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It is shown that any von Neumann algebra 9H with a cyclic and
separating vector can be decomposed into factors in such a manner that
the type of 9IL is preserved under this decomposition.

Introduction. Since the classical work of von Neumann [9] on reduc-
tion theory appeared in 1949, several attempts have been undertaken by
other authors to generalize the results of von Neumann to operator
algebras which are not necessarily countably generated. We want to
mention only a few more recent papers, namely those of Halpern [4, 5],
Stratila and Zsidό [18, 19], and Teleman [29, 30]. In Halpern [4] as well as
in Stratila and Zsidό [18], it was shown in a similar way that every von
Neumann algebra of type I and type II can be decomposed into factors of
type I and II, respectively. In Teleman [29, 30] Choquet theory was
applied in order to obtain a decomposition into factors of an arbitrary
von Neumann algebra.

In the present paper we shall use the theory of standard von Neu-
mann algebras, as well as Choquet theory, in order to show that any von
Neumann algebra tyίl with a cyclic and separating vector can be decom-
posed into factors in such a manner that the factors which occur in the
decomposition preserve the type of 911. For a semifinite von Neumann
algebra we shall prove a stronger result, namely there exists a disintegra-
tion of the traces which are defined on the positive cone CD1L+ of 9ϊt.

It has already been shown by the work of Jurzak [6, 7] and Lance [8]
and Sutherland [21, 22] that even in the "separable" reduction theory the
Tomita-Takesaki theory can be used with considerable success to improve
the earlier results in this subject. The first author who introduced the
methods of Tomita-Takesaki theory into the reduction of general von
Neumann algebras seems to be Halpern in his recent paper [5]. Also quite
recently the present author has used the methods of Hubert algebras in
[13, 14], as well as the methods of left Hubert algebras, in [15, 16] in order
to develop a theory of direct integrals which does not depend on the
countability axioms which occur in the theory of von Neumann.
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416 NORBERT RIEDEL

Our method of decomposing von Neumann algebras into factors
which we want to present in the sequel is rather transparent. Let 9R, be a
von Neumann algebra which acts on the Hubert space % with a cyclic and
separating vector e. In particular 9IL is standard. Let (σ?}/GR be the
corresponding modular automorphism group. We shall show that there
exists a C*-dynamical system ($,R, σ) such that & is a weakly dense
C*-subalgebra of 9IL, and σ, is the restriction of σ, on & for each / E R .
Thus the vector state ψ on (£ which is associated with e is a KMS-state and
the GNS-representation of β associated with ψ can be identified with the
identical representation of &. The set K(&9 σ) of all KMS-states on & is a
Choquet simplex, and a KMS-state φ E ΛΓ((£, σ) belongs to the set
dK(&9 σ) of extreme points in K(&9σ) if and only if the corresponding
GNS-representation πφ of & is factorial, i.e., the double commutant
vφ(&)" of πφ(&) is a factor. Now we consider the central measure μ of ψ,
which is known to be pseudo-concentrated on the set dK(&9 σ). Hence we
can define a probability measure on dK(&9 σ) such that % is the direct
integral of some Hubert spaces 3Cφ, ψ G dK(&9 σ), in the sense of Wils
[32], Moreover, for the operators in 91L there exist (essentially) unique
decompositions into operators which are contained in the von Neumann
algebras iΓψ(&)" such that the algebraic operations in 911 are preserved.
This yields the desired decomposition of 911 into factors.

The method we have just described suggests considering arbitrary
KMS-states on C*-algebras also. In fact, the whole procedure goes through
in the general situation. Therefore we shall develop our theory as far as
possible in the framework of general KMS-states on C*-algebras. As a
result we obtain, for instance, that for a KMS-state ψ of type III the
corresponding central measure μ is pseudo-concentrated on extremal
KMS-states of type III.

The paper is divided into three sections. In §1 we study the direct
integrals of some fields of left Hubert algebras. The idea behind this is to
give a unified treatment of the decompositions which occur in §2 where
we investigate the disintegration of general KMS-states. In §3 we apply
the theory of §§1 and 2 to semifinite and type III von Neumann algebras
with a cyclic and separating vector.

For the definitions and notations associated with von Neumann
algebras, we refer to the books of Stratila and Zsidό and Takesaki. For the
definitions and notations associated with C*-algebras, we refer to Peder-
sen's book. Observe that the definition of crossed product which we use in
the sequel is different from Pedersen [10]. We shall quote from Pedersen's
book without emphasizing explicitly the necessary notational alterations.
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The author is very grateful to Laszlό Zsidό for useful discussions on
this work. The idea for the proof of Proposition 3.3 is due to him.

1. Integrable fields of left Hubert algebras. Let (Ω, Σ, v) be a finite
measure space. Let {2ί^}^GΩ be a field of left Hubert algebras. For every
£ E Ω we denote by %^ the completion of 3ί̂ . For some subset Λ C
Π | e Ω 9Ϊ£ we consider the following conditions:

(1.1) Λ is an involutive subalgebra of Π^eΩ 21 ̂ , where the operations
in Π^GΩ 9Ϊ£ are defined pointwise; moreover, {x(ξ) / x E A}" = 3!̂  holds
for every ξ E Ω.

(1.2) For any i G Λ the function £ h-» ||x(£)|| is square integrable.
By (1.2) we can associate with Λ an integrable field of Hubert spaces
({3C{}{eQ, A) in the sense of Wils [32], 2.3. Let % = / θ %ξ dv(ξ) be the
corresponding direct integral. For each x E A we denote by x or
/ θ x( | ) dv(ξ) the canonical image of x in %. The set 21 = {x / x E Λ} is
seen to be an algebra with involution. In case Λ satisfies axioms (1.1) and
(1.2), we consider the following additional conditions:

(1.3) 91 is a left Hubert algebra which is dense in %9 and for every
x E Λ the inequality ||flr(x(£))|| ^ 11̂ (̂ )11 holds for every £ E Ω. (π de-
notes the left regular representation of the corresponding left Hubert
algebra.)

(1.4) The canonical conjugation / associated with 21 is decomposable
and ζ\->Jξ is a decomposition of / (i.e. Jx = fθ Jξx(ξ) dv(ξ) holds for
each x E A), J^ being the canonical conjugation associated with 3ί̂  for
any £ E Ω.

(1.5) There is a sequence {xΛ}weN in A such that the set {Txn(ξ)/T
E £(9t^)r, n E N) is total in 3Q for any ξ E Ω and the set {$xn/ 5" E

/! EN} is total in X

1.1 DEFINITION. ({3ί^}^GΩ, A) is called an integrable field of left
Hubert algebras if A satisfies (1.1)—(1.5).

For the remainder of this section we assume ({3ί^}| e Ω ?Λ)isa fixed
integrable field of left Hubert algebras. Moreover, we assume {xn}nξΞN to
be a sequence satisfying (1.5).

1.2 DEFINITION. An operator field ξ H> T(ξ) is called a natural decom-
position of some 9"E £(2ί) if £ H> T(ξ) is a decomposition of 9" and
T(ξ) E £(3ί^) holds a.e. We shall write ?Γ= fφT(£)dv(ξ) in this case.
(We shall use this notation also if T(ξ) is defined a.e. only.)
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1.3 PROPOSITION, (a) 7/*Γ = / θ Γ,({) dv(ξ) = / θ Γ2(

some operator $ G £(21), then we have Tx(ξ) = Γ2(£) α.e.

(b) 7/9-, = / θ Γ,(O </*(*)> ?Γ2 = / θ T2(ξ) dv(ξ) for two operators %
% G £(»), ώαi we Aαtκ? X?r, + ju?Γ2 = / θ λΓ^ί) + μΓ2(€) dr(ξ), λ, /ι G

Proof, (a) Since the operator fields £ h-> Γ,(ί), | -» Γ2(|) are decom-
positions of the operator ?Γwe have that a.e.

ηU)*„(«) = Γ 2(ίK(€) for every Λ e N.

Since the operators T^ξ), T2(ξ) belong to £(91^) a.e. we obtain from this
that a.e.

Tx{ξ)Txn(ξ) = T2(ξ)TxH(ξ) for every Γ G £(««)', ^ G N.

Finally, by (1.5) this implies

(O Γ 2 (^ a.e.

(b) The second assertion is an immediate consequence of the defini-
tion of natural decompositions.

1.4 THEOREM. For every ?Γ G £(21) ί/iere exist? α natural decomposition
ζ^> T(ζ)of*5such that

V*=f°T(ξ)*dr(ξ) and ||Γ({)|| <S ||?Γ|| a.e.

Proof. If we have ?Γ= ττ(x) for some Λ: G Λ then we obtain, for any

y GΛ,

Since 91 is dense in 3C the operator field £ ι-> ?7(x(|)) is a decomposition of
τr(x). By definition this decomposition is also a natural one and, by
(1.3), ||τr(x(£))||<;||77(.x)|| holds a.e. Clearly we also have τr(jc)* =

Now let ?ΓG £(2ί) be given arbitrarily. By (1.5) the von Neumann
algebra £(2ί) is σ-finite. By Kaplansky's density theorem ?Γ belongs to the
strong closure of the set {§ G £(2t)/ | |S | | < ||?Γ||} Π {π{x)/x G Λ}.
Now it follows from the corollary in Dixmier [2], p. 31, that there exists a
sequence {an)nGN in Λ such that \\ir(άn)\\ < ||?Γ|| and {π(άn)}nSN con-
verges strongly to ?Γ. In particular

lim ||τr(αrt)xm — ?Γxm|| = 0 for every m G N.
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Let {ym}m e N be a sequence in Λ such that

^ « = Λ , . m G N .

For every m G N there exists a sequence {fl^m)}πeN i n Λ such that

(β.'J.eN i s a subsequence of {αM}neN;

K m + l ) L e N is a subsequence of {<#">}πeN, m G N;

lim \\n(a^(ξ))xm(ξ) - ym(ξ)\\ = 0 a.e., m E N.

Hence there is a measurable subset M C Ω with *>(Ω\Λf) = 0 such that

(1.6) lim MaJ^OkΛ*)-^(011 = 0, ί e M, m G N.

From (1.3) we obtain

(1.7) H*{

Let L be the linear subspace of Π^GΩ %% generated by all vector fields of
the form ξ μ* π'(JξX(ξ))xm(ξ), where x E A, m E N. It follows from (1.4)
that L is a subspace of A. By (1.5) the set Lξ = {x(ζ)//x EL} is a
dense subspace of %ξ. From (1.6) we infer that for every $ E M there is a
linear operator T0(ξ) on Lξ such that

lim π(a^(ξ))y = T0(ξ)y9 y E Lv

n~*oo

As ||ir(ain))|| < ||?Γ || holds for each « E N , w e obtain from (1.7) that T0(ξ)
is bounded and ||7ί)(|)|| — ll^ll Since L is dense in %ξ there exists a
(unique) bounded operator T(ξ) on 3Ĉ  which extends T0(ξ). Again we
have ||7U)|| < ||?Γ||. Furthermore, the sequence {v(a(

n

n\ξ))}nGS converges
strongly to T(ξ). Hence T(ξ) is contained in £ ( S φ . We set Γ(ξ) = 0 for
ξ E Ω\M. By our construction of the operator field £h* Γ(£), for any
x E: L the vector field £h-> Γ(ξ)jc(ξ) is contained in A. Moreover, from
(1.4) and (1.6) we obtain that ?ΓJC = f® T(£)x(ξ) dv(ξ) holds for each
x E L. By (1.5) the set {τr\Jx)xm/x E Λ, m E N} is total in 3C.
Therefore ξ ι-̂  T{ξ) is a (natural) decomposition of 3\ As we have already
shown, ||TXOII ^ ll^ll holds a.e.

If ?Γ is self-adjoint then it follows from Kaplansky's density theorem
that the sequence {an}n(ΞN above can be chosen so that π(άn) is self-ad-
joint for any n E N. Therefore, by our construction, T{ξ) is the strong
limit of a sequence of self-adjoint operators a.e. Hence T(i-) is self-adjoint
a.e. From this we conclude that ?Γ= / θ Γ(£) dv(ξ) implies 9"* =
/ θ Γ(ξ)* dv(ξ) for every ?Γ E £(3ί) (cf. 1.3(b)).
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As a consequence of Theorem 1.4 and Proposition 1.3, one can show
the following by using arguments similar to those used in Riedel [15], §2.

1.5 PROPOSITION. Let § be a self-adjoint {not necessarily bounded)

operator which is affiliated with £(21). Then for any £ E Ω there is a

self-adjoint operator Gi affiliated with £(2ί^) such that f(§) =
fΦf(Gξ) dv(ξ) holds for every bounded Borel measurable function on R. The

field ξ h-> G^ is essentially unique. If§ is regular or positive then G^ is regular

or positive a.e., respectively.

As another consequence of 1.4 we note the following:

1.6 PROPOSITION, (a) //£(2ί) is properly infinite then £(21^) is properly
infinite a.e. (cf. Dixmier [2], p. 206, Theorem 5).

(b) Suppose τ(τ€) is a trace on £(2t)+ (£(3ί^) + , { G θ ) such that τ(τξ)
is faithful (a.e.), and for any ?Γ= / θ T(ξ) dv(ξ) G £(2ί) + , we Λαt e τ(!Γ)
= /τ€(71(ί))rfK{) //£(8l) w 0/ίy/* Π /Λe/i £(2^) w of type II α.e. (c/.
Riedel [13], Proposition 3.6).

2. Decomposition of the von Neumann algebras associated with
KMS-states on C*-algebras. Let (β,R, σ) be a C*-dynamical system
and assume the C*-algebra & contains a unit. Let us denote by K(&9σ)

the set of all KMS-states on & (for the natural temperature β — 1). The
convex set K(&9 σ) is known to be a Choquet simplex with respect to the
weak- * -topology (cf. Emch, Knops and Verboven [3], and Takesaki and
Winnink [28]).

Let φ be an arbitrary element in K(&9σ) and let (%φ9 πφ) be the
Gelfand-Naimark-Segal representation of & associated with φ. As & has a
unit there is a canonical cycle vector eφ (\\eφ\\ — 1) such that

Φ(Γ) = (vφ(T)e+,eφ) for each Γ G &.

From φ being a KMS-state it follows that eφ is separating for ττφ{A)" (cf.
Takesaki [25]). Moreover, the set 2Iφ = {7feφ/ T E ^ ( β ) ^ } is an achieved
left Hubert algebra with £(8t φ ) = vrψ(β)". Let Δφ be the modular opera-
tor associated with 9ίφ. Then we have (cf. Takesaki [24], Theorem 13.2)

(2.1) φt(T)) = Δ> φ (Γ)Δ/, Γ E « , / G R .

A state φ G K(&9 φ) is an extreme point if and only if the representation

πφ is factorial, i.e. πφ(&)" is a factor. We shall denote the set of extreme

points in K(&9 σ) by dK(&, σ).
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Now we assume K(&,σ) is non-empty and we fix an element ψ E
K(&9σ). Let μ be the (unique) maximal measure (in the sense of Bishop
and de Leeuw) with barycenter ψ (cf. Alfsen [1]). Let K^(&, σ) be the set
of all elements φ in K(&,σ) such that the ideal {x G&/φ(x*x) = 0}
contains the kernel of the representation 7rψ. K^(&, σ) is a closed face of
the Choquet simplex K(&, σ). Hence μ/κ (# σ ) is the maximal measure of
ψ on Kψ(&, σ), and the set dK^(&9 σ) of all extreme points in K^(&9 σ) is
equal to K^(&, σ) Π dK((&, σ). In particular, μ is pseudo-concentrated on
dKφ(&, σ). We set Ω = dKφ(&, σ) and 9Hφ = π φ (#)" for any φ £ K(&, σ).

Let Σ o be the σ-algebra of all subsets of Ω of the form M Π Ω, where
M is a Baire measurable subset of £"((£, σ). Since μ is pseudo-concentrated
on Ω we can define a probability measure v0 on Σ o by

where M i s a Baire measurable subset of K(&, σ). Let (Ω, Σ, v) be the
completion of the measure space (Ω, Σ o , vQ). As the measure μ coincides
with the central measure of ψ on K(&, σ) (cf. Emch, Knops and Verboven
[3]), we obtain from Sakai [17], 3.1.3, that there is a unique * -isomor-
phism Φ from the center of ^ ^ onto L°°(Ω, v) such that

(2.2) { C φ ^ , )

= fΦ(c)(φ)φ(τ) dv{φ), c e 9ltψ n 9n;, r e ffi.

Let Λo be the set of all vector fields on K(&9 σ) of the form φ -> πφ(T)eφ,
ΓGff, and let Λ = {x/Q/ x G Λo}. For every Γ E $ the function φ ->
IKφ(^)^ψll (— Φ(7"*Γ)1/2) is bounded and measurable with respect to the
measurable space (Ω, Σ). Hence, as in §1 we can associate with Λ an
integrable field of Hubert spaces ({5Cφ}φGΩ, A). From (2.2) we infer that
there exists a unique isomorphism from %φ onto fe)%φdv(φ) which
maps iτ^{T)e^ onto j θ πφ{T)eφ dv(φ) for any T E &. Thus we may write

(2.3) f

Let 3ί = { ί / x G Λ } . The following proposition shows that the theory of
§1 is applicable to our present situation.

2.1 PROPOSITION. ({9ίψ}φ G Ω, Λ) is an integrable field of left Hubert

algebras. 21 is a left Hubert subalgebra of%^ satisfying 2ί" = 2lψ.
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Proof. We have to show that the set Λ satisfies conditions (1.1)—(1.5).

Clearly, Λ satisfies (1.1) and (1.2). Theorem 3.1 in Riedel [15] states that

the theory of topological direct integrals of left Hubert algebras can be

applied to the present situation. If φ h-> x(φ) is a continuous vector field

on K{&, σ), then it follows from Riedel [12], 1.1(3), that x can be

approximated uniformly on K(&, σ) by linear combinations of vector

fields of the form φ -»f(Φ)πφ(a)eφ, where a E & and / is an arbitrary

continuous function on K(&9σ). Hence the vector field Ω 3 φh+x(φ)

can be approximated uniformly by elements of A. Therefore x/Ω belongs

to A (cf. Wils [32], 2.3). It follows that φ -> Jφx(Φ) belongs to A for each

x E A. Moreover, by Riedel [15], 1.7,

= J {jφπφ(a)eφ, πφ(b)eφ) dμ(φ)

= f (Jφπφ(a)eφ,πφ(b)eφ) dv(φ)

holds for each α, b E &. This shows that φ -> Jφ is a decomposition of J^9

i.e. (1.4) is satisfied.

Since eφ is a unit in %φ for every φ E K(&9 σ) and e^ = / θ eφ dv(φ)

holds, condition (1.5) is satisfied.

By Stratila and Zsidό [20], 10.5, 31 is a left Hubert subalgebra of » ψ

with 21" = 21 ψ. In particular, 21 is dense in %^. Therefore it remains to

show that ||TΓ(Λ:(Φ))|| < ||ir(jc)|| holds for every x E Λ, φ E Ω. Let T E &.

Then we h<ιve.π(πφ(T)eφ) = <πφ{T) for every φ E K(&9 σ). By the defini-

tion of Ω, for each φ G Ώ the operator πφ(T) is the image of the operator

ττψ(Γ) with respect to some * -homomorphism from ττψ(β) onto πφ(&).

Since every * -homomorphism of C*-algebras is norm decreasing we

obtain

This shows that condition (1.3) is also satisfied.

Next we want to show that there is also a disintegration of the crossed

product of the von Neumann algebra £(2ϊ) = (9Hψ by the corresponding

modular action, and this disintegration is closely related to the disintegra-

tion of £(21). For any φ E K(&, σ) and t E R we define an automor-

phism σ* of the C*-algebra &φ = πφ(&) as follows:
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(&φ9 R, σφ) is a C*-dynamical system. For any φ G K(&9 σ) let {σ,φ},eR be
the modular automoφhism group associated with 2ίφ. By (2.1) we have
σt

φ(T) = σ*(Γ) for T £&φ,φ G £"(#, σ), ί G R. For any φ G # ( # , σ) we
associate to the crossed product (U\iφ ®£*R a left Hubert algebra 93 φ as in
Riedel [16], §2, so e(93φ) = 9ltφ ®σ-ΦR holds. We set tφ = L2(R, 3Cφ). For
any φ G # ( $ , σ), t G R, we set 2ί(<M) = 2lφ. Let <3l be the smallest linear
subspace of Π(<M)(ΞΛΓ(# σ ) ( 8)R £(2ί(<M)) which satisfies the following two
conditions:

(2.4) For any ΓGffi and /GCC(R) the operator field (φ, 0 H>
f(t)πφ(T) belongs to &.

(2.5) If the operator fields (φ, ί) *-* Γ,(φ, /) and (φ, ί) H> T2(φ, t)
belong to Ĥ then the same is true for the operator fields (φ, t) h->
/σ/(η(φ, j + /))Γ2(φ, - J ) Λ and (φ, /) w σ*(η(φ, - / ) ) *

It follows from the proof of Riedel [16], 3.5(a), that for any operator
field (φ, t) -> Γ(φ, ί) in 91 and φ Gil the mapping ί h^ Γ(φ, ί) is a
continuous function with compact support from R into &φ. In particular,
the integrals which occur in (2.5) are well defined. Let Γo be the set of all
vector fields φ -» x(φ) in Π φ G ^ ( ^ σ ) £ φ such that x(φ)(t) = T(φ,t)eφy

t G R, for some Γ G &, and let Γ = {x/ςι/x G Γo}. It follows from
Riedel [16], 3.5(a), that for every vector field x in Γ the function φ ι-> ||JC(Φ)||

is bounded and measurable with respect to the measurable space (Ω, Σ).
Let ({£φ}φGΩ> Γ) be the integrable field of Hubert spaces associated with
Γ as in §1. From (2.3), as well as from Riedel [16], 3.3., we infer that there
is a unique isomorphism from £ψ onto / θ £φ dv{φ) which maps x(ψ) onto
/ θ X/Q(Φ) dv{φ) for every x G Γo. Therefore we may write

(2.6) e ψ

θ

Let 'ϋ = {x / x E:T}. We can now prove an analogue of 2.1 for crossed
products.

2.2 PROPOSITION. ({93φ}φ(ΞΩ, Γ) is an integrable field of left Hilbert

algebras, 33 is a left Hilbert subalgebra of^φ with 93" = » £ .

Proof. By the construction of $1 and Γ, conditions (1.1) and (1.2) are
satisfied. It follows from Riedel [16], 3.5(a), that (1.4) is valid (see also the
proof of 2.1). From Riedel [16], 3.5(b), we obtain that (1.5) is satisfied.

Since βψ is dense in 7rψ(β)" with respect to the .s*-topology, the set
{π ψ (7> ψ /Γ G &} is a left Hilbert subalgebra equivalent to 3tψ. Since ©
contains the set {t -+f(t)πψ(T)eφ/f G CC(R), T G &}, it follows that 93 is
dense in 93^ with respect to the #-norm (cf. Riedel [16], 2.1). As 93 is an
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involutive subalgebra of 93ψ, it follows that 93 is a left Hubert algebra with

93" = 93^ (cf. Stratila and Szidό [20], 10.5). In particular, 93 is dense in

95ψ. Hence it remains to prove that ||π(;c(φ))|| < | |π(jt)| | holds for x G Γ ,
φ G Ώ. For any φ G K(&9 σ) let δφ be the regular representation of the

crossed product &φ ®ΦR which is induced by (1^ , %φ) (cf. Pedersen 10]).
Then δφ is faithful (cf. Pedersen [10], 7.7.5, 7.7.7). Moreover, we have

Γ(φ, /) G &φ for (φ, t) G K(&, σ) X R, and Γ(φ, •) G # φ Θ φ R for T G

91. We shall need the following identity (cf. Riedel [16], §2):

(2.7) δφ(T(φ9 )) = π(T(φ9-)eφ) for T G Λ, φ G Jf(β, σ).

For every φ E Ω there is a unique homomorphism pφ from 6£ψ onto 6Eφ

such that pφ ° π^ = πφ. Pedersen [10], 7.6.4, states that for each φ G Ώ

there is a (non-degenerated) representation, say L\f\ of L](R, %,) on

L2(R, %.) such that

for Γ G

(where λ<*)(ί)x(j) - x(s - t) for x G CC(R, X φ )), (τrσ,(Γ)x)(0 =

σ?t(T)x(t) for Γ 6 ^ , J C G CC(R, %φ)). By the definition of the regular

representation, the algebra L(

o

φ)(Lι(R, $ψ)) is contained in δ φ ($ φ ®σψR).

Since pφ is onto, L{

o

φ\L\Ry <3,φ)) is dense in δ φ (β φ ®σψR). By Pedersen

[10], 7.6.6, the mapping L^ can be (uniquely) extended to a * -homomor-

phism of &φ ΘσψR onto δφ((£φ ΘσψR). Since δψ is faithful we can define a

* -homomorphism L from δψ(έ£ψ <8>σψR) onto δφ(6Bφ ®σΨR) such that

for each 71 G 31. However, by the definition of pφ, and since pφ

σt

φ o pφ holds, we must have

for each T G 31 and φ G Ω . From this, as well as from (2.7), we conclude

that

IK(jc(φ)) | |<| |π(x(ψ)) | | for* G Γ 0 ,φ G Ω.

By (2.6) we have π(x(\p)) = ττ(x^) for every x G Γo. Thus we have

shown that condition (1.3) is also satisfied.

We note the following result on the disintegration of relatively in-

variant traces (cf. Takesaki [26]). Its proof runs parallel with the proof of

Riedel [16], Proposition 3.9.
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2.3 PROPOSITION. For every φ E K(&9 σ) there exists a faithful rela-

tively invariant trace τφ on £(95ψ)+ such that for any ?Γ= j θ T(φ) dv{φ) E
+> the function φι->τφ(Γ(φ)) is measurable on Ω and τψ(?Γ) =

As a first application of our theory we prove the following:

2.4 COROLLARY. // 91tψ is a continuous von Neumann algebra then 9Hφ

is continuous a.e.

Proof. From van Daele [31], Part II, 4.1 and 4.2, we obtain that if % is

a semifinite central projection in 911^ then

Similarly, if <ΰ\iφ is semifinite for some φ E Ω then

As £(95ψ) is semifinite for every φ E K(&, σ), we obtain from this, as well

as from van Daele [31], Part II. 4.7, that 91Lψ(91tφ) is continuous if and

only if £(33ψ) (£(93φ), Φ E Ω) is of type II. Therefore our assertion

follows immediately from 1.6(b) and 2.3.

3. Reduction of von Neumann algebras with cyclic and separating
vectors. Let 911 be a von Neumann algebra which acts on the Hubert

space % with a cyclic and separating vector e. We shall associate with 9It a

C*-dynamical system in such a manner that the theory of §2 yields a

decomposition of 9K, into factors. Let ψ be the vector state on 9It

associated with e and let {σ,},GR be the corresponding modular automor-

phism group. Let & be the set of all elements T in T̂L such that the

function / H» ot(T) from R into 9IL is continuous, where 9IL is equipped

with the norm topology. & is a C*-algebra which is invariant under the

modular automorphism σ,, ί 6 R. Let ψ be the vector state on & associated

with e, and for any t E R let σr be the restriction of the automorphism σt

to &. Then we have the following.

(3.1) & is weakly dense in 9IL and £ contains the fixed-point algebra
(31Lσ of 911 with respect to the automorphisms σ,, / E R (cf. Pedersen [1],
7.5.1). Moreover, ((£, R, σ) is a C*-dynamical system and ψ is a KMS-state

on (£.

This shows us that the theory of §2 can be applied to our present

situation. Henceforth we shall retain the notation we have introduced in

§2. So we may identify 9H and 9Hψ.
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3.1 THEOREM. Suppose τ is a faithful trace on GJ\L+ . Then for every

φ £Ξ Ώ, there exists a trace τφ on tyίi* which is faithful a.e. such that for any

6T —= f®T(φ)dv(φ) E91t+ we have T(<5) = jτφ(T(φ)) dv(φ).

Proof. By Pedersen and Takesaki [11], 51.2, there exists a regular
positive self-adjoint operator % affiliated with 9Hσ such that §'λ is the
Radon-Nikodym derivate of T with respect to ψ, i.e. τ = ψ(§~]) (cf.
Pedersen and Takesaki [11], p. 62). More precisely, the following is true.
For any π G N w e define a function fn on R by

[θ elsewhere.

For every n G N the operator fn(§~]) is bounded. We define a positive
functional r(n) on 911 by

For any ?Γ E 91l+ the sequence {T(w)(?r)}wGN is monotonely increasing
and we have

lim τ(">(?Γ) = τ(g~).

For every t E R we set Gllt — %ιt. Since T is a trace we infer from Pedersen
and Takesaki [11], 4.6, that the one parameter group {%},GR implements
the modular automorphism group {σr}/GR, i.e.

%$%? = σf(?r) for?ΓE9ll,/ E R .

In particular, ^ belongs to the fixed-point algebra 9Hσ for every / E R.
By (3.1) βlit belongs to 6L Therefore we obtain

(3.2) %=fe**(%)dv(φ), / E R ;

(3.3) σ+(T) = τrφ(%)Γτrφ(%)*, Γ E 91Lφ, / E R.

It follows from 1.5 that for every φ E Ω there exists a regular positive
self-adjoint operator Gφ affiliated with 91Lφ such that

By (3.2) we obtain from this that for each t E R,

a.e.
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Hence by (3.3) there exists a measurable subset M C Ω with v(Ώ\M) — 0

such that

Q being the set of rational numbers. Since the functions t h-> σt

φ(T) and

11-> G%TG~il are strongly continuous for every T E 9Hφ, we conclude

from this that

σ+(T) = Gi'TG?', Γ6\,φGM,/ER.

This means that the one parameter group {G£'}/GR implements the modu-

lar automorphism group {σ,φ},GR. Next, for any φ E M, n G N, we define

a positive functional τ^π ) on ^ φ by

For any T G 9Lφ the sequence {τφ

(Λ7)(Γ)}nGN is monotone increasing and

by the proof of Pedersen and Takesaki [11], 7.4, there exists a faithful

trace τφ on 9ILφ such that

For convenience we set τφ = 0 if φ E Ω\M. By 1.5 we have

fW1) = f* f.(Gϊι) d,(φ).

Therefore we obtain for every 5" = / e

Moreover, the function φ -> τφ(Γ(φ)) is measurable, and from Lebesgue's

monotone convergence theorem we conclude

( l l ) ( ? Γ ) = lim

= / lim τ^)(Γ(φ)) dι»(φ) = Γτφ(Γ(φ)) dv(φ).

3.2 COROLLARY. Iftylis of type 11^ or type \lλ then 9ILφ w o / ί y ^ Π

II j , respectively, a.e.

Proof. If 9H is of type 11^ then it follows from 1.6 and 3.1 that 91Lφ is

of type ΠQQ a.e.
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If 9L is of type IIx then the trace T in 3.1 can be chosen to be finite.

As τ(\%) — Irφ(l% ) dv(φ) < oo holds, τφ is a finite trace a.e. Since τφ is

faithful a.e. <9Hφ must be finite a.e. Therefore we obtain from 1.6 that 91tφ

is of type II j a.e.

If 9H is a finite von Neumann algebra then it is more convenient to

choose a Hubert space % and the cyclic and separating vector e in such a

manner that ψ is a trace. In this case all left Hubert algebras which occur

are in fact Hubert algebras and we can apply the theory in Riedel [13] or

[14].

If 9H is of type 1^ then we do not know whether the factors 9Hφ are

of type 1^ or not in general. However, if we carry out some slight

modifications then this case can also be settled. For convenience we only

consider the case that 911 is homogeneous of type ln for n E N U {oo}. By

Sakai [17], 2.3.3, we may assume 911 is the tensor product of an abelian

von Neumann algebra β and a type \n factor <•©, i.e. 911 = β ® ®. We may

assume the state ψ is a tensor product of a faithful normal state ψ, on β

and a faithful normal state ψ2 on %. Let % denote the C*-subalgebra of ®

generated by the compact operators and by the unit of % (so that % — %

if n < oo), and let AQ be the C*-tensor product of β and %.

3.3 PROPOSITION. &O is a type I C*-subalgebra of &. 6£0 is σ-weakly

dense in 911 and invariant under the automorphisms σn t E R.

Proof. Since 6B0 is the C*-tensor product of a type I C*-algebra and

an abelian C*-algebra, it is also of type I. As % is semifinite there exists a

strongly continuous one parameter group {%},GR of unitaries in % which

implements the modular automorphism group associated with ψ2. Then

the modular automorphism group {σ,}/GR associated with ψ is imple-

mented by {1 ® %},GR Since 5C is invariant under the inner automor-

phisms induced by 6llt we obtain that &0 is invariant under the automor-

phisms σn t E R. It is clear that 6E0 is σ-weakly dense in 91t. In order to

verify that 6E0 is contained in (J we have to show that the function

ίh->σ,(?Γ) is norm continuous for every ?ΓE(£0. Since the function

/ μ* 1 ® % is strongly continuous, the function /1-> (1 ® %)$(l ® % ) *

must be norm continuous for every operator ?Γ = 1 ® ^P, where P̂ is a

one-dimensional projection in 5C. Hence this function is also continuous

for every operator ?Γ = 1 ® S, where S is an operator in % of finite rank.

As the set of operators of finite rank is uniformly dense in %, we obtain

from this that f->(l®%,)?Γ(l® ( ?L / )* is norm continuous for every
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5 Έ 1 ® %. Hence / -> (1 ® %)?Γ(1 ® %)* is norm continuous for every

3.4 COROLLARY. 7/* we replace the C*-algebra &by &0, then we obtain a

disintegration of (U\L into type I factors in the sense of §2.

We now want to compare our results with those in Halpern [4] and

Stratila and Zsidό [18], respectively. In contrast to our approach, in these

papers the decomposition of a semifinite von Neumann algebra 91 into

factors has been obtained on the spectrum W of the center of 91 with

respect to a Radon measure. All the von Neumann algebras 91^, £ E W,

which occur in these decompositions are generated by homomorphic

images of 91L. We shall now show that this implies that an analogue of

Theorem 3.1 cannot be proved in the setting of these papers. In order to

obtain a contradiction, we assume that an analogue of Theorem 3.1 holds.

Furthermore, we assume 91 is σ-finite. It is quite easy to see that 91^ is

σ-finite too a.e. In addition, we assume 91 is properly infinite and the

center of 91 has no atoms. Since every 91^ is generated by some homomor-

phic image of 91, it follows from Takesaki [23], Theorem 7, that 91^ is the

image of some normal homomorphism of 91 a.e. As 91^ is a factor a.e. we

obtain from this that there exist nontrivial minimal projections in the

center of 91. Thus we have reached a contradiction.

Our observations give rise to the following question. It is possible to

choose the standard representation of 9H and the C*-algebra & in such a

manner that dK(&, σ) is compact?

Finally, let us consider the case of type III von Neumann algebras.

For this we return to the general situation considered in §2. We shall use

the notation introduced at the beginning of §2. Then the following can be

shown.

3.5 THEOREM. Ifΐίt^ is of type III, then 91tφ is of type III a.e.

As the proof of this theorem runs parallel with the proof of Theorem

1.1 in §4 of Riedel [15], we give a short indication only.

Based on results of Halpern [5], Takesaki's duality theory for type III

von Neumann algebras (cf. Takesaki [25]) and Proposition 2.3, a von

Neumann algebra % can be constructed which is countably generated over

its center, and a field {®Φ}ΦGΩ of countably generated von Neumann

algebras satisfying

^>φdp(φ) (in the sense of Dixmier [2])
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can be found such that the following holds: If 9H is of type III then % is

of type III, and if %φ is of type III then ?Jltφ is of type III. Thus the proof

can be reduced to an application of the results in Lance [8].
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