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A star link is constructed by plumbing bands with twists "according
to a star graph". In this paper the closed incompressible surfaces in most
star link complements are determined. It is shown that Dehn surgery on
star knots yields Haken manifolds in most cases, but also some non-
Haken manifolds.

1. Statement of results. To eachp/q G Q U {1/0} with (p, q) - 1
is associated a rational tangle constructed by drawing slope p/q lines on a
square "pillowcase" starting at the four corners (Figure 1.1 (a)). The star
link K — K(pλ/qv... ,pk/qk) is obtained by joining the rational tangles
corresponding to the fractions pjq^ in a circle, reading clockwise, as
shown in Figure l.l(b). (F. Bonahon and L. Siebenmann have made a
study of arborescent links, a larger class of links which includes star links
[B-S].)

To rule out trivial or previously studied cases, we always assume
q,^2 for each i. If some qi = 0, K splits into links which are sums of
2-bridge links. If some qt= 1, say qί9 then the first tangle can be
incorporated in an adjacent tangle:

κ[Ei Ei Eλ\ = κ[Eήi±li Ei
\ 1 ' ί " ' " ί J

If qi = 1 for all i, AT is a torus link. In all these special cases the only
closed incompressible surfaces in S3 — K are peripheral tori; see [H-T] for
the case of 2-bridge links.

The hypothesis qi >: 2 implies S3 — K is irreducible, as will be shown.
A star link complement S3 — K contains some obvious 4-punctured

spheres whose boundary curves are meridians of K. Namely, in the plane
of projection of K in Figure 1.1 (b), take a simple closed curve C which
intersects K transversely at four points on the arcs of K joining tangles,
and then cap off C with the two discs it bounds above and below the
projection plane to obtain a 4-punctured sphere Sc C S3 — K. As will be
shown, *SC is incompressible in S3 — K if and only if there are at least two
tangles on each side of C. Up to isotopy there are evidently exactly
k(k — 3)/2 such curves C.
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(a) slope 2/3 rational tangle

FIGURE 1.1

FIGURE 1.2

Starting with a finite collection of these obvious 4-punctured spheres

Sc which are disjoint, one can construct a closed surface in S3 — K by a

sequence of peripheral tubing operations (Figure 1.2).

Here are the main results, assuming always that qt^2 for each /:

THEOREM 1. // Σk

ι^λpι/qι ¥= 0, in particular if K is a knot, then every

closed incompressible surface in S3 — K (except the peripheral tori) is

isotopic to a surface obtained from a finite collection of the disjoint incom-

pressible spheres Sc by a sequence of peripheral tubing operations. When

Σf=i Pt/Qi — 0 there is, in addition, just one other isotopy class of closed

incompressible surfaces in S3 — K; surfaces in this class have Euler char-

acteristic 1(2 — k + Σf=I 1/<?Z) where I = l.c.m.^j,.. .,qk).

THEOREM 2. If qt ^ 3 for each i, then a surface obtained from disjoint

incompressible Sc's by a sequence of tubing operations is incompressible if

and only if each tube passes through at least one rational tangle.

Examples of how tubing an incompressible Sc can yield a compressi-

ble closed surface if some g/s are 2 are shown in Figure 1.3.
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FIGURE 1.3

FIGURE 1.4

COROLLARY 3. Suppose qt > 3 for each i. If k>5 and qt = 1 (mod 2)
for at least one i or k>4 and K is a knot, then S3 — K contains closed
incompressible surfaces of every genus > 2.

COROLLARY 4. Suppose the star link K is a knot.
(a) // k < 3 the only closed incompressible surface in S3 — K is the

peripheral torus. Hence, all but finitely many Dehn surgeries on K yield
irreducible non-Haken manifolds.

(b) If k>4, qt > 3, S3 — K contains closed incompressible surfaces
which remain incompressible in every closed 3-manifold obtained by a
non-trivial Dehn surgery on K.

COROLLARY 5. S3 — K has a complete hyperbolic structure if K is not a
torus link and K is not equivalent to K{\, \, ^γ , -^ i), K{^,^,^),
K( 2 9 ^ ^4L)-> K(\, •Ξγ , J^ i) or the mirror images of these links.

Bonahon and Siebenmann [B-S] have determined which star links are
torus links. The other exceptions in Corollary 5 are links whose comple-
ments contain incompressible tori which are evident in the projections
shown in Figure 1.4.

To prove Theorem 1 a fibered orbifold structure is given to (S3, K).
We show in §2 that a closed "incompressible" 2-suborbifold is either
vertical or horizontal, i.e. either transverse to fibers or a union of fibers.
This fact is not unexpected since the concept of a fibered orbifold is a
generalization of the concept of a Seifert-fibered 3-manifold in which
incompressible surfaces are known to be isotopic to horizontal or vertical
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ones. The closed incompressible surfaces in S3 — K are shown to be either
horizontal 2-orbifolds or obtained from vertical 2-orbifolds (Sc's) by
tubing.

The proof of Theorem 2 is less routine; it uses a result on branched
surfaces [F-O] together with some technical lemmas.

2, Fibered orbifolds, proof of Theorem 1. The reader is referred to
[T] or [D] for definitions of "orbifold" and "orbifold fibration". The
theory of 3-orbifolds is analogous to the theory of 3-manifolds. We use
the concepts of Euler characteristic, incompressible 2-orbifold, irreducible
3-orbifold, and orientable orbifold, all of which are generalizations from
manifold theory. If O is an orbifold we use Xo to denote the underlying
space of O.

A Seifert-fibered manifold is a particular example of a 3-orbifold with
an orbifold fibration having generic fiber Sι. The main goal of this section
is to prove a generalization of the fact that incompressible surfaces in
Seifert-fibered manifolds are either vertical or horizontal, i.e. isotopic
either to a surface which is a union of fibers or to a surface transverse to
fibers. The proof of the generalization is modelled on the proof in [H] for
the Seifert-fibered case.

We use the term "4-ρunctured sphere" to denote the 2-orbifold with
underlying space the sphere and a rotation-Z2 singular locus of four
isolated points. Similarly a "2-punctured disc" is a 2-orbifold with un-
derlying space a disc and a rotation-Z2 singular locus of 2 isolated points.

In the following lemma note that a 3-compressing 2-orbifold is the
same as a 3-compressing disc, i.e. a disc with no singularities.

LEMMA 2.1. Let F be an incompressible 2-orbifold in the irreducible,
orientable 3-orbifold O3 such that dF is contained in components ofdO which
are either tori or 4-punctured spheres. If F is not d-incompressible, then F is
a boundary-parallel annulus or it is a boundary-parallel 2-punctured disc.

Proof. Notice first that if F has boundary in a 4-punctured sphere
then the components of dF separate one pair of punctures from the other
pair. (Otherwise, since F is incompressible, F is a punctured disc or a disc,
so that χ(F) > 0. But, by definition, for F to be incompressible it is
necessary that χ(F) < 0.)

Let D be a 3-compressing disc for F, D Π dM = a C dD. To prove
the lemma we consider two cases: If a lies in a 4-punctured sphere of 30,
then the components of dF which contain da are as shown in Figure 2.2(a)
or (b). In Figure 2.2(a) β bounds a compressing disc for F, whence, using
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β2

FIGURE 2.2

irreducibility, F is a 3-parallel annulus. In Figure 2.2(b) βx and β2 bound
punctured discs which compress F, whence F is a 3-parallel 2-punctured
disc. Next, we consider the case where α lies on a torus boundary
component of O. The components of dF containing da must be as shown
in Figure 2.2(c). The curve β bounds a disc in 0, hence, using irreducibil-
ity, F is a 3-parallel annulus. D

PROPOSITION 2.3. Let p: O3 -> W2 be an orbifold fibration of an
irreducible, orientable orbifold O3 (with generic fiber S1). Then every
orientable incompressible, ^-incompressible 2-suborbifold F2 of O3 can be
isotoped so it is either a union of fibers (vertical) or transverse to fibers
(horizontal).

Proof. Let C, (/ = 1,... ,/i) be a set of fibers of the fibration which
project to points ci of W including all cyclic-rotation singular points and
possibly some isolated non-singular points. Let Bt(i — 1,... ,m) be a set
of fibers which project to points bt of W including all dihedral, non-Z2

singular points and possibly some isolated reflection-Z2 singular points.
Let N(Ct) (N(B^) be a small tubular neighborhood of C ĴB,.) which is a
union of fibers. Let p(N(Q)) = N(ct) and p(N(Bt)) = N(b(). We may
assume that F intersects each N(Ct) and each N(B;) in a collection of
discs transverse to fibers possibly with one cyclic-rotation singular point
each (of the same order).
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90 consists of tori and 4-punctured spheres; the 4-punctured spheres
are fibered like 9(G X /), where G is a 2-punctured disc fibered as shown
in Figure 2.4. Clearly F can be isotoped so each component of 9JFIS either
a fiber or transverse to fibers.

Let O0 = O-[(U;= IJV(C f.))U(U/l IΛΓ(Λ/))]. Using the incom-
pressibility of F and the irreducibility of 0, we isotope F so that F Π 0O is
incompressible in 0O. We may assume F Π 0O is also 9-incompressible
otherwise, by Lemma 2.1, F Π 0O is an annulus or 2-punctured disc
9-parallel in 0O and χ(F) > 0, contrary to the definition of "incompressi-
ble", or F is a 9-parallel annulus or a 9-parallel 2-punctured disc in 0.

We now decompose 0O further by cutting W along enough arcs au

joining JV(67 )'s and JV(cf.)'s so that W - [(Uf. #(<:,.)) U (U. #(£,.))] cut
along the αM's contains only components with underlying space a disc and
a singular locus which is either empty or consists of a single reflection-Z2

arc on dXw. The union of the fibers over au is an annulus Au. 0O cut open
on the annuli Au has components Oλj of two types: Those fibered as
D2 X Sx and those fibered as G X / where G is a 2-punctured disc fibered
as shown in Figure 2.4. Since F is 9-incompressible in 0O and F is
transverse to fibers in dN(Bs)9 9ΛΓ(C/), it follows that F can be isotoped so
that F Π Au consists of arcs transverse to fibers, closed curves coinciding
with fibers, and closed curves bounding discs in Au. We isotope F Π 0O

(rel90o) to ensure that F Π OXj is incompressible. This removes curves
from F Π Au which bound discs in Au. If some component of F Π OXj is
9-incompressible, it can be shown to be a disc transverse to the fibers of
OXJ. Thus F Π Oλj consists entirely of discs transverse to fibers. If, on the
other hand, all components of F Π Oλj are 9-compressible, then, by
Lemma 2.1, F Π OXj consists of 9-ρarallel annuli and 2-punctured discs. If
d(F Γ) Oλj) were horizontal, then F Π O0 would be 9-compressible; there-
fore F Π OXj is a collection of annuli and 2-punctured discs which can be
isotoped (rel 9Oly) to be vertical. Clearly, if F Π OXj is vertical (horizon-
tal) for one j then it must be vertical (horizontal) for all j . Hence F is
vertical or horizontal. D

We now describe a fibered orbifold Oκ with underlying space S*3 and
Z2-singular set K — K(px/qx,...,pk/qk). We do this by giving another
description of a slope p/q rational tangle. Let (Γ, p/q) be a solid

FIGURE 2.4

l.



CLOSED INCOMPRESSIBLE SURFACES 215

Seifert-fibered torus with one exceptional fiber having invariants (q,-p).
The "invariant" p is only determined mod q, but if we choose a closed
curve x on 3Tintersecting each fiber transversely at a single point, then/?,
q are uniquely determined: if D is a meridian disc for T, the curve dD lifts
to a line of slope p/q in the universal cover of 3Γ relative to a coordinate
system with a lift of the curve x as the x-axis and a lift of a fiber as the
j-axis. We obtain (L, p/q) as the orbit space of a 180° rotation of T
about a diameter of the exceptional fiber of (Γ, p/q), where the rotation
preserves the set of fibers (see Figure 2.5). If the axis of rotation intersects
Γin arcs κ0 and κ1? then κ0 and κγ become the arcs of the tangle. (L, p/q)
is a fibered 3-orbifold with rotation-Z2 singular set κ0 U K,. The generic
fibers are circles. The exceptional fibers are arcs with reflection-Z2 singu-
lar ends on κ0 U κλ. We shall view (L, p/q) as a fibered orbifold or as a
ball L with embedded arcs κ0 and κx and a "coordinate system" for 3L.
The coordinate system consists of two closed curves on 3L: a closed fiber
called the y-axis or αxw and the projection of the curve x called the x-axis
(see Figure 2.5).

fiber

x-axis

(T,p/q)
(L,p/q)

FIGURE 2.5

To construct the 3-orbifold Oκ, first deform each tangle (L/? pjq^) so
that it is lens-shaped with its axis at the edge, then identify the left face of
Lt with the right face of L / + 1 (subscripts mod k), as shown in Figure 2.6,
so that fibers, punctures, and axes are identified and so that half of one
x-axis is identified with half of the next x-axis. The 3-orbifold Oκ is
fibered over the 2-orbifold shown in Figure 2.7.

Figure 2.5 shows that the double cover of (L, p/q) branched over
κ0 U K, is (Γ, p/q). By identifying the (T^pjq^ along annuli corre-
sponding to the faces of the lenses (L , pjq^), one shows that the double
cover of S3 branched over K is a Seifert-fibered manifold with base S 2

and exceptional fibers having invariants (qi9 -/>,.), / = 1,2,... ,/c.
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identify

FIGURE 2.6

FIGURE 2.7

To apply Proposition 2.3 to (S3, K), we reinterpret the meaning of
"incompressible 2-orbifold" when the 2-orbifold is viewed as a punctured
surface in (S3, K). A 2-orbifold in Oκ is incompressible if and only if the
corresponding punctured surface in (S3, K) is incompressible and "pe-
ripheral incompressible". By "incompressible" we mean incompressible in
S3 — K. A punctured surface S in (S3, K) is peripheral incompressible if
for every disc D with D Π S — dD meeting K transversely at a single
point i\ there is a disc D' C S with dD = 92)' meeting K transversely at a
single point P'. (S is really the pair (5, punctures).)

If we assume Oκ is irreducible as an orbifold (as will be shown in
Proposition 2.10), then Proposition 2.3 implies the following corollary.

COROLLARY 2.8. An incompressible, peripheral incompressible punc-

tured surface in (S3, K) is either vertical or horizontal in the orbifold

fibration of Oκ.

LEMMA 2.9. The obstruction to the existence of a horizontal surface in

Oκ is Σf= x Pi/<li' If Σf= i Pi/(Ji — 0, there is exactly one connected horizontal

surface S in Oκ up to isotopy. The Euler characteristic of S is χ(S) —

1(2 — k + Σf=1 \/qt) where I = l.c.m.(ql9... ,qk). S intersects the tangle

(L z, Pi/qi) in l/qt separating discs, where a separating disc is a disc

transverse to the fibers of (Lp pjq^) and separating the arcs of the tangle.



CLOSED INCOMPRESSIBLE SURFACES 217

Lx U L 2

FIGURE 2.10

Proof of Lemma 2.9. If F is a closed surface transverse to fibers in Oκ,
then F Π (L/? /?,/<?,) *s a collection of separating discs, i 7 Π 3L, is a
collection of closed curves of slope pt/qr (A closed curve of slope /?,/#,
lifts to a slope />,•/?,• line in R2, the orbifold universal cover of the
4-punctured sphere 9L,, when they-axis and x-axis are chosen to be lifts
of the j>-axis on ΘL,.) We fit the curves on dL{ to the curves on dL2 as
shown in Figure 2.10. The number of separating discs required in Lt is
\.c.m.(qvq2)/qi, i = 1,2. We now have a surface in I , U L 2 whose
boundary consists of slope (P\/qx + Pτ/q-i) curves on d(Lx U L2). We
continue joining local sections of the orbifold fibration until we obtain a
surface in Lx U L2 U ULk whose boundary is a collection of slope
2f= xPi/qt closed curves on d(Lλ U L2 U UZ^). The final identifi-
cation to obtain Oκ with a closed surface transverse to fibers is possible if
and only if ΣfL x p ^ = 0. D

PROPOSITION 2.11. If q. > 2, Oκ is irreducible. This implies S3 — K is
irreducible and K is prime.

Proof. If Oκ were reducible, i.e. if there existed a closed 2-suborbifold
F of positive Euler characteristic in Oκ not bounding a 3-orbifold of
positive Euler characteristic, then a procedure like that in the proof of
Proposition 2.3 allows one to change F so it is vertical or horizontal and
still has positive Euler characteristic. Throughout the procedure one uses
surgery instead of isotopies made possible by the irreducibility of the
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3-orbifold. F cannot be vertical since vertical orbifolds are all 4-pιmc-

tured spheres, hence not elliptic. Thus F is horizontal and χ(F) =

1(2 - k + Σf=1 I/?,-). If & > 4, since 9. > 2, χ(F) < 0, a contradiction.

When A: = 3 (and Σf=! />,•/?,• — 0), not all the q( equal 2. By checking pos-

sibilities, we verify χ(F) < 0. In the case & = 2 (where AT is a 2-bridge

link), px/qx + />2/#2 ~ 0 implies K is a trivial Unk. D

If the rational tangles (Li9 p /q,), i = 1,2,.. .,&, are glued as in

Figure 2.6 except that the right face of dLk is not glued to the left face of

3Lj, the result is a Seifert tangle (B\ px/qλ9... .Pk/^k)- The Seifert tangle

consists of a ball with two embedded arcs and possibly some embedded

closed curves. The union of the closed curves and arcs is denoted K. The

Seifert tangle can also be viewed as a fibered orbifold with Z2-rotation

singular locus K fibered over the 2-orbifold W2 shown in Figure 2.12.

FIGURE 2.12

PROPOSITION 2.13. If k > 2, qt > 2, the orbifold dB is incompressible in

the orbifold (B; p{/qx,... .p^/^k)- This means the punctured surface dB is

incompressible (in B — K) and dB is peripheral incompressible in (B, K).

Proof. Using surgery as before, a compressing orbifold can be re-

placed by one which is vertical or horizontal to the fibering of the Seifert

tangle. Vertical surfaces are 2-punctured discs or 4-punctured spheres, not

of positive Euler characteristic, therefore the compressing orbifold F must

be horizontal. There is a unique horizontal surface whose Euler character-

istic is

ι = l -

where / = l.c.m.(qy,... ,qk). This contradicts the fact that a compressing

orbifold has positive Euler characteristic. D

COROLLARY 2.14. A vertical 4-punctured sphere in Oκ is incompressible

as an orbifold if and only if it bounds a Seifert tangle on each side which is

not a rational tangle.
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Proof. If a vertical 4-punctured sphere bounds a rational tangle on
one side, it is compressible; a separating disc for the rational tangle is a
compressing disc. Proposition 2.13 shows that all other vertical orbifolds
are incompressible. •

Proof of Theorem 1. Suppose S is a closed incompressible surface in
S3 — K. If S is peripheral compressible, we perform surgery on S using a
peripheral compressing disc (see Figure 2.15).

peripheral compressing disc

FIGURE 2.15

Clearly surgery on a peripheral compressing disc is the inverse of the
tubing operation of Figure 1.2. Repeated peripheral surgery results in an
incompressible, peripheral incompressible punctured surface S in (S3, K)
which can also be viewed as an incompressible orbifold in (S*3, K). If S is
horizontal, then S = S is horizontal; if S is vertical it is a collection of
vertical 4-punctured spheres (the Sc's of §1) and S can be recovered from
S be a sequence of tubing operations.

Lemma 2.9 proves the properties of horizontal surfaces except incom-
pressibility. An easy proof of the incompressibility of horizontal surfaces
uses the fact that the double cover of S3 branched over K is Seifert-fibered
over S2. We use the previous notation: (Tn pjq^) is the double cover of
(Lt, pjqt) branched over the arcs κ0 and κλ. Since a horizontal surface S
in Oκ intersects {Lι9 pt/qt) in horizontal separating discs, S lifts to a
surface S in the Seifert-fibered manifold Oκ which intersects (Ti9 Pi/qt) in
horizontal discs. To show S is incompressible in S3 — K, let D be a disc
such that DnS = dD,DΠK= 0 . Then D lifts to a disc D in Oκ with
dD C S. Since S is horizontal in Oκ and since horizontal surfaces in
Seifert-fibered manifolds are incompressible, S is incompressible and dD
bounds a disc D/ in S. The projection of D' to S shows dD is null-homo-
topic in S, so S is incompressible. D

3. Proof of Theorem 2. The proof of Theorem 2 depends on recent
work on branched surfaces [F-O]. For the purposes of this paper we need
only consider branched surfaces locally modelled on the space % ^ R3

shown in Figure 3.1.
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M Π I Ml CLL
W

FIGURE 3.1

A subspace % of an orientable, irreducible M3 is a branched surface

embedded in M if a neighborhood of b G % in (M, ®) is modelled on a

neighborhood of bλ or 62 G % in (R3, βll).

A surface S is carried by ® if it is related to % as V is related to % in

Figure 3.1. S is determined by integer weights on components of % —

(branch set), which satisfy obvious conditions like the condition wλ + w2

= w3 satisfied by the weights on 6ll. We will use a fibered neighborhood

N = N(%) which is to © as Wis to % in Figure 3.1. The boundary of N is

divided into dhN9 the portion transverse to fibers, and dvN, the portion

contained in a union of fibers. A version of the main theorem of [F-O]

follows:

THEOREM 3.2. Suppose % is a branched surface in M disjoint from dM

such that no branch circle bounds a disc in M. Further, suppose:

(1) There are no monogons in M\%. I.e. there is no disc D with

D Γ\N=dD,dD = aU β where a is a fiber of dvN and β QdhN (Figure

3.3).

(2) dhN is incompressible in M — N.

If S is carried by % with positive weights then S is incompressible.

To apply Theorem 3.2 to the proof of Theorem 2 we need two

technical lemmas analyzing the compressing discs in "rational tangle

exteriors" and "Seifert tangle exteriors". If K denotes the arcs and closed

curves embedded in a ball B to construct a Seifert tangle, the Seifert tangle

exterior is B\N(κ).

monogon

FIGURE 3.3
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Recall that the tangling of a rational tangle (L, p/q) is measured
against a coordinate system on dL consisting of an x-axis and a j-axis or
axis. If the 4 points of K Π dL are regarded as punctures, then dL is a
4-punctured sphere. Thus we can represent dL using a square "pillowcase"
model where each edge of the pillowcase is either disjoint from the x-axis
or from the j>-axis. A slope p/q arc on dL is constructed by drawing a
slope p/q line on the pillowcase starting at a corner or puncture and
wrapping around edges (Figure 1.1a). Similarly a slope p/q closed curve is
constructed by drawing a slope p/q line on the pillowcase which does not
intersect any puncture. It is then easy to see from the definition of
"rational tangle" in §2 that each arc of the tangle can be isotoped (rel
endpoints) to a slope p/q arc on dL. Also, the boundary of a separating
disc for (L, p/q) is a slope p/q closed curve. A slope p/q arc γ has
geometric intersection numbers ι(γ, j -axis) = q and i(γ, x-axis) =\p\.
For a slope p/q closed curve δ, /(δ, y-axis) = 2q and /(δ, x-axis) = 2 \p | .

Before dealing with the compressing discs in a rational tangle exterior
of its boundary, we consider compressing discs in a 3-manifold M of its
boundary. If D is a compressing disc for dM in M and H is a disc
embedded in M so that H Π Z) = α, H Π dM = β, aU β = dH, and
αΠ]8 = 5°, then half-disc surgery (Figure 3.4) divides Z> into two discs Dx

and D2, at least one of which is a compressing disc. Even after (2),, ΘDj)
and (Z>2,3Z>2) have been isotoped disjointly in (M9dλf)9 D can be
recovered (up to isotopy of D) as the disc-sum of Dx and D2 along p for a
suitable arc p in dM joining dDx to 9D2 (Figure 3.5). The disc-sum of Dγ

and D2 along p is denoted Dλ#p D2.

D

FIGURE 3.4

FIGURE 3.5
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Figure 3.6 (a) through (e) shows some obvious compressing discs for

d(L — N(κ)) in the rational tangle exterior L — N(κ). In the figure the

coordinates on dL have been changed; relative to the new coordinates the

axis is a slope s/q closed curve where s is some integer with (s, q) — 1.

(a) (c)

FIGURE 3.6

(e)

LEMMA 3.7. Among all compressing discs D of d(L — N(κ)) in L —

N(κ), the minimum value of the geometric intersection number i(dD, axis) is

taken when (Z>, dD) is isotopic in (L — N(κ), d(L — N(κ))) to one of the

compressing discs in Figure 3.6 (a) or (e) up to a change of coordinates on ΘL

fixing the slope of the boundary of a separating disc, i.e. up to a twist of

L — N(κ) fixing a separating disc.

Proof. Denote the curve system consisting of the four closed curves

d(d N(κ)) at the ends of the tubes dN(κ) by λ. Let D be a compressing

disc for d(L — N(κ)) with 3D transverse to the axis and λ. Let I(dD, axis)

denote the actual number of intersections of dD with the axis. We isotope

D to minimize I(dD, axis) so that /(3D, axis) = ι(3Z>, axis).

Without increasing I(dD, axis), we can replace D by a compressing

disc having the following two properties:

(a) There is no half-disc H C 3(L - N(κ)) with dH = μ U v where v

is an arc in λ and μ is an arc in dD.

(b) If there is a half-disc H in L — N(κ) with dH = μ U v, v an arc in

3iV(/c) and μ an arc in Z>, then there is a half-disc Hf C D with dH' — μ U

*>' where vf C dN(κ).

For if D fails to satisfy (a) we can isotope μ C 37) to ^ and beyond,

reducing I(dD, λ). If D satisfies (a) and fails to satisfy (b), then the

half-disc H in (b) can be used to perform half-disc surgery on D, and D

can be replaced by one of the two resulting compressing discs. This

operation also reduces /(3Z>, λ).

Let D be a compressing disc satisfying (a) and (b). We will show D is

one of the discs in Figure 3.6 up to a twist fixing a separating disc. Let E

be a separating disc transverse to D for the tangle. We isotope dE to

minimize intersections with 3D, then we isotope ls(rel dE) to eliminate
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closed curves of E Π D. Suppose an arc D Π E edgemost in E cuts a

half-disc H from E. Half-disc surgery using H splits D into two discs Dx

and D2. If Dx or D2 failed to satisfy (a) then D would not satisfy (b), a

contradiction. If Dx or D2 failed to satisfy (b), then D would not satisfy

(b). Thus D = Dx#p Z>2, where p is disjoint from dN(κ). Now let <$ = Dx

U Z>2. We repeat the above process on Φ: if i/ is a half-disc cut from £ by

an arc of <φ n £ edgemost in £ , we perform half-disc surgery on a disc in

Φ and replace the disc by the two resulting discs. Eventually, we obtain D̂

with <φ Π £ = 0 and <>D a union of compressing discs, each satisfying (a)

and (b). D can be recovered from Φ by performing disc-sums between

pairs of discs in 6ύ. Further, if Dx and D2 are discs in D̂ we need only

consider disc-sums Dx#pD2 such that p Q dL — N(κ) and Dx#pD2 satis-

fies (a) and (b). Since each of the discs of Φ is a compressing disc disjoint

from E, it must be one of the discs shown in Figure 3.6 (a) or (b).

To construct all the possibilities for D, the reader should first con-

sider Dx#p Z>2, where Dx and D2 are of the types shown in (a) or (b). The

only possibilities for Dx#pD2, up to a twist fixing E, are those shown in

Figure 3.6 (a)-(e). Next, the reader can verify that Dx#p D2 yields no new

discs if Dx and D2 are each isotopic to one of the discs in (a)-(e).

We have shown that for compressing discs Z>, i(dD, axis) takes its

minimum value when D is one of the discs in Figure 3.6. But for each disc

D of the type shown in (b), i(dD9 axis) is twice as large as for a disc of

the type shown in (a). For each disc of the types shown in (c) or (d),

i(dD9 axis) is twice as large as for a disc of the type shown in (e). Hence

i(dD9 axis) takes its minimum value when D is one of the discs in (a) or

(e). D

LEMMA 3.8. Let (L, p/q) be a rational tangle with q>2. Then any

compressing disc D for d(L — N(κ)) in L — N(κ) satisfies i(dD, axis) > 2.

Proof. By Lemma 3.7 we need only check i(dD, axis) > 2 when D is

one of the discs in Figure 3.6 (a) or (e). A disc D like that in (a) gives an

isotopy of an arc of the tangle to an arc in dL whose intersection number

with the axis is i(dD, axis). Therefore i(dD9 axis) = q >: 2. To check

i(dD9 axis) > 2 when D is a disc like that in (e), recall that the axis is a

slope s/q closed curve on 3L (in the coordinates of Figure 3.6) and note

that closed curves of every slope except 0/1 intersect the two slope 0/1

arcs of dD Π (dL - N(κ)) at least twice. D

LEMMA 3.9. Let (B; px/qx,... ,pk/qk) be a Seifert tangle with qt > 2,

/ = 1,2,...,&, qx > 3, qk > 3 and k > 2. Let K denote the arcs and closed
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curves embedded in the ball B to construct the Seifert tangle. Then
d(B — N(κ)) is incompressible in B — N{κ).

Proof. (B; ρx/ql9.. ,pk/qk) is constructed using the k tangles
(Lf , Px/qi), i = 1,2,... ,/c, as described in §2. Let

Suppose D is a compressing disc for d(B — N(κ)) which is transverse to
UfΓ/C,-. Consider 2) Γ) (U^Γ,1 Cf ) (Figure 3.10). An innermost closed
curve bounding a disc Df in D is either isotopic to the axis in some C, or it
bounds a disc in Cr If 3D' is isotopic in C, to the axis, then D' is a
separating disc for Lf or Li+X and, since 3Z>' does not intersect the axis,
pi/qi = 1 / 0 or /Vn/ft+i = 1/0. If 3D' bounds a disc in Ci9 we ehminate
the circle of intersection by an isotopy.

FIGURE 3.10

Whenever an arc of D Π (UJ. C, ) is isotopic to an arc of the axis in
some Ci9 i.e. whenever the arc cuts a half-disc from C2, use half-disc
surgery to eliminate the arc of intersection. One of the resulting discs is a
compressing disc whose boundary intersects the axis in fewer points than
the boundary of the original disc. When all possible half-disc surgeries of
this type have been done, the remaining arcs of D Π (U C, ) must be
non-trivial in Cr

Let H be a disc cut from D by an arc of D Π (U. C,) edgemost in D.
H must be a compressing disc for Lx — N(κ) or Lk — N(κ); assume it is a
compressing disc for L, — N(κ). dH intersects 3C, twice, therefore
i(dH, axis) = 0,1, or 2. By Lemma 3.8, i(dH, axis) = 2, therefore dH does
not intersect the other components of dC{ (which are ends of tubes in
3(Lj — N(κ))). dH passes through at most one tube of the boundary of
the first tangle. Using half-disc surgery with half-discs H disjoint from
dLx — N(κ)9 we can replace H by one of the compressing discs in Figure
3.6. The disc in (e) is ruled out because its boundary passes through both
tubes. The discs in (b), (c), and (d) are ruled out because i(dH9 axis) does
not take the minimum value (among all compressing discs H). Thus H is a
disc in (a) and qx = 2 contrary to assumption.
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We conclude that D Π (U Ct) — 0, whence dD is a slope 1/0 closed
curve in dL} or dLk and D is a separating disc. But this would imply
qx — 0 or qk = 0, so there are no compressing discs. D

Proof of Theorem 2. If a closed surface in S3 — K, obtained by taking
a collection of vertical incompressible 4-punctured spheres, is constructed
using a tube which does not pass through a rational tangle, the surface is
compressible. It follows that every incompressible tubed surface is carried
by the branched surface ® shown in Figure 3.11 for K — K(\, y, f, | ) .

ioτK{ \ΛΛΛ)

FIGURE 3.11

We must prove that when qt>:3,i= 1,2,..., k, a surface F carried by
Φ, obtained by tubing vertical incompressible 4-punctured spheres, is
incompressible. Let ®j be a branched subsurface of % carrying F with
positive weights and let N — N{%λ) be a fibered regular neighborhood of
%v Let M be the manifold S3 — N(K). To prove that F is incompressible
it is enough, by Theorem 3.2, to show that there are no monogons in
M — N, that dhN has no compressing discs, and that no branch circle
bounds a disc in M. Every branch circle is either a meridian circle, which
is certainly not null-homotopic in M, or it is isotopic to the axis. To prove
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that the axis does not bound a disc in M, consider the orbifold Oκ

obtained from Oκ by removing a small regular neighborhood of the axis

which is a union of fibers. If D were a disc in M with dD = axis, then

D C Oκ yields another disc D with dD C dθκ non-trivial. This disc can be

replaced (as in the proof of Proposition 2.10) by one which is either

vertical or horizontal. As usual we check that no vertical or horizontal

surface is a disc.

Next we show there are no monogons in M — N and no compressing

discs for dhN in M — N.

We insert an annulus Et in every peripheral tube of dhN as shown in

Figure 3.12. After possibly modifying ®j as shown in Figure 3.13, every

component Mj of M — TV cut open on U. Ei is topologically either

(1) B — N(κ), where B with embedded curves K is a Seifert tangle

(Bm> Pr+\/<lr+\V ' ,Pr+s/<lr+S)> 2 ~ S ~ k " 2*> O Γ

(2) L — N(κ)9 where L with embedded arcs K is a rational tangle

(L9pr/qr).

N(K)

FIGURE 3.12

FIGURE 3.13

If Mj is a rational tangle exterior, 3My must contain an annulus of

dvN isotopic in 3My to a regular neighborhood in 3My of the axis. 9My also

includes parts of dhN and possibly annuli E{, annuli in dN(κ) and other

components of dvN.

If D is a compressing disc for dhN, or a monogon, and D intersects

some Ei9 then half-disc surgery on D results in a compressing disc or

monogon disjoint from U Er Therefore we may assume D C M} for some

j . If D is a compressing disc for dhN contained in a rational tangle exterior
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Mj, then, since 3D does not intersect dvN, we may assume it does not

intersect the axis of 3My and, by Lemma 3.8, 3D bounds a disc D' in dMj.

In fact, D ' C 3ΛiV, otherwise some branch circle of % x would bound a disc

in M or a component of some dEέ would bound a disc. D could not have

been a compressing disc. Similarly if D is a disc in a Seifert tangle exterior

Mj with D Π 3Λ7V = 3D, we use Lemma 3.9 to show there is a D' C 3ΛN

with 3D' = 3D.

If D is a monogon in some rational tangle exterior My, then 3D

intersects the axis of dMj at most once and by Lemma 3.8 there is a disc

D' in dMj with 3D' = 3D. But this implies 3D intersects dvN in an even

number of fibers, a contradiction. Similarly if D is a monogon in a Seif ert

tangle exterior MJ9 we get a contradiction from Lemma 3.9. •

4. Proofs of corollaries.

Proof of Corollary 3. If k > 5, qx = 1 (mod 2) and ^ > 3 for all /, then

an arc of the first tangle (L,, pλ/qλ) goes from the left side of the tangle

to the right side. Let U be a 4-ρunctured sphere isotopic to 3(L 2 U L 3)

and let F b e a 4-punctured sphere isotopic to 3(L 4 U L 5 U UL^). We

construct a tubed closed incompressible surface using n copies,

Ul9 U29..., Un, of U and one copy of V by tubing as shown schematically

in Figure 4.1. All the remaining punctures of the L '̂s and Fcan be paired

using tubes passing through at least one rational tangle. The tubes connect

pairs (ί/,,K), (U2,V)9 (U39Ux),...9(Un,Un-2), hence the surface is con-

nected. The genus of the surfaces is n + 2.

If k > 4 and K is a knot, we choose any incompressible 4-punctured

sphere U and let Ul9..., Un be n copies of U. Tube as shown in Figure 4.2.

The tubes connect pairs (Ui9Ut) ( / = l,2,...,w), (Un_uUn), (Un_2,Un),

(£4-3, £4-i)> (£^-4> £4-2)> >(£̂ > ̂ ) a g a i n ^ is possible to connect the

remaining punctures with non-trivial tubes to give a surface of genus

n+l. •

K —

V
puncture

•u,

FIGURE 4.1
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FIGURE 4.2

To prove Corollary 4 we need the following result.

THEOREM. (Menasco) Let K be a knot and suppose there is a closed

incompressible surface S embedded in S3 — K having the property that there

exist disjoint peripheral compressing discs Dλ and D2, with Dt meeting K

transversely at a single point such that dDx is not isotopic to dD2 in S. Then

S remains incompressible in any manifold obtained from K using non-trivial

Dehn surgery.

A proof can be found in [Me].

Proof of Corollary 4. Part (b) is an immediate application of Menasco's
theorem using a tubed incompressible surface.

For part (a) we note that in the complement of a star knot of three
tangles there are no incompressible 4-punctured spheres, hence no incom-
pressible tubed surfaces. It can be shown that when Σf= ι pj^i = 0, K is a
link of at least two components, hence when K is a knot there are no
horizontal surfaces. Every closed incompressible surface is a peripheral
torus.

In order to conclude that all but finitely many Dehn surgeries on K
yield non-Haken manifolds we use a result of A. Hatcher [HI] which
states that in a knot exterior S3 — N(K) only finitely many isotopy
classes of closed curves in the boundary torus are realized as the boundaries
of incompressible, θ-incompressible surfaces. If there is an incompressible
surface S (an S2 not bounding a ball) in the Dehn surgery manifold
Mr/s{K) of a knot K, one can show that there is an incompressible,
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3-incompressible surface in S3 — N(K) whose boundary components
have slopes r/s or there is a non-peripheral closed incompressible surface
(an S2 not bounding a ball) in S3 — N(K). The details of this argument
can be found in [T]. Thus for all slopes r/s not realized as boundaries of
incompressible, 3-incompressible surfaces, Mr/s(K) is irreducible (non-
Haken) if S3 — N(K) is irreducible (contains no closed incompressible
surfaces). D

Proof of Corollary 5. We apply Thurston's theorem on the existence of
hyperbolic structures. To do this we must show that S3 — N°(K) is
atoroidal and anannular. An incompressible torus, T2 in S3 — N(K)9

when K is a star knot, must be horizontal since tubed surfaces have genus
> 2. Thus Σf=1 pi/qi = 0 and χ(T2) = 0 = 1(2 - k + Σf=1 \/qt) where
/ = Lc.m.(ί,, q2,... 9qk). The only solutions occur when: (1) k = 3 and the
qt take values 3, 3, and 3 or 2, 4, and 4 or 2, 3, and 6; or (2) fc = 4 and the
qi take values 2, 2, 2, and 2. In fact, every link corresponding to a solution
of the two equations above is equivalent to one of the links in the
statement because the integral part of the slope of a rational tangle
represents a vertical twist of the two right (or left) ends of the tangle. In a
star link the vertical twist can be transferred fromone tangle to the next so

V[P\ Pr Pr+\ Pk

is equivalent to

P\ Pr~ 4r Λ +l + gr+1 Pk

To complete the proof we must show that S3 — N(K) is also anannu-
lar. But an atoroidal manifold whose boundary is a collection of tori is
also anannular unless it is Seifert-fibered (see [H]). Further, the only link
exteriors which are Seifert-fibered are the exteriors of torus links. There-
fore S3 — N(K) is anannular when K is not a torus link. D
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