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STEPHEN C. PERSEK

General asymptotic methods on various time scales are developed
for periodic systems of ordinary differential equations in order to treat
global motion in multi-oscillatory systems. Moreover, we show that
bifurcations of an attractive and essentially nonperiodic nature can arise
in systems that also possess several (often unstable) Hopf bifurcations.
Such attractor bifurcations frequently dominate the long term system
behavior. In addition, the methods here can be used to determine the
flow on a center manifold in cases where center manifold theory indi-
cates an instability at the origin of that manifold and little else about the
flow. Finally, various examples of mixed scale motion are treated.

1. Introduction. A number of methods have been developed for
assessing the behavior of systems of ordinary differential equations. Hopf
bifurcation theory as illustrated in J. Marsden and M. McCracken [7] and
in A. Poore [13] is a well-known example. And additional results in the
treatment of bifurcations have been obtained by K. Landman and S.
Rosenblatt [S] and by W. Langford [6]. However, none of the foregoing
works comes to grips with bifurcations that either possess an exceptionally
large least period or else possess no period at all. This limitation becomes
particularly significant for systems possessing two or more characteristic
oscillatory frequencies. For instance, considering Example 1 in §2 of this
paper, Hopf bifurcation theory (see [7, p. 96]) shows the existence of two
different periodic bifurcations, the first having a period approximately
equal to 27 and the second a period approximately equal to 27 /a (where
1 and a are the angular frequencies of the system). However, using S.
Persek [11], both bifurcations can be shown to be unstable, and thus
neither of them characterizes the long term motion of the system. There-
fore, in Example 1, we arrange to locate still another bifurcation solution,
and as is typical in such cases, this solution is either nonperiodic or, if
periodic, has no period smaller in magnitude than order 1/¢* (where e > 0
is arbitrary and small). Now the fact that no period of this solution can be
as small as 27 or 27/a rules out the posibility of the solution being a
Hopf bifurcation (or even of its being discoverable by that approach).
Nevertheless, this solution is a perfectly well-behaved bifurcation which,
because of its general characteristics as an attractor, describes the long
term motion of the system. In fact, the system will drift away from the
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212 STEPHEN C. PERSEK

Hopf bifurcations into the configuration specified by this solution. And
finally, using S. Persek [12], this configuration can be shown to be
asymptotically stable in an orbital sense. Consequently, the methods
developed in this paper will allow us to locate well-behaved (essentially
nonperiodic) bifurcations that characterize long term system behavior and
frequently coexist with sets of (unstable and therefore not particularly
interesting) Hopf bifurcations.

Now another approach often employed in treating systems of ordinary
differential equations (whether in a Banach space or a finite-dimensional
setting) is center manifold theory, which reduces system behavior to a
question of the flow on the center manifold itself, as may be seen in J.
Carr [3, pp. 4-5 and pp. 118-120]. If the equation of flow on the center
manifold is stable (unstable) at the origin, the original system is also
stable (unstable) at this point. However, when the equation of flow is
unstable, these results provide little else of a concrete nature as to the
ultimate system behavior on the center manifold itself. So at this point,
one can turn to Hopf bifurcation theory (whose limitations have already
been made clear) or else to Liapunov’s direct method (as given by T.
Yoshizawa [16], or by N. Rouche, P. Habets, and M. Laloy [14]). The
latter method requires a search for an appropriate Liapunov function to
characterize the flow, but here it is the flow away from the origin that
must be characterized, since, supposedly, center manifold theory has
already been used to show the instability of the origin itself. Hence the
search may prove quite elusive. So as an alternative, the methods of this
paper can be employed to give a detailed description of the flow on the
center manifold when Hopf bifurcation theory and Liapunov’s methods
yield unsatisfactory results — for example, typically in cases where two or
more complex conjugate pairs of eigenvalues of the flow equation drift
simultaneously across the imaginary axis into the right-hand plane, creat-
ing either oscillatory bifurcations or self-excited oscillations of an essen-
tially nonperiodic nature.

Now related to this, N. Bogoliubov and Yu. Mitropolskii [2] devel-
oped averaging methods to approximate solutions to periodic systems,
with further results by M. Balachandra and P. Sethna [1] and D. Gilsinn
[4]. These methods are particularly suited for systems that have an
essential nonautonomous structure. Nevertheless, such averaging tech-
niques frequently provide only trivial results, because the lowest order
time averages of many systems are zero. In such cases, we can usually
obtain far more substantial results.

This paper is a generalization of the method of iterated averaging,
introduced by S. Persek and F. Hoppensteadt [8] and extended by S.



ITERATED AVERAGING FOR PERIODIC SYSTEMS 213

Persek [9] and J. Sanders [15]. The generalization applies to a wide variety
of systems, as will be shown in §2, and is especially useful for those
systems for which Hopf bifurcation theory, center manifold theory,
Liapunov’s methods, and conventional averaging do not provide particu-
larly suitable or complete results. Finally, iterated averaging as developed
here forms the basis of the full and the conditional stability results given
in Persek [10], [11], and [12].

We focus on any problem which can be reduced to a system of
ordinary differential equations in the form:

aw.

(1a) %ZEE,-(w,z,t,s), 1<i=<l/*
dz

(1b) Z=Az+eH(w,z,t,e),

where w = (w;, w,,...,wu) in R” and z in R™ are finite-dimensional
column vectors, and where H and the E;’s have a common period P in ¢.
Each characteristic root of the constant square matrix 4 has a negative
real part.

With ¢ = ¢(&) some initial point, and with

20(1) = eMwz(1,),

integrating equations (1a), (1b) leads to:

(2) w(t) = p,.+£[Ei(w(T),z('r),T, e)dr, l i</

(3) z2(t) =z29() + efteA(’—’)H(w('r), z(7), 7, ) dr,

Iy
where s is any point with 7, <s=<¢, and p, = w/(s). Let p=
(py» P3»---,p). By Taylor’s theorem, we expand each E, and H about
(w, z, t, €) = (p,0, t,0). Then repeated iteration of (2) and (3) allows us to
write

nl
(4) eE (w(t), z(1),t,€) = eE; (p,t,5,1)) + R, ,
j=1
for 1 =i =< I* where the E, ; depend on the initial points s and ¢, but not
on ¢ (other than through ¢, and s) nor on z%(¢), and where ¢R, , is the
remainder. The dependence of each E; , on (p,0,7,0) and on the initial
points s and ¢, has been indicated by writing E;, | = E, ;(p, ¢, 5, {;).
If the various n; are chosen properly, then for a given i and allj < n,,
each E, /(p, 1, s, ty) |, = — o 1s periodic in ¢ with period P, and for j <n,,
the average of E, (p, 1, s, £y) |,,=—., With respect to ¢ is identically zero.

o0



214 STEPHEN C. PERSEK

We then define En as the average of E, , (p, ¢, s, Zy) |, - —,, With respect
to ¢. Having obtained the averages E, , (p) for 1 =i =/*, we now repeal
the assumption made earlier that the vector p was the initial value of w at

t = s, and we instead formulate the “iterated-average” system:

dp, = .
- — B (0),  1=isl
a§ _

dt —A{,

where the integers n, may (or may not) differ in value from one another
and where { lies in R™. (Note that the E’n,( p) are usually independent
of s.)

Now in problems where angular variables appear, certain components
of p may represent angular shifts, say p,,,, p;+5,...,0;». And so it
frequently happens that for i </, the E_,’,,I(p) are independent of these
p-components. If, further, it is true that all the E(w,z, t,¢) and
H(w, z, t, €) are uniformly bounded in the corresponding w-components
Wis1s Wias---sWs, We then define the vector p, in R’ by p, =
(pys Pys---,P;), and consistent with this, rewrite the averages in the form
En, = E‘i‘n'( p,) for 1 <i =</ The iterated-average system (at least the

1

portion of it we are concerned with) then becomes:

dp; _

(5a) _d{)t—l =¢&"E, ,(p), 1<i<l|,
i .

(Sb) dt - Ag’

and system (5a) and (5b) is the system our results have been developed
for. (We could recover the full p-system by simply letting / = /* so that
py=p)

With w, = (w;, w,,...,w,), the main result of this paper is that a
solution of (p, , {) to system (5a), (5b) approximates the (w, , z) compo-
nents of a solution to system (la), (1b) to order & for any small € = 0,
provided the values of (p, ,{) and (w, , z) chosen at ¢ = ¢, are equal.
The approximation is uniform on the interval ty <t <1, + O(¢” ™ "), if
the (p. , §) solution on this interval remains in a fixed bounded region for
small ¢ > 0. Finally, the approximation is uniform on 7, < ¢ < oo, if the
(p. ,§) system is exponentially asymptotically stable and if (w, , z) |-,
lies in the domain of stability of the (p, , {) system.

The complete results are given in §4, and the precise statement of the
conditions necessary for the results to apply is found earlier in §3.
Moreover, as will be seen in §2, application can be made to locating
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well-behaved periodic and nonperiodic bifurcations of nonautonomous
and autonomous systems. Lastly, we wish to point out that the reader may
find it easier to calculate the averages E; , from the equations

(1) = o+ e [E(r(r), q(r), 7,6 dr,  1=<i=0,

q(t) = sft e IH(r(7), q(7), T, €) dr,

— 00
with r = (r}, r,...,rx) in R” and with ¢ in R™, than from equations (2)
and (3).

2. Applications. Without resorting to center manifold theory, we
first examine a well-behaved chaotic bifurcation (coexisting with two
unstable Hopf bifurcations, as seen from [7, p. 96] and [11]).

ExaMPLE 1. With « and ¢ positive scalars (« rational) and with the
column vector x = (X, X,, X3, X4, X5), consider the system

& —a 0 0 0 X, X3
dx a & 0O O 0 0
Z=10 0 & -1 0 |x*t 0

0 O 1 & 0 T X4 X5

0 0 0 0 -1 H*(x|, x5, X3, X4)

where H* is linear in its variables. Employing the scaled transformations
x; = &/%w, cos(at + wy),
x, = &/ *wsin(as + w,),
x3 = & w,cos(t + w,),

x4 =& ?wysin(t + w,),

xs = ¢z,
we have:
fi_‘jﬁ‘ — o3 + 2 o
7 —Ewm tewz sin(at + wy)cos(at + wy),
aw.
le =ew, — ew,z%sin?(t + w,),
dwy —
7 = T&sin (af + wy),
aw,
7; = —ez?sin(z + wy)cos(t + w,),
dz

= —z+ eH(w,, wy, wy, w,, t),
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where H = ¢3/2H*. With w = (w,, w,, w;, w,), let the right-hand side of
the equation for each w, be eE;(w, z, ¢, €) and let p = (p,, p,, 5, p4)- The
reader will then find that iterating equations (2) and (3) as outlined in §1
and then averaging to obtain the E’n‘(p) reduce (in this example) to
evaluating

— 1 2umr+ty 1 82E,
E . (p) = m[ 05( )(p,O, T, €) L:O dr

1 0e?
1 2um+i, 1 ain
(2oL
T _ 2
X [[ e ")H(pl,pz,p3,p4,a)do} dr
— 00

where p is the smallest positive integer such that pa is an integer. In
particular, with H*(x,, x,, X3, x,) = B,x; + B,x, + B3x3 + B,x, (the B
constant), we obtain the iterated average system:

dp, _ 4 (e, — B)(By + aBy)
dai — " +ay

sz__3 _332+B3B4+B423
E’_e{pz 8 Py

doy _ & p2{ 3(aB, + B,)* + (B, — aﬁz)z}’

dt 8 ! (1_+_a2)2
dp e

asi

E— ga

provided a, which is rational, is not zero or one. Then from §1 or from the
Theorem of §4, it follows that for all small ¢ > 0 and any 7, = 0:

4
sup { D w2, €) — pi (2, &) +|z(z, €) — (¢, e)l} < K(M)e,
tost<ty+M/e Li=1

where K(M) depends on M, but not on ¢ or ¢, or on any initial value of
(w, z) selected from a fixed bounded region.
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Now concentrating instead on the (p,, p,, {) subsystem, we note that
it has an exponentially asymptotically stable rest point at

2(1 + a?) 22
‘/(aﬂz - :Bl)(BZ + a:BI) ’ \/,332 + B3B4 + B42 ’

provided a( 82 — B2) + (a? — 1)B,8, > 0. Consequently, in this case, we
have, for all small ¢ > 0,

0

(01,0,,8) =

sup {,wl(t, e) — p,(2, )| +|w2(t, ) — p,(t, s)[

fo=<t<o0

+z(2, €) — §(1, €)|} < K*e

where K* does not depend on ¢ or ¢, or on the initial value of (w, z),
provided the initial value of (w,, w,, z) is not selected from outside of a
fixed bounded domain of stability of the (p,, p,, {) subsystem.

Because of the foregoing analysis, the original x-system has a family
of solutions bifurcating from x =0 for all small ¢ >0, whenever
a(B} — BE) + (a* — 1)B,B, >0, and B; + B} > 0. The x-components of
the solution bifurcating from x = 0 for a particular value of ¢ satisfy

4831 + a2)2

2 2 — 4
XX g = BB +aBy T O
xi+xi= 8¢’ + 0(&*),

B2+ BiB, + B

and it can be shown that x5 is the sum of two essentially oscillatory
functions, the first with the maximum amplitude

VB2 + B2 x2 + x% /1 + o + O(¢¥2),
and the second with the maximum amplitude

VB? + B2 \x2 + xI /|2 + 0(e2).

Moreover, aside from a few special cases of no concern to us here, the
(p5, py) equations show that the bifurcated solution either is nonperiodic
for small € > 0, or its smallest possible period is O(1/¢*). Hence by [7, p.
96]), this solution cannot be a Hopf bifurcation. And clearly, any trajectory
that approaches sufficiently near the orbit of our bifurcated solution
becomes trapped about that orbit. Moreover by [12], this bifurcation is
asymptotically stable in an orbital sense. And finally, note that the
preceding analysis is fully valid for any rational a > 0 with a # 1.
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EXAMPLE 2. (Multiple Frequency Quadratic Bifurcation). Quadratic
systems are used, among other things, to describe predator-prey interac-
tions in ecological settings. Here, we treat a well-behaved chaotic bifur-
cation, coexisting with two Hopf bifurcations — at least one of them
obviously unstable (see [7, p. 96] and [11]). Note that our approach would
apply just as well to a problem with an even larger number of oscillatory
degrees of freedom.

Let x = (x,, x5, X5, X,) be a column vector. Then with the a; and B,
constant, consider the system

£ -1 0 0 ax; + Bix;
dc _ |1 & 0 0 —a,x3
dt |0 0 e -y o a3x§ + Byx,x;
0 0 Yy & —a4x§

where v is any fixed positive rational. Letting
x, = ew;cos(t + w,),
x, = ew, sin(t + w;),
x; = ew,cos(yt + w,),
x4 = ew,sin(yt + w,),

we obtain:

dw,

—— = &w, + eaw?Zcos(t + wy)sin?(t + wy) — ea,wisin’(z + w,)
dt 1 11 3 3 2™ 3

+efwicos(t + wy) cos* (vt + w,),

d
% = g2w, + easws cos(yt + w,) sin®(yt + w,) — ea,wi sin’(yr + w,)
+ef,ww, cos(t + wy) cos*(yt + w,),
B o cos(t + w) (0 + wy) = eapwysi(1 + )
;7 eo,w, COS(7 T wy ) sIN" (7 T wy goyw, SINC (7 + wy
2
w
~£'B:v 2 sin(t + wy) cos?(yt + w,),
1
aw, _ . 5 _ .3
= Tt cos(yt + wy) sin®(yt + wy) — easw, sin’(yz + wy)

—eB,w, cos(t + wy) sin(yz + w,) cos(yz + wy).

With w = (w,, w,, w3, w,), let eE,(w, t, €) be the right-hand side of each
wy-equation, and write p = (p,, p;, P53, P4). Then iterating equations (2)
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and (3) as outlined in §1 and averaging to obtain the E,n reduces in this
problem to evaluating

= 1 2ap+t, aE
Ei’z—mfto ( e )(p,T £) _Od'r
1 2ap+1g JE, )
+ — w,7,0)| E(w,0,0)do ar,
A (f7 (XTEURTIC

where p > 0 is the smallest integer such that yu is an integer as well. We
therefore have the iterated average systems:

dp 1 1
Ttl = ezpl(l - Zalazpzl - “2“0‘2:819%),

dp 1 1
th = 8292(1 + Zazﬁzp% - E%%Pg)a

dp & £ 2y — 1

9 (ot + 200t = S| + 25|,
dp, _ &’ £ Y ) )
da 12 (50‘3 + 20‘4) Y 4'}’2 1 BZ(BZP] + Blpz)a

povided the rational value chosen for y is not 4, 1, 1, 4, or 2.
Then from §1 or from the Theorem of §4, it follows that for any
t, = 0 and for all small e >0

EPRPLICERS ol = K1),

toststo+M/e* Li=1

where K(M) depends on the choice of M, but not on ¢, or ¢ or on the
initial value of w (as long as the initial value choice is confined to some
fixed bounded region).

Now concentrating instead on the (p,, p,) subsystem, we find an
exponentially asymptotically stable rest point located at

(o1, p,) = &/ 4asa, — 8ya, B, \/ 4ya,o, + 4y, B,
trr2 aa050, + 2va3B, B8, ’ 0,050, + 27038, 6, ’

provided that both square roots are real and positive. Consequently, in
this case, we have for all small ¢ > 0,

sup {lwl(ta 8) - Pl(ta 8)( +|w2(ta 8) - Pz(t> 8)'} = K%,

f<t<oo
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where K* is independent of ¢ and ¢, and does not depend on which initial
value of (w,, w,) is chosen (as long as the choice is confined to a fixed
domain of stability of the (p,, p,) subsystem).

By the preceding analysis then, the quadratic system for x has a
solution bifurcating from x = 0 for all small ¢ > 0, as long as a rest point
(a,, a,) exists for the (p,, p,) subsystem and satisfies @, > 0, a, > 0. The
components of that solution satisfy:

daya, — 8ya, B,
0,050, + 2Y“§,3|.32
dyaja, + 4ya, B,

o 0,050, + 270‘%31132

xt+ x2 e + 0(&),

i

x3 + x? e+ 0(¢%)

Moreover, from the (p;, p,) equations, we see that the solution bifurcating
from x = 0 is either nonperiodic or has a smallest possible period of
O(1/€*) for small ¢ >0 (aside from a few special cases which don’t
interest us). Hence by [7, p. 96], this solution cannot be a Hopf bifur-
cation. And clearly, any trajectory that approaches sufficiently near the
orbit of our bifurcated solution becomes trapped about that orbit. More-
over by [12], this bifurcation is asymptotically stable in an orbital sense.
And finally, note that the preceding analysis is fully valid for any rational
vy >0, provided vy # £, 1, 1, 1, or 2. These latter y-values can also be
treated, but we omit this.

EXAMPLE 3. ( Bifurcation in a Nonautonomous System.) With ), a5, aj,
a, constants, consider the system:

dx .

Ttl = e2x, + x2sin ¢ + (a,x? + ayx,x, + a;x})cost,
dx,

I % + a x,x,C08 L.

By the substitutions x, = &w,, x, = &w,, we have:

dw, _ 5 2 2 2
% Em + ewysint + e(ozlw1 + a,ww, + azw; ) cos ¢,

e

a = &’w, + ea,ww, Cos 1.
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Following the iteration procedure for equations (2) and (3) indicated in §1
(in this example, z is a vacuous component), we obtain the iterated-aver-
age system:

dp
Ttl =&{po, + (ag — )03 — Jay03),

d
—512 = E2(92 - %%Pi)-

The (p,, p,) equations have exponentially asymptotically stable rest points
at (ay2/a, /(3a, — 2ay), y2/a4) and at (—a,2/a,/(Ba, — 2a),
— Vy2/a,) provided that 0 < a, < 2, /3. Therefore, in this case, §1 or the
Theorem of §4 shows that for all small e > 0 and any ¢, = 0:

Sup {le(t’ 8) - pl(t’ 8)' +|W2(t, 8) - p2(t’ S)I} = K™

fH=t<oo

where K* is independent of ¢, ¢, and any initial value of (w,, w,) selected
from a fixed bounded domain of stability of the (p,, p,) system. And if
the inequality 0 < a, < 2a,/3 does not hold, the approximation of (w;, w,)
by (p,, p,) still holds for small ¢ >0 in the interval ¢y =t =<
ty + M/e* (M fixed but arbitrary).

Consequently, we see by the foregoing analysis that if 0 < a, < 2a,/3,
then two different solutions bifurcate from the origin of the (x,, x,)
system for all small ¢ > 0. Their periodicity is easily established by the
implicit function theorem, and their locations are given by

*eay2/a,

m + 0(82), *e/2/a, + 0(82) .

(xls xz) =

And although it is clearly clear that each bifurcated solution captures all
trajectories that get near it, the reader is referred to [10] for proof that
these bifurcations are stable.

EXAMPLE 4. (Coupled Second Order Equations.) With a > 0 a rational
constant and with u and x scalars, consider the system:

__O’

d*u du]iu_
d

Ut ez[Blu + (B + )

d’x dx _

2 2 29X _
dt2+ax+£(x u)dt 0,
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which can be rewritten as:

0
u 0 -1 0 0\ /u
a5 _[0 00 o (4], | ethun ¢ gt )
de | * 0 0 0 —all”* 0
Y 0 0 a« 0" e(u? — x7)y
Using
u = w,cos(t + wy),
v = w;sin(t + w;),
x = wycos(at + w,),
y = wysin(az + w,),
we obtain:
i’fl_: 2.2 2.2 . 3
ek wi{ Bwi cos*(t + wy) + B,} sin’(¢ + w,)
—e?Bwisin®(t + wy) cos(t + wy),
dw.
—dtz = ewy{wicos?(t + wy) — wicos*(at + w,)} sin*(at + w,),
_dlvg_ 2 2.2 )
7 "¢ wi{ BswE cos?(¢ + wy) + B, ) sin®(¢ + w;) cos(z + wy)
—e2B,w, cos?(t + wy) sin(¢ + w,),
aw,
—6?4 = g{wicos®(1 + wy) — wicos*(at + w,)} sin(ar + w,) cos(at + w,).

Then following the iteration procedure indicated in §1 for equations (2)
and (3) (here the z-equation is vacuous), we obtained the iterated average
system:

dpy _ 4= _ & 2
ar € E1,4(P) - —4—8—:81‘)1(632 + »8391)’

dp — €
5 = eE(p) = gpa(201 — 3),

90s — 4B, (p) = — 53 0R(B + 482 + By Byeh) — oo e
dt 34 24 1 1 2 2/M3M1 320 371

dp —
—a;‘l = 8E4,l(p) = O’

where p = (p,, p,, p3, p4). Now restricting our attention to the p, -
subsystem where p, = (p;, p,), we find an exponentially asymptotically
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stable rest point at (p,, p,) = (f— 68,/B;,/— 12B,/B; ) provided 8,8,
>0 and B,B; <0. The reader can check that Hypothesis H4 in §3 is
satisfied. Consequently, if 8,8, > 0 and 8,8; < 0, then for any 7, = 0 and
for all small € > 0,
sup {[wi(r, &) = py(t. ) +lwy(r, €) — oot )]} = K*e,
to=t<o0

where K* is independent of ¢, ¢,, and any initial value of (w,, w,) selected
from a fixed bounded domain of stability of the (p,, p,) system. But when
B8, =0 or B,B; =0, Hypothesis H5 holds (provided both p, and p, are
both positive at ¢ = ¢,) and the approximation is uniform on 7, <7 < ¢,
+ M /¢* for any given M > 0.

ExaMPLE 5. With «, B8, and y constant, consider the system:

dw, - 5 5
7 Ewisint e(ozwl + ﬁzz)cos 2t,
dw, .
I SMazpsint + €yz, cos 21,
dws

— 2 _ 02) cin?
—a—t——ﬁ(wz w3)sm t,
dz, 3
o - 4 + ew; cos2t,
dz,

— 2o
o 2z, + ew{sin t.

Using the iteration procedure outlined in §1, we obtain the iterated-aver-
age system:

% = E%%pzl(%a — 6807 ),
g;f = 1%92(20% +v03),
=5 a),

With p = (p,, p,, p5), the p-system has two exponentially asymptotically
stable rest points located at

(p1. p5. py) = (V250/ (68) . =25/ (—3BY) ., (250/ (=3B7) )




224 STEPHEN C. PERSEK

provided « > 0, 8 > 0, and y < 0. In this case, Hypothesis H4 of §3 holds
for solutions to the p-system which start in the vicinity of either rest point.
Consequently, when a > 0, 8 > 0, and y < 0, then

3 2
sup { lw,(¢,€) — p;(2, €)| + X |z:(¢, €) — &i(e, e)|} < K*e
1 i=1

Lh=t<oo

i=

for all small e = 0 and any ¢, = 0. The constant K* does not depend on ¢,
or ¢ or on which point in a fixed neighborhood of the rest point is selected
for the value of p at ¢t = ¢,. Moreover, if y <0 but not both « >0 and
B > 0, then the approximation is uniform on intervals 1, < ¢t < t, + M /&>,
where the value of p at ¢t = ¢, and the fixed value of M (> 0) are chosen
such that Hypothesis H5 holds.

By the implicit function theorem, many of the rest points of the (p, {)
system correspond (approximately) to locations of periodic solutions for
the (w, z) system. The reader is referred to [11] to determine the stability
of these periodic solutions provided we have the condition y <0 and
af > 0.

3. Hypotheses. With the integers /, /*, and m from §1, we recall
that w, = (w;, wy,...,w,) and w = (w;, w,,...,wu), where / < /*, and z
lies in R™. Define /, = I* — /. Next let D, and D, be bounded convex
open sets in R’ and R™, respectively; let S, and S, be open sets with.
closures contained in D, and D,, respectively; and let S, and S, be
respective subsets of S, and S,. Then for some ¢, > 0 define the set D
consisting of points of the form (w, z, ¢, &) by D = (D, XR") X D, X
[0, 00) X [0, £,]. Regarding (1a), (1b), we assume

HypotHEsIs H1 (Periodicity, Smoothness). Each E/(w, z, t, ¢), for
1 <i=<1I* and H(w, z, t, ¢) are periodic in ¢ with a fixed common period
P > 0. Moreover, each E, and H and several orders of their derivatives
with respect to (w, z, €) are uniformly bounded on the set D, and for each
fixed ¢ = 0, are smooth functions of (w, z, €) on (D, X R") X D, X [0, ¢p].
Finally, constants § >0 and K, > 0 exist such that for all 1 =0, the
constant matrix A satisfies ||e?!|| < K ,e~%, where |||| is the matrix norm.

With ¢, = t4(¢) an initial point either depending on & or simply
constant, assume system (1a), (1b) satisfies the initial conditions:

(6&) W, lt=r0(s) = bOz + (;‘b”(&‘), l=i= [*5
(6b) z |t:t0(s) = s0 + 851(8)’
and let by = (by;, byys. . . ,byx) and by(e) = (by(€), by(e)s. .., by p(E)).
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HypotuEsis H2 (Initial Data). (b, £,) lies in (S, XRP) X S,, and
on 0 <e =<gp, |(b(e), () |= N, for some fixed constant N,.

Defining the iterated-averages E’n,( p) as indicated in §1, and setting s
equal to zy(¢) in them if they depend on s explicitly, consider:

HypoTtHESIS H3 (The Iterated-Average System). Assume the En for
1 <i =</ are independent of (p,;,, P;125---50;+), SO that we may write
E, *E,n(p+) where p, = (p;, p5,.--,p;). Then formulating system

(5a), (5b), suppose further that

(73) Pi lfz’o(e) = bOi» l=is= la
(7b) §|t to(e) 50

is satisfied. Defining n = max,_,<,n;, assume, finally, that a constant
M >0 exists (M may be oo) such that the solution (p,,{) =
(p (2, ¢),{(t, ¢€), to the initial value problem (5a), (5b) and (7a), (7b),
exists and remainsin S, XS, for7y(e) =1 = to(e) + M/¢" and0 <e =<gp,
and for all choices of (by,, by, . ., by &) in S, XS,.

We now let the matrix U(t 7) with scalar entries U, (¢, 7) be the
fundamental solution to

dU ! n, aE,n,(p+)

Y _
dt 2 e

k=1 dp;

b =000 < Uii> Uolr = 8,5
forl=i=</ 1=<j=<I with p, (¢, ¢) as described in Hypothesis H3 and
with §,; the Kronecker delta. This system will be required either to be
exponentially asympotically stable with respect to U = 0, or else to have a

limitation on the rate of growth of its solution.

HypotHEesis H4 (Stability of the Variational Systems). Assume M =
co. Then constants Kz, A, A,,...,A, (all > 0) are assumed to exist inde-
pendent of ¢, 7,(¢), 7, and any p, (¢, €) chosen in Hypothesis H3 such that
forty(e) =7=<1t< o0, for0<e=gp,and for all chosen p, ,

!
[0, ) = K 3 amsen 000,

where l <i</and 1 <; </
The above hypothesis has been formulated in very general fashion.
However, simplification takes place in a great many applications. For
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example, when all the n, for i =/ are equal, with say, n, = n, then the
required variational inequality becomes

|U, (1, 7)|| < K plee"¢—min A,

and determining whether this can be satisfied is routine.
And now we provide for systems that lack total stability.

HypotHEsis HS ( Limitation of Growth). Assume M < co and n; < n,
=---=n._,<n,=n,,=--=n,._,=n;, (=n) where ¢ =/. Then
constants K (M), A(M), Ay(M),...,A._ (M), and N(M) (all > 0) are
assumed to exist independent of ¢, 7, 74(¢), and any p, (¢, ¢) chosen in
Hypothesis H3, such that for 7y(e) =7 <t =<1y(e) + M/e", for 0 <e =<
¢p, and for all chosen p , ,

c—1
U, (0 7)]| = K(M) S mssinmd-enmes

v=1
+KE(M)En—njeE"N,(M)(I—'r)’

wherel <i</and1<;=</

The preceding hypothesis is particularly simple to verify when all the
n, for i <[ are equal (the case with ¢ = 1), as our inequality becomes
merely

1U(z, 7)]| < Kp(M)e= ™0,

In other cases the reader may have to renumber his components in order
to be consistent with the format of Hypothesis HS (see Example 4).

4. The main result.

THEOREM. Let (w(t, €), z(t, €)) be a solution to the initial value problem
(1a), (1b), (6a), (6b), with ty(e) = 0 arbitrarily chosen, and let (p. (t, €),
(¢, €)) be a solution to the multi-scale averaged system (5a), (5b), (7a), (7b),
for0<e=<gp,. Let

w, (t,e) = (w(t, &), m(t, €),...,w(¢, ¢)).

Case A. Let Hypotheses H1-H4 hold (M = o). Then constants K*,
e* > 0 exist (with values independent of ¢,(¢), but depending on D, S, ,
S., S,, S,, and the bounds in HI-H4) such that for 0 <& <e* the
solutions (w(t, €), z(¢, €)) and (p, (¢, €), §(¢, €)) exist on t,(e) <t < o0,
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and

sup  {|w, (1,€) = p, (1, )] +]z(t. ) — §(1,€)|} < K*e

to(e)=1<oo

uniformly for initial values ( by, £,) in (S, XR") X S_.

Case B. Let Hypothesis H1-H3 and HS hold with M > 0 finite. Then
constants K,(M), €,(M) > 0 exist (with values independent of 7y(¢), but
depending on D, S, , S, §+ , bi, and the bounds in H1-H3 and
HS) such that for 0 <e=<¢, (M), the solutions (w(z,e), z(¢, €)) and
(p. (2, €), (1, €) exist on t,(e) =t < 1t,(e) + M/€", and

sip  (wy (1,0) = pu ()| Hle(t,€) = §(1, )]} = K, (M)e

to(e)<i=ty(e) +M/€"

uniformly for initial values (by, £,) in (S, X R) X §..

Consequently, the theorem states that if E (w, z, ¢, ¢) from (la), (1b)
i1s expanded in powers of &, with coefficients in both ¢ and the strobo-
scopic projection of w (the variable z is eventually set to zero), then E,
may be replaced by its first nonzero average "~ 1E,n, in the expansion to
obtain the approximating system. This result applies to a greater variety of
systems than the theorem in [9], because here motion may be carried on
several characteristic scales at the same time, and the averages E,‘n, are
allowed to depend on the choice of the initial point t = 7,(¢).

5. Proof of the theorem. With (w, z) = (w(t, ¢€), z(¢, €)) and (p, , {)
= (p, (1, €), {(t, €)) the respective solutions to (1a), (1b), (6a), (6b) and to
(5a), (5b), (7a), (7Tb), letw, =p, + eW. (1 =i<[)andz = + ¢Z. Let d
be the distance between the boundaries of S XS, and D, X D,, and let
N, majorize A, E(w, z,t,¢e) (for 1 =i=<1*), H(w, z, t, ¢),
and their appropriate derivatives on the set D, and majorize (b,(¢),
by(€),...,b(€), §(€)) on 0 < ¢ < g,. We now can write

dw,

(83.,b> 7 = E:(W’ Z, t’ 8) - £n“1E—1,n,(p+ )’ I/I/; It:to(s) = b11(€)9
dz
(9a,b) o AZ + H(w,z,t,¢), Z|_, ., =&l(e).

Now for any constant

a> sup {Ibn(f)lsIblz(e)l’-‘-albu(g)f’151(8)

O<e<gp

b
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there exists ¢,(e) > t(¢), (1,(€) =< t,(€) + M/€") such that (w(z, €), z(¢, €))
exists on ¢y(e) =<t < t,(¢) for 0 <e <¢j, and

sup  {|[Wi(t, )] W €], [W(n, €], |2(2, o)) < a

to(e)=t=t,(¢)

for 0 < e =< ¢,. Choosing ¢, = min(¢,, d/(2a), 1), then by Hypothesis H3,
(w(1, €), z(t, €)) lies in (D, X R) X D, for ty(e) <t <1,e), 0 <e<eg,.
Now from (9a), (9b) we obtain

(10) Z(1) = V(1,14(e))\(e)
+ " Ve, 1) H(w(r), 2(7), 7, €) dr

to(€)

where V(t, 1) = e, w(t) = w(t, ¢), (1) = z(¢, €), etc. Then by Hy-
potheses H1 and H2, |Z(¢)|=< N(1 + K,/8) for ty(e) =t =<1t(e) and
0 < e =g, independent of &, a, 7y(¢e), ¢,(¢) and not depending on the
chosen value of (w, z) |,—, (o)

Expansion of the Ew, z, t, €)

With ¢,(€) = s =<, consider the equations

Q) w(t)=w(s)+ ej;tEi(W(T), (1), 7, e)dr,  1<i=I*
(3)  2(e)=290) +ef V(e H(w(r), 2(7), 7,€) d7
to(e)

obtained earlier. Using Taylor’s theorem, we now expand each E, and the
vector H about the point (w, z, t, &) = (w(s),0, ¢,0). Then repeated itera-
tion of (2) and (3) leads to

(11) E (w(t), z(1),t,€) = i ef_lEi,j(w(s), t,s,t(€))

+R,, (w(1), 2(1), 1, &, 5, 1(€))

for 1 =i =/* where the E, ; depend on the initial points s and #,(¢), but
not on & (except through z,(e)) or on z(¢). The terms involving z©(¢)
have been merged into the remainder R, , . And from Hypothesis H2,

|20(0) = K4 (€] + elgi(e)] e,

Moreover, for ty(e) =s=t=<1t(¢) and 0 <e =g, (w(?), z(¢)) lies in
(D, XR%) X D,, and with Q representing any E or H or any of their
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derivatives used in obtaining the E, ; and the R, , , we have

i,n>

(12) |Q(w(2), z(2), 2, ¢) — Q(w(s),0,,0)|
< N,(jw(1) — w(s)| +]2(2)] + ¢).

Moreover, for t,(e) =5 <t < 1,(¢),

(13) w() = wis)|+|z(¢)| + &
Se(l + N‘SKA + Nyt — sl) +[2O(1)

Se(l + N‘f” +N,)(1 +t —s])

+ K, (|&] + elti(e)]) e3¢0
< Nyy(1 +]r — s])(e + e-36—1o@)

where N, is independent of 7(€), ¢,(¢), & and a, provided 0 <e <,.
Note that

20(2) < Nyo(1 +1t — s])(e + e-86=0),

as well. Therefore,

(14) {Iw(r) = w(s)| +z(2)| + &} {z@(e)}*
< NE(1 +[t — s]) (e + e 2C 0"
= Niy(1 4+t — s])"(e* + e 3¢~ (u + 1)1

for any integersu = 1,j < pu(j = 0). For #y(e) = s < t, we have:

(15) f(l—l—['r—s[ d'r<—(1+|t s,

(16) [ V()1 +ir = sl)" ar

o(e)

ptl T YOS Y
=7 H=s) +1<Afto(£)e (1 +|r — )" dr
K, st Ky s gt

< Tl =) e (m+1)(1+£)

= Nn(f")(l +[e— Sl)#ﬂ,
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where N, () is constant. Therefore, employing (2), (3), (12)—(16), and the
bounds on z¥(7) in deriving equation (11), we find that for r,(e) <s <1
=t(e)and 0 <e =g,

]Rl " (w(t), z(t), t, e, s, to(e))[
= le(l +|[ — S’)ﬁ(g”r -+ e‘a(~"7f()(f)))

(17)

where B and N,, are positive constants independent of e, a, 7y(e), 7,(¢),
and i.

The Expanded W -Equations

Now letting I'[] be the greatest integer function, define the step
function ¢ by 7 = t,(e) + P X I'[(t — t,(¢))/P], where P is the period in
Hypothesis H1. Since s in (11) was unspecified, let s = [ 50 w(s) = w(?)
there. Writing w or w(¢) for w() and substituting (11) into (8a), we obtain

aw, o
(18) 7k e E (1,1, 10(e) — e E,, (py)
=

+Ri,n,(wa Z,1, ¢, tA’ [0(8))’ (1 SlSlL)

Moreover, since s =7 and 0 <7 — / < P, then from (17) a constant N,
exists independent of ¢, a, #,(¢€), 7,(¢), and 7, such that

(19) ’Ri.n,(w(t)7 z(t), t, €, f, to(e))’ < Nz(s"f + e—a(hm(s))/z)

provided 75(e) <t <t (e)and 0 <e <.

Since by §1, the averages of E (p.1,s,1y(€))], -, are zero for
l=i</,1=<j=n,— 1, wecan definSE,.} = ( in these cases. Moreover,
for 1 <i=</and for win D, XR", E,  (w) is well defined and equals
E, ,(w.) by Hypothesis H3. With W, = (W, W,,..., W) and w, = p,
+eW, , equation (18) becomes
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Hence with e, = min(e,, 1/a?), we have

aw, & Loon (v
@) =2 {E., (b, 1,1, —0) = £, ()}
j:
" JE, (w
ten _i(__Jr_) W+ C(W,,Z,t¢)
~ ow. J '
J=1 J wy=py

where a constant N, exists independent of ¢, a, #,(¢), t,(¢), and i such that

IC(W, (1), Z(1), 1, €)| = Ny(e" + e"+la? + ¢80 109)/2)

< N3(2£nl + e—a(f_lo(f))/z),

for 0 <e=<e,, t(e) =t =t(e), ] =i=<I Using U(z, s) as defined pre-
ceding Hypothesis H4, (8b) and (20) may be written as

!
(21) w,(t) = g in(t’ 10(8))b1i(£)

with 7 and w(r) defined like ¢ and W(7). Noting that
U(t’ ”') = U(t, to(f))U_](Ta to(e))
and

1[1(%;%—(_62 =-U"Y(r, to(f))d_U(T;j—jO(E—)l U~'(7, 15(¢)),
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we use integration by parts in equation (21) to obtain (for 1 <» </)
!

W, (1) = X U1, 10(e))by,(e)

’ 9E, , (p4)
+ 2 f,t Uy,(t,7) e et

ap;

p+=p(2,8)

X 2 g/'~1fT {Ei,j(vf)(o),o,é,—oo) —E_j(W(o))} dol d7
j=l to(#)

+ 2 f vk t T)Ck( +(’T),Z(T),’T, 8) d'T
k=1 "1(&)

Now a constant N, exists independent of &, a, t,(¢), t,(¢), i, j, k, that
majorizes 9E; ,(p,)/dp; on D, , and by Hypotheses H1 and H3,
majorizes

ft( ){Ei,f(W(T)’ 1, %, —) — E, (w(7))} dr
108

forO0<e=e,, t(e)=t=t(e), 1 <i<],1=<j=<n,; 1 =<k=]I Then for
0<e=e,, 1y(e) =t =1t(e),

/ n,
(22) |[w(1)|= kgl ”l]vk(t’ to(s))”N, + N, E:I ¢!

3 [ Ul

k=1 "to(e)

| n

X E""NZ 8j*l + N,(2e™ + e—'fs(‘f"()(f))/2 dr

4 3
i=1j=1

with 1 =» < /. The remainder of the proof will now be split into two
cases.

The rest of the proof of case A (M = o). Now from Hypothesis H4,
constants K., A\, > 0 (for 1 =i <) exist such that

/
U, (2, 7)< Kpp 3 &m0 O ="M 07D
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for all r(e) =T=<t<oo, 0<e=g,, independent of 7y(e) =0, and
the chosen p, (f, ¢). So for ry(e) =t =1(e), 0 <e<eg =
min(e,, d/(2a),1,1/a%),1 <sv </,
!
|VVV([)‘SKEN1 2 emax(n,-—nk,O)e—e""A,(t—lO(e))
L k=1

enk_nl

nu I
+N, D e Ky Y gm0
4 ol

Jj=1 i 1 !

[ 2K.N, ¢
X{N,} > 28’“‘+2N3} e T e,

y=1 =1 i k=1
IVVI;(’){SKENJZ

/
1 2
+N,n + K I(N}n + 2N;) D ++ (E)KENJ’-

=Ky
where K, is independent of ¢, a, £y(¢), 7,(¢), and ». Let

KA
K* = {21<W+ 2N,(1 +T) I.

Then choosing a = K* and &* = min(e,, d/(2K*),1,1/(K*)?), and

choosing ¢,(€) such that (w(z, €), z(7, €)) exists on t,(e) <t =1,(¢), 0 <e
= ¢*, and such that

sup WD), [Wa(D)],.. . IW(D)],1Z(1)[} =a (= K¥)
to(e)=<1=1,(e)
for 0 < e < ¢*, it then follows that

sup {IWl(t)l’lwz(t)l,,]VV[(t)I’lz(t)l} Szil (_ K*)

to(e)=t=t,(¢) 21

for 0 <e =< ¢*. Hence, the #,(¢) picked may be chosen infinite. Conse-
quently, for 0 < & < &* and for all (by,, by, . .., by &) in (S, XRP) X S,
the solution (w(z, €), z(¢, €)) exists on ¢,(§) <t < o0 and

sup  {|W, ()| +]Z(1)|]} =Kk*

to(e)=t<oo

where W (1) = (W (1), W,(2),..., W/(1)).

The rest of the proof of Case B(M < ). Nown, =n, < ---<n__,
<n,=n,.; = ---=n, (= n) from Hypothesis H5. Moreover, positive
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constants K (M), A, (M) (for 1 =i <c — 1), and N(M) exist such that

Ut )= K (M) zemw “na DA

i=

+KF(M)£nfnkee"N,(M)(t—r)
for all 7y(e) <7 =<1ty(e) + (M/€"), 0 <e =gy, independent of 7,(e) =0
and the chosen p, (7, €). So for ry(e) =t =1t(e) (=ty(e) +(M/e")),
0 <e<e, = min(ep, d/(2a), 1,1/a%), and 1 < » < [, we have from (22):
c—1

lW t)|<KE(M) 2 E emax(n —ny 0)e~s A (MYt~ lO(E))N
k=11=1

I nV
+K (M) 2 g ket MU NN+ N, et
é c—1 MM
E Emax(n K0
k 1 i=1 A, (M)
[y
X {Nf > Y+ 2N3}
y=1y=1

21<E(M)N3 e
2 E max(n,—n;,0)
k=1 i=1

KE(M)l L
+ NZ 8]“1 + 2N. ean/(M)(f‘fo(E))
N, { '3 3 3

o€ NM)(1=1(e))

8/2 + &"N,/(

+K.(M)

2 e

W,(0)] < Kp( M)N (e — 1+ eMN00) £+ N, S
=1

K (M)I(N2}n + 2N,) g X (IM)

+ (%)KE(M)NJ(C ~1)
+ ————I;EEZ;I(NfIn + 2N;) e MM

+ (%)KE(M)N31eMN'

EKW(M’n)
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where K ,,( M, n) is independent of ¢, a, 1(¢), #,(¢), and ». Let
K, (M)=2K,(M,n)l+2N(1+ (K,/8))l
Then choosing a = K,(M) and
e,(M) = min(e,, d/ (2K,(M)), 1.(1/ {K,(M)}’))

and choosing ,(€) (< 1,(¢) + (M /€")) such that (w(z, €), z(t, €)) exists on
to(e) =t =1t,¢),0 <e =g, (M), and such that

sup  {|Wi(0)], W (0)],....IW ()], 1Z()]} =a (= K,(M)),

to(e)=<t=<t\(¢)
it then follows that

sup (WL (0] WL Z(0]) =55 (: _If_gf_))

to(e)=t=t,(¢)

for 0 <e=¢,(M). Hence, the r,(¢) chosen may be picked equal to
to(e) + (M/e"). Consequently, for 0 <e¢ =<¢,(M) and for all
(Bors bogs- - - »bopes £) in (S, XRU) X S, the solution (w(1, €), z(t, €)) ex-
istson ty(e) <t =ty,(e) + (M/€¢") and

sup {Iw, () +|z(1)|]} =K, (M).
r(e)=t=to(e)+ M/e"

This completes the proof of the theorem.
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