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Let I b e a semi-locally contractible metrizable space. We show that
X is locally equi-connected (LEQ if and only if X has a local mixer
introduced by van Mill and van de Vel [MV, 2 ] ,

Throughout this paper, all spaces are metrizable and maps are con-
tinuous. Let X be a space. We will use the same symbol ΔX to denote the
diagonals of X2 and X3, that is,

ΔX = {(x,x):x 6 1 } or = {(x, x, x): x GX},

and we will let

Δ*X = {(x, y, z) G X3: x = y or y — z oτ z — x)

= U (X X {x}X {*} U { J C } X I X {JC} U {x} X {x} X X)

A local mixer for X is a map μ: U -> X of a neighborhood U of Δ*X in
X3 to X which satisfies the following condition:

if ((x n, yn> zn ))̂ L j is a sequence of points in X3 such that

the sequences (xn)^Lx and (yn)™=ι both converge to a 6 I ,
(*)

then the sequences {μ(xn9 yn, zn))7=m> ( M ( ^ Λ . *n> Λ,))Γ=m a n d

(μ(zn, xn, yn))™=m converge to a for some m;

or, equivalently, (see [MV2, Lemma 2.3]):

for each x G X and for each neighborhood V of JC, there

exists a neighborhood W of x such that

( # ) £(W) = (XX WX W) U (JFX * X W)

U (ί^X ΪFX X) Cμ" ](K),

C ί/ = domμ and /i(£(JΓ)) C K.

When Ό — X3 — dom μ, we call μ a mixer for X If X is compact, then (*)
(or (#)) is equivalent to the condition that

μ(x, x, y) = μ(x, y, x) = μ(> ,̂ x, x) = x
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for all x, y E X. The concept of a (local) mixer for a (compact) metric

space was introduced by van Mill and van de Vel [MV1>2].

We say that Ύis locally equi-connected (LEC) provided there is a map

λ: U X [0,1] -> X, where [/is a neighborhood of ΔJΠn X2, such that

λ(x9y90) = x9 \(x9y9\)=y for all (x9 y) E £/,

λ(jc, x, 0 = JC
 f o r all JC E X, t E [0, l]

the map λ is called a (local) equi-connecting function. When U — X2, we

say that ^ i s equi-connected (EC). These concepts were introduced by Fox

[F] (cf. [S], [H], [D] and [C]).

A space X is said to be semi-locally contractible if each point of X has

a neighborhood which is contractible in X\ a space X is said to be

semi-locally path-connected if each point of X has a neighborhood whose

any two points can be joined by a path in X. In [MV l j2], van Mill and van

de Vel showed that

(i) each semi-locally path-connected space admitting a (local) mixer

i s ( L C 0 0 ) C 0 0 ;

(ii) each A(N)R has a (local) mixer; and

(iii) each contractible space admitting a mixer is EC and each semi-lo-

cally contractible separable space with a local mixer is LEC.

In this paper, we will show that each (L)EC space has a (local) mixer

(Theorem I), and each semi-locally contractible space admitting a local

mixer is LEC (Theorem II). These results generalize (ii) and (iii). From

these results we obtain the following characterization of (local) equi-con-

nectedness.

THEOREM. A metrizable space is (L)EC if and only if it is (semi-locally)

contractible and has a (local) mixer.

First, we will prove the following:

THEOREM I. // X is LEC, then X has a local mixer. If X is EC, then X

has a mixer.

Proof. Let U be a neighborhood of ΔX in X2 and λ: U X [0,1] -> X

an equi-connecting function. For each a E X, let Uf

a be a neighborhood of

a in X so that U'2 C U. There is an open neighborhood U'a' of a such that

££' C V'a and \(U'a'
2 X [0,1]) C U'a [D, Lemma 2.3]. By [BP, Ch. II,

Theorem 4.1], there exists a metric d on X compatible with the topology of
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JTand such that {{x E X: d(x, a)<\}:a<Ξ X) refines {l£'. a E X). We

define a metric d* on X3 by

</*((*, j , z), (*', / , z')) = max{</(x, * ' ) , <*(>% /)> ̂ ( ^ *')}•

Then d* induces the product topology of X3.

For each « E N , define

*Ό(Ό = {(*> J% *) e X 3 : d*((x, y9 z), ΔX) < 1/Λ).

Observe that for each (x, y9 z) E F0(l) and for each s9 t E [0,1],

λ(λ(x, j , 5), z, 0 is well defined. Put

Xx= U * X {̂ } X {<*},

X2= (J (α) x x x (α}?

χ 3 ^ (J {β} χ{α} χ i ,
a(ΞX

and for each « E N and for / = 1,2,3, define

K,(Λ) = {(x, y, z) E X3: d*{(x, y, z), Λ)) < 1/4Λ}.

Then we have a neighborhood

F=F O (1)UF,(1)UF 2 (1)UF 3 (1)

of Δ*^ = I , U I 2 U Xy For / = 1,2,3, put

3^= U (^(/i)\intF0(/i)).

Since I^(«)\int K0(/i - 1) C FJ(« - l)\int V0(n - 1) for each n > 1, it

follows that

^ = U ( ^ ( I I ) Π (F0(/i - l)\intF0(n))) U (ί^

that is, Yi is a union of closed sets which is locally finite in F\ΔX Thus

Yt is a closed neighborhood of X\ΔXϊn. V\ΔX. Moreover, Yl9 Y2 and Y3

are mutually disjoint. Indeed, if not, then we can assume without loss of

generality that there exists a point

(x, y, z) E (Fl(π)\int V0(n)) Π (K2(m)\int V0(m))

for some n < m. Then

d*((x9y9z),(b,a,a))^l/4n

d*{(x, y, z), (a'9 b', a')) < I/Am < 1/4Λ
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for some a, a\ b, br E X. Since

d(x, a) < d(x, ar) + d(a'9 z) + d(z, a) < 3/4n < 1/n,

we have d*((x, y9 z),(a, a, a)) < \/n\ hence (x, y9 z) E int V0(n). This is
a contradiction.

Let/, g: F\ΔX -»[0,1] be Urysohn functions such that

/(r 2 ur 3 ) = o, /(r,) = i; g(r3) = o, g(r 1 ur 2 ) = i.

We define μ: F-*Xby

/z(x, j / , z)

λ(λ(x, j , /(x, >>, z)), z, g(*, j , z)) if (χ9 y9 z) G FO(1)\ΔX,

i f (* ,y ,z) G y , u y2,

JC if ( J C , y9z) E Y3U AX.

Clearly, μ is well defined and continuous at each point of F \ Δ X We will
show the condition (#) , which implies μ is continuous at each point of
Δ X and μ is a local mixer for X.

Let a E X and W be a neighborhood of #. By [D, Lemma 2.3] there
exists a neighborhood W" of α such that W" C (x E X: d(x9 a) < 1} and

λ(λ( W"2 X [0,1]) X WK" X [0,1]) C W.

Note that ΪT//3 C Fand μ(W"3) C ΪΓ. Choose n > 1 so that

{x E JΓ: rf(jc, a) < 1/π + l/4π} C ΪF''

and put

Then it follows that

E(W) = (XXW'X W) U (W X XX W) U (W XW'XX)

C Vx(n) U F2(π) U F3(/i) C V.

Observe that E(W) Π V0(n) C ΪF//3. It follows that μ(E(W)\V0(n)) C
PF. Since (E(W')\V0(n)) Π V^n) C Yi for i = 1,2,3, it is easily seen that
μ(E(W)\V0(n)) C W. Therefore μ(E(W')) C W.

In the case U = X, using a metric don Xsuch that the diameter of X
with respect to d is less than 1, we have a mixer μ for X because F = X. D

Next, improving the technique of van Mill and van de Vel [MV2,
Theorem 3.1], we will prove the following without separability:

THEOREM II. Let X be a semiΊocally contractible space. If X has a local
mixer, then X is LEC.
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Proof. Let μ be a local mixer for X. Using the semi-local contractibil-
ity of X and the A. H. Stone Theorem (e.g., see [BP, Ch. II Theorem 2.1]),
X has a locally finite σ-discrete cover %= U / ί G N % n by open sets
contractible within X, where each GHn is discrete in X. For each U E %,
let Fυ: U X [0,1] -> X be a contraction of U onto some xu E Z, that is,

Fυ(x, 0) = x and i ^ ( x , 1) = xυ for all x G ί / .

Take a closed cover {Λ(ί/): £/ E %} and an open cover {£(£/): £/
of X so that

,4([/) CB{U) Ccl B(U) C t/

for each UE$L. For each ί/E%, let fυ\ X~>[0,1] be a Urysohn
function such that

fυifλ B(U)) = 1 and fv(X\U) - 0.

For each /ι E N, we define a homotopy Fn\ X X [0,1] -> Xby

™/ r ^ = f /^(Λ, Λ , ( X ) 0 if x E 1/ E % n ,

IΛ; otherwise.

Since % is locally finite and each %„ is discrete, there exists an open cover
Ύof X each element of which meets at most finitely many elements of %
and at most one element of %„ for each n G N. For each V E.Ύ, let k( V)
be the number oiϋe.% with K n t / ^ 0 . And for each 0 < i < k{ V),
let ^ ( F , /) be an open cover of V such that

(1) %{V, k(V)) <μ %{V, k(V) - 1) < μ •

(2) if W e %{V, i), U e %and W Π /ί(t/) ̂  0 , then W C B(U),

where <¥' < μ <¥ means that for each W E %' there is some We% such
that

) = (ixrχr)u(rxiχ w)

where this relation is denoted by W dμ W. Now we have an open
neighborhood,

W* = U { W2\ W G %(V, k(V)) for some V

oi^XmX2.
We will construct two maps

G,H: W* X[l,oo) -+X
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as follows:

G(x, y, 1) = x; H(x,y,\)=y,

and for / E [n, n + 1], inductively,

G(x, y, t) = μ(G(x, y, n), H(x, y, n), Fn(G(x, y, n), t - «));

J5Γ(jc, ̂ , 0 = μ(<?(*, y, n), H(x, y, n), Fn(H(x, y, n), t - «)).

We will show that G and H are well defined and for each WE.%(V, k( V)),

V E Ύ, there is some n(W) E N such that

ifx,j E Wandt >n(W), then
( G(x, y, t) = G(x, j , /i(W)) = //(x, j , « ( ^ ) ) = H(x, y, t).

To this end, let V E Ύand W E <¥(F, A:(K)). Set

{ £ / e % : F n i / ^ 0 } = {Ii;.:ι= l,2,...

ί ί e % fori=l,2,...,Ar(F),

By (1), take ^ E <^(F, /), i = 0,1,... ,Jfc(F), so that

(4) W= Wk(V) CμWk{V)_λ C μ ••• ςiμWλ C μ ^ 0 = F .

Since Wk(V) Π U = 0 for any ί/ E % κ , n < «(1), it follows that G and //

are well defined on W2 X [1, «(1)] and

G ( x , 7 , 0 = ^ , ^ ( x , j , / ) = 7 for each (x, j , 0 e W2 X [l,/i(l)].

Suppose G and // are well defined on W2 X [1, «(/)] and

(5) G(W2x[l,n(i)]) UH{W2X[1, »(/)]) C

From the definition and (4), it follows that G and H are well defined on

W2 X [«(/), «(/) + 1] and

G{W2 X [/,(/), /!(/) + 1]) U / / ( ^ 2 X [«(/), Λ ( ι ) + 1]) C Wk{y^.

Since H^(K)_, n U = 0 for any U E %„, «(i) < n < n(i + 1), it follows

that G and H are well defined on W2 X [«(/) + 1, «(/ + 1)] and

G(x, y, t) = G(x, y, n(i) + 1), H(x, y, t) = H{x, y, n(i) + 1)

fortach(x,y,t) E W2 x[n{i) + 1 , / I ( I + 1)],

where we consider n(k(V) + 1) = oo and [1, oo] = [1, oo). Thus, by in-

duction, we conclude that G and H are well defined on W2 X [1, oo) and
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satisfy condition (5) for all i = 1,2,... ,Λ;(K). Next, we will find n(W) G
N. Since {A(U): £/ G %} covers X, there is a [/ G % such that WO
A(U) Φ 0 , however U = lζ o for some i0 = 1,2,... ,k(V) because V Π U
φ 0 . Thus we have some i0 = l,2,...9k(V) such that

WkίV)-to+ιnA{Ulo)¥>0.

From (2) and (5), it follows that

G{W2 X {Λ(/o)}) U # ( W 2 X {«(/„)}) C * ( t f j C Uk G

Recall that/^cl 5(lζ 0)) = 1. This implies

F M(B(Ulo) X { 1 } ) = F^BiϋJ X { 1 } ) = x ^ .

Hence from the definition, we have

G(x, y, n(i0) + 1) = H(x, y, n(i0) + 1)

= μ(G(x, y, n(i0)), H(x, y, n(i0)), xvj

for each x, y G W. Put n(W) - n(iQ) + 1. Then (3) follows from the
definition and the property of a (local) mixer.

Now we define G\ H': W* X [0,1] -» JTby

r,( Λ = \G{x,y,\/t) ifί*0,

From (3) these are obviously continuous and

G'\W* X {0} =H'\W* X {0}.

Thus we have an equi-connecting function λ: W* X [0,1]-* X defined by

U A_\G'(x,y,\-2t) i fθ</<i ,
λix'ytt)-\H>(x,y,2t-l) if i < / < 1. D

In the following, we will consider after J. Dugundji [D] a condition
that a space with a local mixer is an ANR. Let μ be a (local) mixer for a
space X. For ^ C I define A{μΛ) = μ(A3) when A3 C dom μ, and induc-
tively, define A^'n+l) = /i((4(" Λ>)3) when (Λ<* n>)3 C domμ. We define
(̂μ.00) = U n G N ^ ^ w ) if each A^>n) is well defined. For A C 5 (C X), we

say that A is μstable in 5 provided i4
(' ι'oo) is well defined and A(μ>9Cθ) C 5.
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COROLLARY. Let X be semiΊocally contractible. If X has a local mixer μ
with the property:

, λ for each x G X and each neighborhood Wofx, there is
(**)

neighborhood V of x which is μ-stable in W,
then X is an ANR.

Proof. From Theorem II, X is LEC. By [D, Theorem 3.2], we may
show that each open cover % of X has an open refinement Ύ such that
every partial realization/: K° -> X in Ύof the 0-skeleton of any poly tope
K extends to a full realization of K in %. This follows from (**) and the
following lemma:

LEMMA. Let X be semiΊocally path-connected and have a local mixer μ.
Assume that an open cover % of X has an open refinement Ύsuch that each
V E Ύ is μ-stable in some W E 6bS. Then every partial realization f:
K° -> X in Ύof the 0-skeleton of any poly tope K extends to a full realization
ofKin%.

Proof. We define an extension of / over K by induction on the
skeletons of K. Assume/has been extended to a map/n: Kn -> X so that

Λ(σ)C Π {F<' ">:/(σn*°)cK

for each closed simplex σ of Kn, where Kn denotes the w-skeleton of K.
We denote the closed unit (n + l)-ball and unit Λ-sphere in RΛ+1 by B"+ 1

and S", respectively. Let τ be any (n + l)-simplex and hT: B"+ 1 -» r a
fixed homeomorphism. Note that

/A(S") =/B(θτ) c Π {r<" ">:/(τnκ°)

Using the technique of [MV,, Theorem 1.3], we have an extension gτ:
B"+ 1 -» X of fnhτ IS" such that

g τ (B" + I )C Π {F (" " + l > : / ( τ n # ° ) CV

Define a map/M+1: K
n+X -» Xby

on each (n + l)-simplex T of Ĵ Γ. Then/n + 1 is an extension of fn such that

Λ+i(τ)c n{v^n+»:f(τnκ°)cv
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for each closed simplex τ of Kn+ι. Thus we have an extension/: K -> X
defined by f\ Kn = fn on each Kn. This extension / is obviously a full
realization of K in %. O

REMARK. Let μ: U -» X be a map of a neighborhood ί/ of ΔX in X3 to
X We will call μ a focα/ weα& mixer provided μ satisfies the following
condition:

/ x /*(*» *> y) = μ(*> >s *) = μ(.y, x, x) = x
if (x, x, >>)> (x, 7, x), (y, x, x) e I/.

When t/ = X3, we call μ a weαλ: mixer. The properties of a local mixer
used in the proof of Theorem II are (w) and:

for each x E X and for each neighborhood V of x in X, there

exists a neighborhood ίF of x such that JFX WX X C μ~ι(V),

and then dom μ is a neighborhood of AX X X in X3 rather than of Δ*X
And moreover, if we assume X is locally contractible then it suffices that
dom μ is a neighborhood of ΔX in X3 and ( # ) ' can be replaced by:

each x EL X has a neighborhood WxinX such that for any

( # ) " neighborhood V of x there is some neighborhood W of x

with WXWXWXC μ-!(V).

If X is locally compact, then a (local) weak mixer satisfies ( # ) " . Thus we
have

THEOREM. 4̂ locally compact metrizable space is LEC if and only if it is
locally contractible and has a local weak mixer.

From this theorem, it follows that:

COROLLARY. Let X be locally compact and locally contractible. If X has
a local weak mixer then it has a local mixer. And, moreover, if X is
contractible then it has a mixer.

Supplement: In [MV2] it is a question whether every Banach space has
a "natural" mixer. In Euclidean space let μ(x, yy z) be the inner center of
the triangle with vertices x, y and z. Then μ is clearly the mixer. T.
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Yagasaki gave a "natural" mixer for each convex set X in a normed space
as follows:

μ(x,y,z)

1

\\x-y\\ + \\y-z\\ + \\z~x\\

• {\\y - z\\ x + \\z - x\\ y + \\x - y\\ z} if(x,y,z)(£AX,

x (=y = z) if (x,y,z) e AX,

where || || denotes the norm. In fact, if (x, y, z) ς£ AX and ||x — a\\,
\\y — a\\ < ε, then

\\μ(x, y, z) - a\\

X {\\y - z\\ • \\x - a\\ + \\z - x\\ • \\y - a\\ + \\z - a\\)

1

= ε +
\\χ-y\\

\\y-z\\ + \\z-χ\

If \\z - a\\<2ε, then

\\χ-y\\

•II*

I I^-^I
If \\z - a\\ >2ε, then

l l*-.y| l

\z - x\
\z - a\\ <\\z - a\\ <2ε.

\z-a\\<-
\z-a\\-ε

ε

\z-a\\

1 - ε/||z - a\\ ~ 1 - 1/2
= 2e,

because

\χ-y\\<\\χ-a\\ + \\y-a\

\z - x | | > \\z - a\\ - \\x - a\ \z - a\\ - ε

and, similarly, ||_y — z\\ < \\z — a\\ — ε. Therefore ||μ(x, y, z) — a\\ < 3ε.
Since μ is symmetric, this implies μ is continuous at each point of AX
(hence at any point of X3) and μ satisfies ( # ) (equivalently, (*)). There-
fore μ is a mixer forX

The author would like to thank T. Yagasaki for his definition of
natural mixer.
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