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Let D be a bounded domain in R™ with smooth boundary. The first
n + 1 eigenvalues for the problem

ANy—pu=0 inD, u=g%=0 ondD

satisfy the inequality
Lo e ( 3 )-'/2
i=1 Bns1 — B 8(m+2) &
For the first two eigenvalues we have the stronger bound
B, <7.103p, (inR?),
p,<4.792p, (inR3).

i=1

The first two eigenvalues for the problem

Nu+vAu=0 inD, u:g%ZO on 0D

satisfy the inequality
v, =25 v, (inR?),
v,<2.12», (inR%).

Introduction. Let D be a bounded domain in R™, m =2, with
smooth boundary 0D. For the case m = 2, Payne, Polya and Weinberger
[6] obtained upper estimates, independent of the domain, for eigenvalues
of the three well-known eigenvalue problems:

(1) Au+Au=0 inD, u=0 on dD,
(2) Ny—pu=0 inD, u———%%ZO on 0D,
(3) Nu+vAu=0 inD, u= —g—Z =0 onadD.
Let

O<A <A, =A< ---,
O<p=p,=p;=---,
o<y =r=p=<--

115
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denote the successive eigenvalues for (1), (2) and (3), respectively. Payne,
Polya and Weinberger showed that for domains in the plane,

(4) ’\n+13?\n+%2?\.~337\n, n=12,...,
1=1
8 & B

(5) Moot Byt X =%, n=12,0,
i=1

(6) v, < 3p,.

Inequality (4) was improved and extended to m =2 by Protter and
Hile [4]. They showed that the eigenvalues for (1) satisfy the inequality

7 § NN

which amounts to an implicit bound for A, in terms of the preceding
eigenvalues. One can derive (4) from (7) by replacing each A, in the
denominators of the left-hand side of (7) by the larger quantity A, and
then solving the resulting inequality for A, .

In this paper we derive an analogue of (7) for the biharmonic
eigenvalue problem (2). We obtain the implicit bound

n ‘/,T’ 2.3/2 n =172
= 7 ( 2 y’l) *

8 >
®) B 1y 8(m+2)

From this inequality one may derive the weaker, but explicit, bound

8(m+2) [ < V2 n
(9) “n+lsﬂn+—£n_2"1372_)(2]ﬂ,) (gl ﬂ;)

which in turn may be used to derive the still weaker, but perhaps
aesthetically more appealing, bound

8(m+2 é

(10) Prir Sp, T ——5—
m’n

The last inequality (10) is the natural extension to dimensions m = 2 of
the bound (5) for domains in the plane.

We also obtain improved estimates for some of the lower eigenvalues
of (2). We show that for any ¢ > 0,

(11) fpir = (1 +0)p, + q(o
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where

(1+ o)’

q(o) :[ }1/2’ M(m) = %\/_gm’l(m +2)\ 2,

For given values of m and n one is obliged to select an optimal value of o
so that the right side of (11) is minimized. For example, form = 2, n = 1,
one chooses 0 = .4 to obtain the bound

B, <7.103p, (inR?).
For m = 3, n = 1, the choice 0 = .36 gives

B, <4792y, (inR’),
and for m = 2, n = 2, we may choose ¢ = .34 to obtain

py <2897 p, +4237p, (inR?).
The corresponding inequalities obtained from (10) are
B, <9, (inR?), p,=<544yu, (inR%)
py=<4p, +5p, (inR?).

Thus (11) is an improvement over (10) in these cases. We will show further
that (11) is an improvement over (10) for » = 1 and any value of m, and
that for m = 2, 3, 4, (11) is stronger than (10) for n < 8§, 3, 2, respectively.

In the last section of the paper we give an improvement and an
extension to higher dimensions of inequality (6) for the eigenvalue prob-
lem (3). We show that

m?* + 8m + 20
(m+2)°

(12) v, < V.

Thus for m = 2, 3, for example, we have
v, <257, (inR?),
v,<212», (inR’).
We remark that there has been quite a bit of interest in obtaining the

best estimate for the ratio A,/A, for domains in the plane. Payne, Polya
and Weinberger showed that

A, <3A,.
This bound has undergone a succession of improvements by Brands [1],
DeVries [3], and Chiti [2], with the latest bound by Chiti being
A, <2.586A,.
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For the circular disk we have A, /A, = 2.539 - - - It has been conjectured
[6], but not yet proved, that among all domains in the plane the circular
disk maximizes the ratio A, /A,.

There has also been some interest in bounds for the quantities A5 /A,
(A, + A3)/A,. See for example [1], [4], [S], [6]. The best bounds to date
appear to be those of Marcellini [S], who showed that for domains in the
plane,

A, FA; <5596, A <3917,

1. Imequalities for u,. Let D be a bounded domain in R™, m =2,
with boundary 9D. Let the eigenvalues of

Au=pu inD,
u= % =0 ondD
be designated by
O<p Sp,< - -<p,<---,
with corresponding eigenfunctions u,, u,,...,u,,..., normalized so that

uu, =39, i,j=1,2,....
[ =8 i)

The following theorem is an extension to higher dimensions of the
inequalities (5). Later we will refine some of the techniques in the proof in
order to obtain stronger inequalities.

THEOREM 1. For m = 2 and n = 1 we have

8(m+2)
(1.1) unﬂsﬂﬁ—(—l EM,S(
=1

min

m -!-4)2
| Eae

Proof. Following Payne, Polya and Weinberger [6] we consider the n
trial functions
n
Q=X U; — Eaijuj, i=12,...,n,
j=1

where x = (x,,...,x,) € R™, and the constants a,; are defined by

a,.j:fDxluiuj, i, j=1,...,n.
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Then each ¢, is orthogonal to u,,...,u,. Moreover, since ¢, = 0¢;/dn = 0
on 3D, we have the well-known inequality
A,
(1.2) mﬂsﬂiﬁy i=1,2,...,n.
/®;
Now,

(1.3) fqoiAZqu :f(pi[AZ(xlui) - 21 aijk;H;
=

= fq;i[xlAzui + 4Au,~xl] = ,ui/(Piz + 4/q)iAuix,'

After substituting into (1.2) and summing over / we have
n n n
(1.4) Panr 2 [OI= 2|0l +42 [odu,.
+1i=l f i=1 / i=1 f
Now we make the assumption that
- 1 « 2
(1.5) D |ui == [lvul, k=1,..m.
i=1 f Lomio '[

This equality can be made to hold by rotating the coordinate system in
R™. Suppose, for example, that (1.5) does not hold, and that x, and x,
denote two coordinate directions such that

n 1 n 2 n
3 fui, <5 2 [ivul <3 fui,

Then we may make a rotation of the x,-x, plane until (1.5) holds for, say,
k = p, with the left-hand side of (1.5) remaining unaffected for values of k
different from p and ¢. This operation can be repeated until (1.5) holds for
all values of k.

We pause to make a few technical calculations. Let us define

“ m+2 & 2
Ji= .21 /‘P:Auix,’ J= m _21 flvui| .
i= i=

LEMMA 1. The quantities J, and J satisfy:
wJ, =J,

(i) 7> < n((m + 2)/2m)* S b,y

(iii) n*(m + 2)/8 <J3r | [ 2.
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Proof of Lemma 1. (i) We have

n n
= 2 fxlutAuix] - 2 alj/ujAuiX]
=1 Lo

i, j=1

The last term above vanishes, since a;; = and, by integration by parts,

J”

/ujAu,.xl = —/u,Aujxl.

As for the first term, we show also by integration by parts that
fxluiAu,.xl Z/A(x,u,-)u,.x1 Zf(x Au; + 2u”]) U,
= _f (xlAui)x;ul + 2[“12)(,

— _fxlu,Au,-x| + f ]Vul|2 + 2fufx‘.

Transposing, summing over i, and applying (1.5) we have

= é; Bf\w,)z +fu,2xl] =1

(i1) By the Schwarz inequality we have

JZZ(m+2)(Ef—uAu)
(22 ( 2 fe]( £ fawr),

Moreover,

f“zz =1, f(Au1)2:fuiA2ui:)u'z uiz = M-

(ii1) Let us compute
n n n
(16) 2 <piuix = 2 X uzuix - 2 al' u ul’( .
irl‘/ ! i:l'/] I j/j o

We have, by integration by parts

1
/x Mg, = =5 fuju,x]:—fu,ujxl.
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Since a;; = aj;, the last term of (1.6) vanishes, and we obtain

(1.7) ,21 f(p,u,xI = —%.

Hence, upon squaring and applying (1.5) we have

(3 ol ) (3 )

which completes the proof of Lemma 1.
Returning now to (1.4), if we replace u, by g, then in view of Lemma
1 we have

(1.8) . —u,,)é1 [or=4s.

Moreover, combination of (ii) and (iii) of Lemma 1 yields

(1.9) 3(1"12—)(1_ )(Efq),)

nm

Substitution of (1.9) into (1.8) yields

8(m +2) & m+ 4)\?
+(—2“22H,5( P )Mn,

Ppnr =

the last inequality being obtained by replacing p; by p, and simplifying.
The proof of Theorem 1 is now complete.

Next we obtain a stronger result than Theorem 1 by a somewhat more
lengthy argument.

THEOREM 2. For m =2 and n = 1 we have the implicit bound

n W, 2,3/2 n -1/2
(1.10) > I e (Zui)
=1 Mot T 1 8(m + 2)

and the explicit bound
8(m+2) (& &
(1.11) .unHSP«n“}’“(“—‘zl 2!’*1‘ 2 \/_.‘:, .
m*n*/ i=1 i=1

Inequality (1.10) is stronger than (1.11), and both are stronger than
(1.1).
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Proof. We return again to (1.4) but instead of replacing each u; by p,
we introduce a new parameter a, & > p,, and write

(112)  pyey 2 /¢?<a2 Jot+ E (k= @) [@} +4J.

We also apply the Cauchy inequality to (1.7), obtaining for any § > 0,
_’1 g S 2 1 < _ -1 2

(113 3=3 3 («-w)fai+g5 3 (amw)" ful,

Now we could use trial functions ¢,,, based on x, instead of x,, for

k =1,2,...,m, and obtain inequalities analogous to (1.12) and (1.13) of
the type

(119 (-0 3 fe

A
1=

(=) [oh+4/, k=1,..m,

(1.15) nS8é (a“Mi)f‘P,'zk

673 (a—p) ik, k=1m.

i=1

(Because of (1.5) and its consequence (i) of Lemma 1, the quantity “J” is
the same for each value of k.) We sum each of (1.14) and (1.15) over k,

denoting
m m n
fqo,k, =3 3 (a—p)[oh
1 i=1 k=1 i=1
to obtain the inequalities

(1.16) (s, — @)S + T < 4ml,

(1.17) mn < 8T + §! i (a—yi)_lfquJz.

i=1

We also have the estimate

1,2

[Ivuf = [~ u(au) _<_(f ‘)l/z(f(Au ) -,
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which when applied to (1.17) yields
y

1.1 <8T + 67! .
(1.18) mn igl Py

The right side of this inequality is minimized by choosing

=172

Substitution of this value of & into (1.18) and solving for T yields

(1.19) T=

4 2

=1 &7 W

From (i) of Lemma 1 we also have

m+ 2| < 172
(120) =2 S )

Thus upon substituting (1.19) and (1.20) into (1.16) we arrive at the
inequality

n 1/2 n -1
(1.21) (u,,ﬂ—a)sszmmvtz)(,glu,‘) -7 (g ik, ) :

i la—p’i

Recall that « is restricted so that a > p,. We choose a so that the right
side of (1.21) is zero. Thus

(1.2 ,-g,a—ui‘S(m+2)(2”f) |

i=1

Since the left side of (1.22) is a monotone decreasing function of a on
(p,, ), decreasing from + o0 to 0™, such a choice of a exists and in fact
is unique. With this choice of a we obtain from (1.21) that g, ; =< a. Thus
it is clear that the replacement of a in (1.22) by u,,, increases the
left-hand side. Hence we obtain (1.10).

Inequality (1.11) is derived from (1.10) by replacing each u, with g, in
the denominators of the left-hand side, and then solving for u,, . ,. Inequal-
ity (1.1) is in turn obtained from (1.11) by noting that

S =S

Thus the proof of Theorem 2 is complete.
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2. Stronger inequalities for lower eigenvalues. For the case n = 1
the inequalities (1.1), (1.10), and (1.11) of §1 all reduce to the same
estimate for p,, namely

m+ 4)\?
(2.1) “25( m )”’l'

Thus in R? and R3, for example, we have the estimates

2
p, <9, (inR?), u,< (—;-) p, =5.445 (inR,).

We will now obtain improvements of (2.1) for all values of m. In
particular, we will show that

p,<7.103p, (inR?*), p,=<4792p, (inR>).

We will also obtain improved estimates for certain other lower eigenvalues
in dimensions m = 2, 3, 4. The method involves still further refinements
of the arguments of §1. We retain the notation and terminology of the
previous section.

The next theorem contains a partial improvement over Theorems 1
and 2 which will be stated explicitly in subsequent corollaries and theo-
rems.

THEOREM 3. For m = 2, n = 1, and any constant ¢ > 0 we have
n
(2:2) B = (1 + o), +g(o 2

=[1+o+ q(O)M(m)]un,

where

o

q(o):[(IH) ]m’ M(m) = 22T m(m +2)2

Proof. We begin again with inequality (1.4), apply (i) of Lemma 1,
and introduce a real parameter 8 to obtain

23 M 2 fei= 2 o+ 401+ B), — 4.
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We also introduce parameters o >0, 7,>0, i =1
Cauchy’s inequality to J; to obtain

(2.4) Ml+ﬁﬂpz41+ﬁ)§_ﬁ—vw-vmn

.,h, and apply

n

= Zl Ti/lv(pi,z +2(1+ .3)2 g Ti_]f fvum‘Z

i=

S

= 3 21 [~ gde + 201+ ) 2 7 [t A

But by Cauchy’s inequality and (1.3) we have
2 21, [~ 9Ap, < 20“ 2f¢?+ 2 of (A’

u'M=

(op,,—i-o 72 f(p2+4oJ

i=1

We substitute this expression into (2.4), and the resulting inequality into
(2.3), and have as a result:

n n
(2.5) pois 2 f‘P:z = 2 (P'i +op, + "_l"'iz)_/q’z2
i=1 i=

(1+8) E "‘f wAu, + 4(oc — B)J.

In order to simplify (2.5) we choose each 7, so that
(l+o)p, +toti=1 i=1,...,n,

where 7 is a new parameter. The conditions 7;, ¢ > 0 require that 7 > u,
In fact, we have

>(1+0)p,>pn,,
T :[‘T -1+ U)I"i]l/zol/z, i=1,...,n,
n=n=---z7>0.

If we use trial functions ¢,, based on x, instead of x,, inequality (2.5)
has the counterpart

26 p S fok =2 [oh+201+8) 37 fu,,,Au
i=1 i=1 i=1

+4(o — B)J, k=1,...,m.
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We sum these inequalities over k, using
“ 2
2 fuixkxkAui :f(Auz) = M
k=1

and obtain
(2.7) (B, —7)S<2(1+B) 2 +4m (6 — B)J.

The counterpart of (iii) of Lemma 1 for x, is

2 n
ﬂ—(l”giz'lst o  k=1,...m.
i=1
Summing over k leads to
n’m(m + 2)
8

By restricting 0 — 8 < 0 we can use (2.8) to eliminate J in (2.7), and then
multiply by S to obtain

(2.8) <JS.

(B —7)S2—2(1 + ,13‘)2 § %S + —n—;—z—(m +2)n*(B — o) <0.

i=1
Therefore, we have a quadratic inequality in S of the form
aS* —2bS + ¢ < 0.
We can assert that
a < b*!

for unless a <0, in which case we are done, the quadratic equation
ax? — 2bx + ¢ = 0 must have a real root. Thus

2 1 + B 4 n Hi 2
un-ﬁ-l_TS 2 ( 2) (2—)
m*(m + 2)n*(B — o) ;
Since f(B) = (1 + B)*/(B — o) is minimized by taking B =
(40 + 1)/3 we substitute this value in the preceding inequality to obtain
4 3 n 2
+ 2(4*)(1 + o) (2 &) .
¥m*(m+2)n*\ =, T
Since 1, =7, = --- =1, replacing each 7, by 7, in (2.9) and further
eliminating 7, in favor of 7 gives

2(4*)(1 + o
Fm?(m + 2)n’s

(2'9) [ P =7

(2.10) p,,., <7+

(§ )[ (1+ o))
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The right side of inequality (2.10) has the form

7+ A(r— B)™,
which is minimized by letting 1 = V4 + B > (1 + o). Substitution of
this value of 7 into (2.10) gives the desired result (2.2). The weakened
version of (2.2) is obtained by replacing each u, with p,, thereby complet-
ing the proof of Theorem 3.

If in inequality (2.2) of Theorem 3 we take 0 = .4 form =2, n = 1,
and ¢ = .34 for m = 2, n = 2, we obtain the following corollary.

COROLLARY 1. For domains in R? we have

B, <7.103 p,,
By <2.897 p, + 4237 p,.

The corresponding inequalities obtained from (1.1) of Theorem 1 are
P2 =9n, py=4p +35p,.

From (1.11) of Theorem 2 we also obtain

Py =p, t 2\/5(1‘*1 + I‘z)]/z(\/ﬂ_l + \/I—E)

Inequality (1.10) of Theorem 2 also yields a different bound for u,; which
is quite a bit more complicated.

General comparisons between Theorem 3 and Theorems 1 and 2 are
difficult to make for general m and n. We will compare only Theorems 3
and 1, and only for a few simple cases. We first show that for u, the best
bound is given by Theorem 3 in all dimensions. We compare the two
inequalities

m+ 4
m

2
(2.11) Ppig = ( ) ¢,  (Theorem 1),

(2.12) Poi <[1+ 0+ q(a)M(m)]p,  (Theorem 3).

Inequality (2.12) holds for all 6 > 0. Thus the best bound is obtained by
choosing o so that the right-hand side is minimized. In general a closed
form expression for the optimal o is difficult to attain, since one is
required to solve a cubic equation. We will show nevertheless that this
optimal o always yields a better bound in (2.12) than the bound (2.11).

THEOREM 4. For all m =2 inequality (2.12) is strictly stronger than
(2.11) provided that the optimal value of o is chosen.
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Proof. Let us denote
H,(6) =1+ o0+ q(o)M(m),

where g(o) and M(m) are as described in Theorem 3. It must be shown
that for some 0 > 0 we have

or, equivalently, for some o > 0,
B,(0) > 1,
where we define

B,(0) = o"'[8(m + 2)m™2 — M(m)q(s)].

One can show after some lengthy computations that the maximum of

B, (o) occurs at
0=0,:= [%(m +2P’m?2 — 1]—1,

where obviously 6,, > 0, and the corresponding maximum of B, (o) is
(2.13) B,(6,) = m™*[m* + 8m? + 32m + 16] > 1.

We denote by ¢, the optimal value of o which minimizes H,(0), and
hence the right side of inequality (2.12). By programming a calculator we
have estimated a few values of H,(0,,), which we denote by H,,. We find

H,=17.103, H,=4792, H,=3.704,
H, = 3081, H,=2684, H,= 2409,
Hy=2210, H,=2058, H,= 1939,

Hyp = 1.081578,  Hyp, = 1.008 015 963.

These numbers H,, give upper bounds for the ratios p,,, ,/u, for domains
in R™.

Next we compare in some special cases the following two inequalities,
also appearing respectively in Theorems 1 and 3:

8(m

+2) «
(2.14) Py =, + ——2;—) 21 p;  (Theorem 1)

215) s = (1+ )y + glo) 2 ._é,“" (Theorem 3).
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THEOREM 5. In the cases m =2, 3, 4 and n =< 8, 3, 2, respectively,
inequality (2.15) is strictly stronger than (2.14) provided that the optimal
value of o is chosen.

Proof. The right-hand sides of (2 14) and (2.15) may be rewritten as
p 8(m+2) 2 [8(m+2)] N

Hy o) = halo)Mm)'S i +[1+ 0+ Lo} t(m)],

Clearly, for any o > 0 such that
(2.16) o+ Lg(o)m(m) <82
n m°n

we will have
H, (¢)<P,,
But (2.16) is equivalent to
(2.17) B,(0) =¢7'[8(m + 2)m™2 — M(m)q(s)] = n.
Now, from (2.13) we have
B,(5,) =8, By(a;) =33, B,(a,) =2.1.

Therefore, for example, for m = 4, if we restrict n < 2, then (2.71) is valid
for ¢ = 0,. Similar statements hold for m = 3, n <3, and for m = 2,
n<8§.

3. Inequality for »,. In a similar setting as before, let »,, »,, with
v, =< »,, be the first two eigenvalues of
Nu+vAu=0 inD,

:%:0 on oD,
on

where D is a bounded domain in R™ with sufficiently smooth boundary.
The following theorem is a technical improvement and an extension to
higher dimensions of a result in [6].

THEOREM 6. For m = 2 we have

m?* + 8m + 20
(m + 2)°

Vl'
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In particular, we have

v, <25v, ifm=2, »,<2.12» ifm=23.

Proof. Let u = u, be the eigenfunction corresponding to » = »|,
normalized so that

(3.1) /;)IVuIZZ 1.

As in §1, we may rotate the coordinate system so that

(3.2) fu_zl :fuiz - ... :fuim = % f]vu]z.

We may further perform a translation in order that
(3.3) ka|Vu]2:0, k=1,...,m.

We start with the well-known inequality

_ Jotp
[Ivel

which is satisfied by any sufficiently smooth function ¢ such that

(3.4) $)

_ 09 _
(p—an—O ondD,

fDV(p-VuZO.

Following the method of Payne, Polya and Weinberger [6], we choose as
our trial function
(p = xlus

which clearly satisfies the above boundary condition, and also the ortho-
gonality condition, since

fV(p- Vu:/xllvu|2+fuuxl:0+0,

in view of (3.3) and integration by parts. Hence ¢ = x,u satisfies (3.4).
We next calculate the denominator of (3.4):

(3.5) fIVq)IZ = fx,z{Vu{z + 2fxluuxl + fuz = fx,zlvulz.
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As for the numerator of (3.4), we have

f(pAzq) = fq)(xlAzu + 4Auxl) = —Vfcpx,(Au) + 4/cpAu_Y].

Also, by integration by parts and (3.5),
f(pxl(Au) = —f v(x,9) - vVu
= —fxﬂVulz - 2fx1uuxl = —/quJ\2 +/u2.
Thus,
(3.6) f¢A2q):VflV(P|2 — Vfu2+4/q>Auxl.

We pause to make some technical calculations. We define
1= f pAu, .

LEMMA 2. We have:
WI=(m+2)/2m,

W) 12 =< [ Vol J uy(Au),

(i) fu®=»7"

Proof of Lemma 2. To prove (ii), we write
(3.7) 1:~f Vo Vi,

By the Schwarz inequality and integration by parts,

P={|vel [Ivu.| = [Ivol’ fu,.(du).

To prove (i), we proceed from (3.7), using integration by parts and
(3.2), (3.1), to obtain

1= —f(xIVu - Vu, t Wx,x.)

=5 [Ivel’+ [ = m2:12/’V“|2 =T
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For (iii), working on (3.1) we have

1=/—uAu= (f—uAu)zs(fuz)/(Au)z
= [ fustu) = (fur)of 19ul’ = » fu

which completes the proof of Lemma 2.
Returning to (3.4) and (3.6) we have, in view of Lemma 2,

2
nfIvel = [erp<v[|vel —r(»")+ 41

m+4
o

2
=vf|vel +
Now from Lemma 2 we also obtain

1=

2m _( 2m \? , 4m? 2

m+ 2 - (m+2) 1 S(’,’1_‘*_2)2'/‘|v(p| fuxlxxAu'
Thus division of (3.8) by [| Ve [* leads to

dm(m + 4)

v, =v» + W/uxlxlAu

Had we used trial functions ¢, = x,u, we would have obtained likewise

.,m.

4m(m+4)
JtoBu, k=1,
(m + 2)°

Vv, =
Summing these inequalities over k we obtain

-, 4(m+4)
=T Ty [ (

But, as we have seen,

f(Au)ZZV.
Hence,
2
- l_|_4(m+43 _m +8m+220V1'
(m+2) (m+2)

This completes the proof of Theorem 4.
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