measure zero in X". As a
result we note that the family of functions {r,} define a selfadjoint
multiplication operator in %( X, u) which extends the symmetric operator
RTR*. Therefore, the original non-linear operator 7: ) - & has an
extension which is unitarily equivalent to a multiplication operator and
the proof is completed.
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