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In this paper we study the intrinsic metrics for the circular domains
in C". We calculate the Kobayashi (pseudo-) metric at its center for
pseudoconvex complete circular domain D using the result of Sadullaev.
From this we have that such D is hyperbolic iff D is bounded. If a convex
complete circular domain is complete hyperbolic, then the Carathéodory
and Kobayashi metrics coincide at the center. Using this and the results
of Hua we explicitly compute the intrinsic metrics of the classical
domains. Furthermore we define the extremal function and extremal disc
for intrinsic metrics and compute them in some special cases.

1. Preliminaries. Let M be a (countable, connected) complex mani-
fold, and TM the holomorphic tangent bundle of M. Let A denote the unit
disc in C with Poincaré metric ds? = drdt/(1 — |1 *)? of Gaussian curva-
ture —4.

Carathéodory metric (C-metric, in short) C,,(p; §) and Kobayashi
metric (K-metric, in short) K,,( p; §) at ( p; §) € TM are defined by

Cy(p; €) = sup{|(df),¢|; f € Hol(M, A), f(p) = 0},
K, (p;£) =inf{1/r: 3 F € Hol(A, M), F(0) = p, F'(0) = r& (r > 0))

respectively, where F'(0) = dFy(d/dt). (Correctly speaking, these are pseu-
dometrics.) Hereafter we assume C,, > 0 everywhere and M is complete
hyperbolic. We work mainly on (bounded) domains in C". Then C,, and
K,, are continuous Finsler metrics on M. For them, we can define the
holomorphic curvature as follows (cf. Suzuki [8]). Let X(p; &) denote
either C,,( p; &) or K,,(p; §). We set

H(p; &)= U {F€Hol(A,, M); F(0) = r&, F(0) = p}.

r>0

We define A.(¢) = X*(F(t); F(t)), t €A, = {|t|<r)}, for each F in
H( p; §). Then the holomorphic curvature of X at ( p; §) is given by

kx(p; €)= Sup{— (ZAF(O))_lAlog Ar(0); F € H(p; f)},

where

Alog A(0) = 4 lim infs‘z{szwlog Ar(se'?) df — log )\F(O)}.
s—0 27 0
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Then we have

THEOREM A. ([8]). Assume C,, > 0. Then the holomorphic curvature of
C-metric is = —4, and that of K-metric is = —4. Thus if C,, = K,,, their
holomorphic curvatures are —4.

We may put C,,(p; 0) = K,,(p; 0) = 0. Fix a point p in M. The
indicatrices of C- and K-metrics at p are given by

I°(M, p) = {¢€ T M; C,y(p; &) <1},
I%(M, p) = (¢ € T, M; K,,(p; §) <1},

respectively. Under our assumptions, they are open sets.

THEOREM B. (cf. [1], [6]). If M is a bounded domain in C”", then
IS(M, p) is a bounded convex circular domain with center 0. If M is a
bounded convex complete circular domain in C" with center 0, then M =
I€(M,0).

2. The extremal function and the extremal disc. Let M be a com-
plex manifold, and fix a (p; §) in TM (£ 0). Since A is complete
hyperbolic, there exists an f &€ Hol(M, A) which attains C,,(p; £);
| (df )oé|= Cy(p; §), f(0) = p. We call such f the extremal function for
(p; &)

When M is complete hyperbolic, the family Hol(A, M) is a normal
family and there exists a mapping F in Hol(A, M) which attains
K,,(p; §). This mapping F is called an extremal disc for ( p; §) (cf. [9]).

Let f and F be an extremal function and an extremal disc for ( p; §),
respectively. Setting g = fo F, we have a function g € Hol(A, A) with
g(0) = 0. Thus, by the classical Schwarz lemma,

121g"(0)|=1(df )o(dF ), 1= Coy(p; §)/Kp(p; £).
Note that if C,,( p; &) = K,,( p; &) for some ( p; £), then g(t) = €',
t€A, 6 ER.

PROPOSITION 1. Let M be complete hyperbolic. If C,,(p; §) =
K,/ (p; &) for some ( p; &), then an extremal disc F: A - M for ( p; §) is an
isometric immersion with respect to K-metric.

Proof. Since K, is distance decreasing with respect to F,

Ky (F(1); dE(1)) = K\(t; 1) =1/ (1 — |¢P) forz € A.
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Taking an extremal function f for ( p; £), we have

Ky (F(2); dF(1)) = Ku(fo F(2); d(fo F),(1)) = Ku(2; 1)
because f o F(t) = e'’t. Hence we have K,,( F(t); dF(1)) = Ky(t; 1). O

An extremal disc F(A) is an analytic disc in M to which the restric-
tion of the K-metric of M coincides with the Poincaré metric. We shall
exhibit in the next section the extremal functions and discs for the ball
and polydisc.

3. The complete circular domains in C". In this section we assume
M is a complete circular domain D in C” with center 0 (i.e. tD C D for
any t € C, |#|< 1). Let /; be a complex line in direction £ passing through
0. We denote the radius of the disc 1, N D by R(§). Note that R(z§) =
R(§) for any 1 € C — {0}. We define the function r: D — [0, + 0] by
r(z) = ||z||/R(z) if z # 0 and r(0) = 0. Then r is upper semicontinuous
and D is represented by D = {z € C"; r(z) <1}. (|| || is the Euclidean
norm of C".)

We shall calculate the K- (pseudo) metric at (0; §) € TD = D X C"
(&€ # 0) for the pseudoconvex complete circular domain D. We recall the
Schwarz lemma by Sadullaev [7].

Lemma C. (1) Let F = (F,,...,F,) be a holomorphic mapping of the
unit disc A into a pseudoconvex complete circular domain D and F(0) = 0.
Then || F(t)|| = R(F(t))|t]|fort € A.

(2) Under the above conditions, the linear part of F maps A into D.

We take a holomorphic mapping F in Hol(A, D) such that F(0) = 0
and dF,(d/dt) = F'(0) = r§ for some r > 0. By Lemma C(2), the linear
part F’(0)t of F maps A into D, and from (1) we have || F’(0)¢]| < R(F’(0)t)
|2] for t € A. Since R(F’(0)t) = R(£), we have 1/r =||¢||R(£)™". On the
other hand, K,(0; &) is the infimum of such 1/r. Thus K,(0; §) =

IIIR(E) ™

PROPOSITION 2. If D is a pseudoconvex complete circular domain in C",
D is hyperbolic if and only if D is bounded.

Proof. Let D be unbounded. Then we can take a sequence {z,} in D
such that ||z,|| = + o0, z, # 0. Setting &, = z,/||z,|| we have a sequence
{&,} with ||§,]| = 1, and we may assume {£,} accumulates to a point £



252 MASAAKI SUZUKI

(1€l = 1). By completeness of D, R(&,) =||z.|l, hence K,(0; &)=
R(§¢,)"' - 0 as k > +co. This means D is not hyperbolic at (0; £). We
proved that if D is hyperbolic then D is bounded. The converse is
trivial. O

REMARK. Kodama [5] has proved the above without assuming pseudo-
convexity.

THEOREM 1. Let D be a complete circular domain in C" with center 0. If
D is complete hyperbolic, then

Kp(0; &) = &IR(E)™"  (£50),
I€(D,0) D IX(D,0) = D.

Furthermore, if D is convex, then

Cp(0; &) = K(0; &) = ||¢|R(¢)”" forall¢ € C" — {0).

Proof. When D is complete hyperbolic, D is taut and pseudoconvex
(cf. [4]), and by Proposition 2, D is bounded. The indicatrix of the
K-metric at center 0 is

I%(D,0) = {§ € C"; Kp(0; §) <1} = {§ € C; r(§) <1} = D.

Since Cp(0; £) < K(0; £) in general, we have I1<(D,0) D I*¥(D,0) = D.
As we have noted in §1, if D is bounded convex, then I(D,0) = D;
hence 1(D,0) = I¥(D,0) = D. In this case we have C,(0; £) = K(0; £)
for all £ # 0. In fact if C,(0; £,) < K(0; &,) for some &, # 0, we can take
a real number s such that C(0; &,) < s < Kj(0; &,). Then Cp(0; s~ '¢,) <
1 < Kp(0; s7'€,). Thus s™'¢, € I9(D,0), but s~ '¢, & IX(D,0), a con-
tradiction. O

If a bounded circular domain is homogeneous, then it is a symmetric
domain (Vigué [10]). The bounded symmetric domains D are convex
complete circular domains. Thus by Theorem 1, Cp(0; §) = K(0; §).
From homogeneity it follows that Cp(z; §) = K(z; §) for all (z; §) in
TD. These results are contained in Kobayashi [3, 4].

COROLLARY. Let D be a bounded symmetric domain in C". Then the C-
and K-metrics of D coincide on the tangent bundle and their holomorphic
curvatures are —4.
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ExamPLE 1. We take the unit ball D = {z € C”; ||z]| <1}. Then
R(&) =1, Kp(0; &) = |l£ll. Let F € Hol(A, D) be an extremal disc for
0, ¢). Then F(0) =0, F'(0) =¢)|&||”". For t €A, we set h(t) =
(F(2), F'(0)), where ( , ) is the Hermitian inner product of C”. Then
h(0) =0,

[A() = IHF@N - IF Q) <|¢|<1, and [#(0)|=|F'(0)* = 1.
Hence by Schwarz’s lemma, 4(¢) =1t on A. We obtain a unique extremal
disc for (0; &), F(r) = (§11€17",...,&,ll€I7 '2). On the other hand, the
unit ball is symmetric. Thus K,(0; §) = Cp(0; £). Let f(z) be an extremal
function for (0; £). Then fo F(t) = e, t € A. If §,,...,¢,#0, f(z) =
e3¢ ,Zjllill_l- When some §; = 0, an extremal function is not unique.

ExampPLE 2. Now we consider the polydisc D = {z € C"; |z;|< ],
j=1,...,n}. In this case R(£)=||§l(max|&;)~". Hence K,(0; &)=
max |§,|. If the above maximum is achieved for only one index j, the
extremal function for (0; §) is

flz) = (éj/léjl)zj = ez,

For example, for j = 1, the extremal disc F(t) = (F\(2),...,E(t)) for
(0; &) is given by

F(t) = e,
P}(t)=t(tgj(t)+aj)/(l +Zijtgj(t)), j=2,...,n,
where g;(¢) € Hol(A, A) and a; = §,/§, (cf. Stanton [9]).

4. The bounded symmetric domains. We consider the intrinsic met-
rics of the bounded symmetric domains of classical type. Let M(m, n)
denote the set of all (m, n)-matrices and write M(n, n) = M(n).

Ri(m,n)={Z € M(m,n); E,—~ Z*Z > 0},
Ry(n)={ZeM(n); 2 =Z,E,— Z*Z >0},
Ry(n)={Ze M(n);2’=—~2Z,E,— Z*Z >0},
Ry(n)={ZeM(n1);1-2Z*Z+|2’Z? >0,|Z'Z|< 1},

where E, is the unit matrix and Z’ is the transpose of Z and Z* = Z'.
These are complete circular domains with center 0, and convex. Let R or
R denote one of these domains. The group G of biholomorphic transfor-
mations of R acts on R transitively, thus we may consider Cg(0; §) or
Kr(0; &) only. Let G, be the isotropy subgroup at 0.



254 MASAAKI SUZUKI

LEMMA D (Hua [2]) (1). For § € M(m, n), there is a g € G, such that

A 0
g¢ = . , A==, =0,
0 A,
where N3,. .., N2, are eigenvalues of £*£.

(2) For §{ € M(n) with§’ = &, there is a g € G, such that
g€ = diagonal[A,,...,A,], Ay =---=A, =0,

where N2, . .., N2, are eigenvalues of £*¢.
(3) For§ € M(n) with§ = —§, there is a g € G, such that

— & | 0 A 0 A, 0
g& = diagona Y ol \-a, 0] O

1

where k = [n/2], Ny = --- =\, =0 are eigenvalues of £*¢, and the last

term is 0 if n is odd.
(4) For £ € M(n, 1), there exists a g € G, such that

g& - (Ala iAz, 09---90)a

where N3, N5, are eigenvalues of the (2,2) matrix

(Reg)(R.ﬁ Im¢).

THEOREM 2. Let C; and K, denote the C-metric and K-metric of R,
respectively. Then, for j = 1, I1, 111,

C,(0; §) = K,(0; ¢)

= max{ positive square roots of the eigenvalues of £*¢},

and

Cov(05 £) = Ky (05 ) = (€12 + (1 — 18¢2)") """
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Proof. Since the proofs are almost the same for j = 1, II, III, we prove
only the case R;. By Lemma D(1), we may assume

and A, >0. We show K[(0; §)=A,. Defining the mapping F €
Hol(A, R;) by

tN, /N, 0
A>t- . € Ry,

0 . tAn/}\l

we have dF(\,d/dt) = §, F(0) = 0. Since K; is metric decreasing with
respect to F, K(0; §) < K,(0; A,) = A,. Similarly, for the mapping f:
R, 3 Z -z, €A, where Z = (z,;), dfy(§) = A, and f(0) = 0. Hence we
have K(0; £) = K(0; A,) = A,. Thus we obtain K;(0; §) = A,.

To calculate K, (0; £), we use Theorem 1. We substitute z = &¢|€]|™ ',
| #]= r into the inequalities

1=2zP+]32 >0, |Z22<1.

Then the radius R(£) is the supremum of the r satisfying these inequali-
ties. Easy calculations show

1,2

R(&) = &(nen® — (i&n® —1€°¢F)"%) 7,

and noting that K1,,(0; §) = ||£||R(&¢) ™!, we arrive at the conclusion. O

REMARKS. (1) For any (z; §) in TR, taking a g € G with g(z) = 0, we
have K (z; £) = K,(0; dg,(£)).

(2) We obtain the same result for K;,,(0; §) from the calculation using
the fact {(z, + iz,, z, — iz,), z = (2,,...,2,) € Ryy(n)} is the geodesic
polydisc in Ry(n) (cf. [4]), and Lemma D(4).

The author is grateful to A. Kodama and K. Azukawa for very helpful
conversations.
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