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AN ADDENDUM TO bo-RESOLUTIONS

MARK MAHOWALD

It has been pointed out to me by W. Lellmann and K. Knapp that
there are two difficulties with the paper bo-resolutions [M1). First, the
statement of the main theorem claims more than is proved, and second,
the proof of the vanishing line is incomplete. In this note a corrected
theorem and a discussion of where the error occurs are given. The
vanishing line is discussed in complete detail in the third part of this
note. Before that discussion occurs, we will show how the several
applications of [M1] still follow.

§1 contains a correct statement of the main theorem of {M1] and a
discussion of the error. §2 shows how the v -periodicity theorem and the
results of [DGM] follow from the revised main theorem. §3 discusses the
vanishing line for bo-resolutions.

1. We need to start with a bo-resolution which is a tower of spectra

SO Sl « S2 — o SS «— .-
2 ! A \2
bo S, N\ bo S, N\ bo S, \ bo
where

idAeg
Ss /\bO “« Ss < Ss+1
. . idAeg . R
is a cofiber sequence and the map S, — S, /\ bo is the composite
~ id Ay
S, >S,AS% > 'S Abo

and S§° t—0>b0 is the unit. Such a tower gives rise to a spectral sequence
whose E, term is E;*(S°, bo, 7) = m,_ (S, /\ bo) and whose E_-term is an
associated graded group to 7,(S?). In [M1] and in this note we assume
everything is localized at 2. In particular S°, the zero sphere, and bo are
both considered as 2-primary spectra.

In [M1] the E, term is calculated. This calculation is done by showing
that H*(S,), as an 4, module (4, C 4 is generated by Sq' and Sq?), is a
direct sum of some irreducible 4, modules M, ; and a free A, module W,.
The Adams spectral sequence to calculate = ,(S, /\ bo) collapses and so
the Ext, (M, ;,Z/2) calculation determines 7,(S; /\ bo). Let AZ»,S be the
summand of 7 ,(S, /\ bo) which projects to Ext , (M, ;,Z/2) in this Adams

i,s?
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spectral sequence. Let W, be the Z/2 vector space Extf,’?( W,,1/2).
Consider the chain complex induced from the bo-resolution.

.ﬁ®‘lqi,s_>®jvi,s+l—)
i i

Theorem 5.11 of [M1] correctly calculates this chain complex and shows
that the resulting homology consists of classes of Adams filtration 0 in
S, N\ bo for s > 1.

In [M1] this was erroneously used to conclude that in E$'*(S°, bo, 7)
only classes of Adams filtration 0 survived for s > 1. This neglects the
effect of the W,. Thus what is proved in [M1] is the following corrected
part (c) of Theorem 1.1.

(¢’) For s > 1, E5(S°, bo, ) consists of classes of Adams filtration 0
or 1 in 7*(S, A bo). Also, E5'(S°, bo, m) = 0 for 65 >t + 14.

2. One of the key applications of the results of [M1] is the determina-
tion of all homotopy classes which satisfy an “Adams periodicity”. Such
results are discussed in [M1], but are given a more satisfactory form in
[M2]. The idea is to consider the homotopy theory [Y,]; where Y° = RP?
A CP?, Y/ =32/7°Y% and 7(X;Y) = [Y/, X]. The spectrum Y’ has a

of
self-map v,: ¥/*? > Y/. An element a in 7,( X; Y) is v, periodic if Y/*2* -
Y/ - X is essential for all k.
THEOREM 6.3 [M1]. The only classes in m,(S°; Y) which are v,-periodic
are those detected in E’*(S°, bo, w) and E|"*(S°, bo, ).

Proof. The proof given in [M1] went as follows. Let a € m;(S % Y) lift
to S,.

s

B
S, Nbo - S, - S ANbo
- \
Y/ S8

a

Then fav, has Adams filtration 1 and so could be modified by a map
Y/*2 > 8., ANbo— S, > S, A bo to be zero. The correction says that this
modified map could be detected by W,, and so a v? lifts to S, ,. In order
to recover the result without using the vanishing line we need the
following.

PROPOSITION 2. The space S, N\ bo is homotopically equivalent to a
product of K(Z)'s and K(Z/2)’s through dimension 5s — 1.
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Proof. This is a restatement of a portion of the calculation in §3 of
[M1]. In particular the edge for S, is given by B(1)"°. Now B(1) A B(1) A
bo = 2%bo?, as is explicitly calculated on p. 373 of [M1]. Now =%b0® is
homotopy equivalent to K(Z,6) V K(Z/2,8) through dimension 9. The
balance of the cases follows similarly.

We now return to the proof of 6.3. Given a map a: Y’/ —> S° which
lifts to a;: Y/ - S, for s > 1, we can lift e vi* to S, ,. f k =j — 55 + 1
then a,v?* lifts to S;_45- Sj—4; N bo is a wedge of Eilenberg-MacLane
spaces through 5j — 20s + 4 and Y/*%/ 72074  § | lifts once for each
application of v,. Thus if k =2j — 8s, then av?*** factors through
S. . v+ which is a point through dimension j + 4k + 2k.

s

This result, then, validates the application of [M1] used in [M2]. A
very similar argument applies to recover the results in [DGM]. A more
detailed discussion will appear later.

3. In this section we will establish the vanishing line for bo resolu-
tions. In particular we will prove:

THEOREM 3. For all s, E5'(S°, bo, w) = 0 for 6s >t + 14.

This is just the second part of part (c) of Theorem 1.1 of [M1] and
(¢’), the correction given in §1 of this paper. The program will be to first
prove the result for the Z /2 Moore space M, and then to get Theorem 3
from this case. We will introduce some additional notation which uses the
bo-resolution tower already introduced.

Let X be any space. Then for each s and ¢ we can form a chain
complex C*/( X) with

C:'H(X) = Exty'( H*(S, Nbo A X),Z/2).
The differential d;: C;** - C!, is induced by the map
QS,Abo~ S, S, Abo,
which is the d, for the bo-resolution.

Let A > X - Y be a cofiber sequence whose cohomology exact
sequence also splits. We get long exact sequences

= GH(A) = GI(X) = G(Y) > () ~ -

and, hence, cannot expect long exact sequences in H,(C*()) theory. With
some additional hypotheses, though, we do get long exact sequences.
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Let A - X — Y be a cofiber sequence such that
(1) the cohomology exact sequence splits, and
(2) H*(A) is free over A,.

PROPOSITION 3.1. For cofiber sequences satisfying the above hypothesis,
we get a long exact sequence

= H,(C*(4)) > H(C>(X)) - H(C(Y))
- Ifj+1(Cf”(Z)) -
for each s and t.
Proof. Our hypotheses imply C."’(/T) =0 for s> 0. This gives us
short exact sequences
0> C(4) > C(X) > C(Y) >0
for each s and ¢ and standard arguments give the desired result.

Let X - Y — A be a cofiber sequence such that
(1) the cohomology exact sequence splits into short exact sequences,

and _
(2) H(A) is free over 4,.

PROPOSITION 3.2. For cofiber sequences such as above we get a long
exact sequence
= H(C'(X)) > H(C(Y)) > H(C>'(4))
> Hy (C(X)) = -

for each s and t.

Proof. For s > 1 the argument is as above. For s = 0 and 1 we have
— 8
0- C}O"(X) N (jjO,t(Y) N C'jO,t(A) __)C}I,I(X) N C}l’t(Y) - 0.

Consider A N\ bo - Y N\ bo —I;Z Abo. The space A Abo is a wedge of
K(Z/2)'2 and f* is a monomorphism. The result of Margolis [Ma] shows
there is a map g: A Abo —» Y A bo such that fg ~ id. This implies § = 0
and proves the proposition.

Let X = (24B£1))A‘t A M and let f(j) be defined by Hj(C,O”(M)) =0
for ¢t < f(j). Let A, be some space whose cohomology is free on a single
class in dimension 0 as a module over A4,.
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PROPOSITION 3.3. (a) There is a cofiber sequence E'°A, - X —» X/3'°4,
whose cohomologyy exact sequence splits.

(b) There is a mapping M — X /%A, whose cofiber has A, free
cohomology.

Proof. The calculations of [M1] show that X is stably 4, equivalent to
S2M. It is also easy to see that through dimension 21, X is a wedge of
Eilenberg-MacLane spaces, and so by possibly changing the 4, there is no
obstruction to mapping ='°4 into X. Clearly, H*( X/Z'%4,) is still stably
A, isomorphic to £*M. It is now an easy calculation to verify that the
map %M — X/3'%4 exists realizing this isomorphism.

PROPOSITION 3.4. For s > 0, H(C*(X)) = H(C*(2*M)). If t — 16
< min(6j — 6, f(j) + 8) then H(C*(X)) = 0.

COROLLARY 3.5. H/(C>'(M)) = 0 for t <6j — 14.
This is the vanishing line for the Z /2 Moore space.

Proof of Corollary. Clearly there is a map (S*B(1))"* A M — S, A M,
and it is easy to see that this induces a stable A, equivalence through
dimension 27. Thus the proposition implies H ( C*(X)=H i a( C%(M))
=0 for t — 16 < min[6j — 6, f(j) + 8]. Now f(1) = 4, f(2) =8, f(3) =
12. The above recursion formula gives f(4) = 10, f(5) = 16, f(6) =22,
f(7) = 28 and, in general, f(j) =65 — 14.

Note that this formula is rather crude and the estimate could be easily
improved. I do not know what the sharpest vanishing line actually is.

Proof of 3.4. Apply 3.1 to part (a) of 3.3 and 3.2 to part (b) of 3.3.
Thus H(C>'( X)) = H(C*>(2*M)) for s > 0 and H,(C*(X)) fits into a
long exact sequence

-~ H(CM(3'4))) - H(C*(3"4))) - H/(C(X))
- H(C™(Z¥M)) > ---.

Now Hj(C'O”(E'(’A,)) =0if¢r—16<6j— 6 and Hj(C_O”(Ez“M)) =0 if
t — 24 < f(j). This gives the proposition:

We will use Corollary 3.5 to prove Theorem 3. Consider the cofiber
sequence S° — §° U;ll, - §’. As above, we do not get short exact se-
quences in the groups C%(). The vanishing line is concerned with that
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portion of the resolution where, for s > 0 Ext}(H*(S;),Z/?2) is zero or in
the image of multiplication by s,. We will use this fact to get the short
exact sequence we need.
The results of [M1] give the following, where a( j) is the function:
a(j)=0 -2 -2 -1
j(4) =0 1 2 3

PROPOSITION 3.6. If t < 6j + a(j), then:
(i) ifa € Extg’]’(H*Sj, Z/?2), then either hlya # 0 for all i or hya = 0;
(i) if a € Ext}(H*S,,Z/2), a # 0, then a = hya’ for some a’.

Let TExt}(H*S,, Z/2) be the subvector space spanned by classes a
such that Aa = 0 for some 1. One might think of this as the “torsion
subgroup”.

ProPOSITION 3.7. Ift < 6j + a(j), then
CO(M) = C(S°) ® TExt'(H*S' N S,,Z/2).

Proof. The connecting homomorphism in the long exact sequence in
the Ext groups in multiplication by 4. Since in our range the subgroup
TExt is exactly the kernel of multiplication by 4, the proposition follows.

Let C(S°) = TExt}(H*S,,Z/?2).

PROPOSITION 3.8. For t <6 + a(j) — 4, H,(C*) = H/(C") and
H(C*)=0=H,(C>"") fors > 0.

Proof. In this range of dimensions the Z/2[h,] towers from acyclic
complexes. Also note that C**** = 0.

These propositions imply
PROPOSITION 3.9. If t < 6j + a(j) — 4, then there is an exact sequence
H,(C*(5%)) - H,(C*(M)) - H,(C™(S"))
~ Hy (C4(8%) =
It is easy to prove the theorem from this result. Indeed, the result
implies that if H (C>(M)) =0 for all j=j, then H, (C*(S")) =

Hj,(C,O”(SO)) for all j* >j. If j/ >t /4, then Hj,(CO”(SO)) = 0. This com-
pletes the proof.
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