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In a recent paper I gave polynomial expressions to compute the
beginning coefficients of the minimal polynomials for the Gauss periods
and cyclotomic units lying in the cyclotomic field Q(§,,), where §,, is a
fixed m-root of unity for a prime m. Here 1 extend these results for
circular numbers lying in Q(§,,) for m composite. My methods explain
the linear recursion relations found among the beginning coefficients of
the minimal polynomials for certain such circular numbers.

1. Introduction. For any positive integer m set §,, = exp(2mwi/m)
and let G(m) denote the group of reduced residues modulo m. For any
congruence subgroup A defined modulo m, let A be the canonical set of
least non-negative integral representatives for the elements of 4. Now fix
a congruence subgroup H defined modulo m and of order f. Choose
integers t; = 1, ¢,,...,¢, to represent the e = ¢(m)/f cosets of H in G(m).
The circular numbers

(1) Ser (=ise)

are conjugate over Q and, if they are distinct, have minimal polynomial
(2) glx)=x*+ax"'+---+a,_x +a,.

I consider the general question of determining the coefficients of the
minimal polynomial for a sum of circular numbers of the form (1).
Specifically let C denote a finite set of k positive integers (repetitions
allowed), and consider the sum

(3) 6= ( > £fn"), of circular numbers (1).
cEC ‘xeH

If 6 has degree e over the rational field Q then its minimal polynomial has
the form (2) and equals g(x) = II_ (x — V), wherefor 1 <i <ee,

@) 0= 3 (3 &)

c€EC ‘' xeH
It is well known from the theory of equations [2] that the coefficients a, of
g(x) can be computed in terms of the symmetric power sums S, = 3(6)”
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314 S. GURAK

using Newton’s identities
Sn + al‘Sn~1 + aZSn—Z t+ - +ae—ISn—e+l + aeSn*e =0 (n > e)'
To compute the power sums I must introduce certain functions

T,(m, d). Specifically for each positive d|m, let T (m,d) equal the
number of times a relation

(6) GCD(c¢\x; + ¢yxy + -+ +c,x,,m) =m/d
is satisfied by a choice of tuples (¢, ¢;,...,c,) in C" and (x|, X,,...,X,)
in H".

In the next section I shall explicitly determine the power sums S, in
terms of the 7,(m, d); namely,

_1g[9(m) )
o) 5,27 3 (8 mtm am@)
(Here ¢ and p are the usual Euler phi and Mobius functions.) This result
suggests that the functions 7,(m, d) can be expressed in terms of certain
appropriately defined power sums S,(d) for d|m. I treat this in §3, and
then proceed to investigate certain multiplicative properties of the 7,(m, d)
and S,(d).

D. H. and E. Lehmer [5] have recently found curious linear recursion
relations among the beginning coefficients of the minimal polynomials for
certain circular numbers of the form (1) with H cyclic of order f <4,
where m is a product of two distinct primes. For instance, if m = 35 and
H is the cyclic congruence group of order f = 2 generated by 29 modulo
35, then the circular number &;5 + ¢32 has minimal polynomial

g(x)=x"—x""+2x" — 3x% + 5x% — 8x7 + 13x° + 8x°
+5x4 4+ 3x*+ 2x*+ x + 1.

Its initial coefficients 1, —1, 2, —3, 5, —8, 13 are the first seven terms of
the alternating Fibonacci sequence. The theory I describe in §§2—4 can be
applied to study the presence of such linear recursion relations. In the
concluding section of the paper I explain in broad generality this curious
phenomenon detected by the Lehmers.

2. Minimal polynomials for circular numbers. Before explicitly de-
termining the power sums used in (5) to compute the coefficients of the
minimal polynomial for the circular numbers given in (1) and (3), I first
wish to give conditions that ensure that the circular numbers in (1) are all
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distinct, and thus of algebraic degree e over Q. This entails describing the
notion of a conductor for congruence groups.

As before, G(m) denotes the group of reduced residues modulo m.
From duality theory there is a one-to-one correspondence between con-
gruence subgroups of G(m) and groups of numerical characters realizable
modulo m. If § is any group of numerical characters that can be realized
modulo m, I shall denote its realization modulo m by £(m). The smallest
modulus f = f(Q) for which € can be realized is, of course, the conductor
of €. In view of the duality just mentioned a congruence group A4 is said
to be realizable modulo m if its corresponding group £ of numerical
characters is realizable modulo m. In this case I shall denote that con-
gruence group which corresponds to (m) by A(m). The group A(m) is
called the realization of 4 modulo m. The conductor of A4 is then the
smallest modulus f = f(A) for which A can be realized, and is, of course,
equal to the conductor of the corresponding group of numerical char-
acters. For instance if 4 = A(12) with 4 = {1,5}, then the corresponding
group @ = £(12) of numerical characters is generated by the numerical
character x given by

1 if1=1,5 (mod 12),
x(1)=1—-1 ifr=7,11 (mod 12),
0 otherwise.

Hence both 4 and  have conductor f = 4 with A(4) = {1} and Q(4) =
(x ), where x(?) coincides with the Jacobi symbol (—1 /1) for ¢ odd.

Now if the congruence subgroup H in (1) has conductor m, then it
corresponds through elementary classfield theory to the subfield K of
Q(¢,) left fixed by the group of Galois actions o.: £, — £ (x in H).
Indeed n =2, 7§, = Trg,, x(§,)- It can be shown that n generates
the subfield K and hence has degree e over Q. (See the appendix for
details of the proof of this fact.)

I am now ready to verify that the power sums S, in (5) satisfy (7). I
shall always assume that the congruence group H has conductor m, and
that the set C has been chosen so that 4 in (3) has algebraic degree e over
the rationals Q.

Fix a positive integer n. For any d|m the number of primitive d-roots
of unity in the multinomial expansion of any ()" is T,(m, d). Since the
terms (V)" in S, are permuted by the action ¢,, > £ for any (¢, m) = 1,
each primitive d-root of unity must occur an equal number of times in S,
when taking into account the total contribution of each term (6)". Thus
one finds a total of eT,(m,d) primitive d-roots of unity, explicitly
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eT,(m, d)/é(d) occurrences of each of the ¢(d) primitive d-roots of
unity. Since the Mobius function p(d) equals the sum of the primitive
d-roots of unity, the value S, must be 2, eT,(m, d)u(d)/$(d). This
yields formula (7).

Utilizing (7) for the example cited in the introduction (where m = 35
with H = (1,29}, f=2 and C = (1}) one finds the following values
1,(35,d), S,,a,(1 =n=<12,d|35):

n T(351) T(355 T,357 T,3535 S, a,

1 0 0 0 2 I —1
2 0 0 2 2 -3 2
3 0 0 0 8 4 -3
4 0 0 6 10 -7 5
5 0 0 2 30 11 -8
6 0 0 20 44 —18 13
7 14 114 0 0 —174 8
8 0 0 70 186 —47 5
9 0 0 72 440 76 3
10 0 0 254 770 —123 2
11 0 0 330 1718 199 1
12 0 0 948 3148 —322 1

3. Inversion formulae for the 7,(m, d). Fix a congruence group H
as before of conductor m and of order f. For each positive divisor d|m set
9, = {x € Z|x = x’ (mod d) for some x" € H}. The set I, determines
a congruence subgroup H, of G(d) having order f(d). Using the e(d) =
o(d)/f(d) cosets of H, in G(d) one obtains sums 7y, 1,,...,M,, Of
circular numbers as in (4) which are conjugates of 7 = 2. (2, e, §5°)-
Define the symmetric power sums

(8) S,(d) = 2.

Note though that the polynomial [[¢“)(x — u,), which is determined from
the values S,(d), need not be the minimal polynomial of 5, but perhaps
some power of it. Indeed, the stipulation that H have conductor m and the
choice of the set C in (3) does not guarantee that n will have algebraic
degree e(d) over Q. Since the group H, need not be of conductor d, it is
even possible that n = 0.

In any case, the power sums S,(d) can be evaluated from an analog of

(N:

©) ) = 7y 3 5657 a0,
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where for any 6 |d, T,(d, §) equals the number of times a relation
(10) GCD(c¢yx, + ¢3x, + - -+ +¢,x,,d) = d/8

is satisfied by a choice of tuples (¢, ¢5,...,¢,) in C” and (X, X3,...,x,)
in H)j. Setting T,(d) = T,(d, 1) it follows from (10) that T,(d) equals the
number of times a congruence

(11) ¢ x, + ¢x, + - +¢,x, =0 (mod d)

is satisfied by a choice of tuples (¢, ¢,,...,¢,) in C" and (X, X5,...,x,)
in Hj. The following lemma gives an expression for 7,(d, §) in terms of
the 7,(d") for d’|d.

LEMMA 1. For any §|d,

(12) T(d.d/8) = 3 u( &)1 )(f—((%)

did'\d
where the sum is over the d’.

Proof. For a fixed tuple ¢ = (¢, ¢5,...,¢,) iIn C” and any divisor
d’|d, let N(¢) denote the number of tuples (x,, X,,...,x,) in H" satisfy-
ing GCD(¢,x, + -+ +c¢,x,,d) = 8, and let N(¢, d’) be the number of
solutions ¢,x, + - - +¢,x, =0 (mod d’) with x, in H,. By the principle
of inclusion-exclusion,

(13) N(¢) = X w(d'/8)N(c, d"),

8d'\d
where the sum is over d’.Since N(¢, d’) is ((H,|/|H, )" = (f(d)/f(d")"
times the number of solutions of ¢,x, + --- +¢,x, =0 (mod d’) with x;,
in H, one has

[ L))
1 Zreo=nw( i)

Summing in equation (13) over each of the tuples ¢ of C”, the result (12)
follows from (14).

Before deriving the formulas for the T (m, d), I need two additional
results.

LeMMA 2. If d|m then 24y, p*(m/d")/$(m/d’) = d|p(m/d)|/$(m).

LeMMA 3. If d|m then 3 g0, i(d")/d’ = p(d)$(m)/(m(d)), where
the sum is over d’.
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Since the above lemmas are proved in a straightforward manner,
exploiting the multiplicativity of the functions p and ¢, I shall omit their
proofs.

Denoting the greatest common divisor and least common multiple
functions by (, ) and [, ] respectively, I now prove

THEOREM 1. The functions T,(m, d) for d|m are expressed by

(15) n(m,d)=;,‘;8i2mu(%j’—6])¢(d>f(a>
<)\ Gesr | /o)

In particular,

(16) T,(m =~2f(d)s(d(i((—)))",

and

a7 T(m m) —Zu(d ¢(m>f(d>s<d)(%)"/¢(d).

Proof. Using (12) 1 first derive an alternate form of (9) which can be
inverted to yield (16). Explicitly

1 » ¢(d)T,(d, d/5)p(d/8)

S = Fgy & o(d/5)
o(d)u(d/s) d fd)\"
“ra 2 et SHE)T | )

from (12) or equivalently upon interchanging the order of summation,

(18) S.(d)= ST ( (d))"¢(d)2 p(d/d)u(d’/8)
d'\d

1
f(d) /(@) o o(d/s)

Now

5 mdo)ud'/3) _

fu(d/d’) =0
27 o(dsp) pld/d’)
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otherwise equals

[ 2] 3 /) _ ditd/a)
&) & 6(dm) T eld)

using the multiplicativity of the Mobius function and the result of Lemma
2. Thus (18) becomes

(19) 5,(d) = = S u d)dT(d)( d))".

f(d)dld d’

Substituting this expression for S,(d) in the sum

1 f(m) |
() s L]
a straightforward manipulation gives (16).

To obtain the general expression (15) for the T,(m, d), it is conveni-
ent to use 7,(m, m/d). From (12) and (16) I find that

nfm ) = 2 oGl G|

dd'im

Eu( )(f( )Ef(6 (6)(§§d’)/f(6))"s

dd'|m dld’

where the initial sum 1s over d” with m and d fixed. Upon replacing d’ by
dd’ this last expression becomes

u(d’) f(m)
20) i 2 2 s S|
or, equivalently,
1 f(m) n(d’)
@) i Zosofg ] 3

upon interchanging the order of summation. The final sum 25,4, u(d") /d’
of (21) is over d’ and is the same as

s Hd)

8/(d. d)d'\m/d d

which equals

56))/‘?(«%6)')

—¢(M/d)u( .



320 S. GURAK

by the result of Lemma 3. Thus

wn§)=n 2l @ ohesol 75 ) ol

\m

5

which, upon replacing d by m/d, gives (15). Since the last formula (17) is
immediate from (15) the proof of the theorem is complete.

That the sequence {T,(m, d)} satisfies a linear recurrence relation for
any d|m is an immediate consequence of Theorem 1. Indeed it follows
from the theory of linear recurrence sequences that

COROLLARY 1. For any d|m the sequence {T,(m, d)} satisfies a linear
recursion relation over Z of order at most 3y, | p([m, dd]/m)|e(d).

ExaMmpLE. For the example given in §2, one finds from (16) that
T(35) = %[ S,(1)2" + 25,(5) + S,(7)2" + 25,(35)]

where

6
S()=1, §,(7) =2 &,
i=1

12

Sn(5) = (§5 + $5‘1)" + (g% + 55—2)" and Sn(35) — 2 (535 + $291)

i=1

from (8) with f(1) = 1, f(5) = 2, f(7) = 1 and f(35) = 2. The product of
the minimal polynomials associated to the power sums in the expression
for T,(35) is

(x —2)(x®+2x° +4x* + 8x> + 16x> + 32x + 64)(x* +x — 1)
c(x"? = x" 4 2x1% — 3x% + 5x% — 8x7 + 13x°
+8x° + 5x4 +3x3+ 2x*+ x + 1)
or
(x7—128)(x" +29x7 — 1) = x?' — 99x'* — 3713x7 + 128.

Thus the {7,(35)} satisfy the recursion 7, ,,, = 99T, ,,, + 37137, , —
128T,. Alternatively one finds that 7,(35) = s(2" + 2L,) if 7|n, otherwise
0, where {L,|n > 0} is the alternating Lucas sequence —1, 3, —4, 7,
—11, 18, —29,....

4. Multiplicative properties of S,(d) and 7,(d, §). Here I investi-
gate certain multiplicative properties of the functions S,(d) and 7,(d, §)
discussed in the previous section and give some explicit computations. I
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assume the congruence subgroup H of conductor m and the set C is fixed
throughout as before. For any tuple ¢ = (¢, ¢,...,¢,) in C" and any
divisors 8|d|m let T(¢, d,d8) denote the number of tuples x =
(X, X5,...,x,) in H" satisfying (c,x, +---+c¢,x,,d) =d/8. Then
clearly

(22) T,(d,8) = 2T,(c,d,9).
Cll
The components 7,(¢, d, §) are bimultiplicative in the following sense.

PROPOSITION 1. If d, d’|m with (d, d") = 1 and if 3(,, = 3, 0 I,
then

(23) T(c,dd',88")=T,(c,d,8)T(c,d',¥)
for any tuple ¢ in C" and choice §|d, &' |d’.

Proof. 1 first note that from the definition of the congruence sub-
groups H, for d|m the inclusion 3C,, C JC, N IC, always holds. If
I, = I, N I, then the canonical set H,, is just that obtained from
the Chinese Remainder Theorem for finding the least nonnegative solu-
tions X of each of the systems of congruences given by

(24) x=x(modd), x=x" (modd’) (x€H,x €H,).

Consequently the relations e(dd’) = e(d)e(d’) and f(dd") = f(d)f(d’)
hold. From these remarks it follows that each pair of tuples (x,, X5,...,X,)
and (x{, x5,...,x;,) satisfying (¢,x, + -+ +¢c,x,,d) =d/é and (¢ x|
+ - 4c,x.,d)=d /8 with x, € H; and x/ € H, corresponds to a
unique tuple (%, X,,...,X,) with ¥, € H,, satisfying (¢,
+---+¢,X,, dd") = dd’ /88" and conversely. Thus (23) is proved.

If C= {1} then the power sums S,(d) are multiplicative in the
following sense.

PROPOSITION 2. If d, d’|m with (d,d’) =1 and ¥, = K, N K,
then, if C = {1},
(25) T.(dd’,88') = T,(d,8)T,(d’,8) foranyéd|d,d'|d’,
(26) S.(dd’) = S,(d)S,(d").

Proof. Statement (25) is clear from Proposition 1. In view of (8) and

the fact that n = 2,7 §gand 9’ = 2.7, ¢ are linearly disjoint over Q
(since (d, d’) = 1), together with the remarks I made at the beginning of
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the proof of Proposition 1, to deduce (26) it suffices to show that the
circular number 7 = E;eﬁddffd' is conjugate to the product nn’ =
2ieiwei,as . Since (d+d',dd’) =1 one can find an integer a
such that a(d + d’) = 1 (mod dd’). I claim that

@7) 7= 3 e,

x€H,;, x'€H,

the conjugate of nn’ under the action §,, — £j,. To verify this assertion I
must show that the residues ad’x + adx’ run through the elements of H
modulo dd’ as the x and x’ run through H, and H, respectively. Since
(d,d’) =1 and (a,dd’) = 1 the f(d)f(d") = f(dd’) residues ad’'x + adx’
are all distinct modulo dd’. Also each lies in both H, and H, since
ad’x + adx’ is congruent to x modulo 4 and to x” modulo d’ by the choice
of a. But ¥, = I3, N JC,, so my assertion will follow, thus completing
the proof of (26).

Applying (26) for special choices of the congruence group H, I next
obtain some explicit computational results.

COROLLARY 2. Let H be the group of e-powers modulo a prime p so that
@ in (1) is a Gauss period of degree f = (p — 1) /e for p. Then
(28) S.(p) =pT(p)/f— /""",
where, if p > n*), the T,( p) are determined for prime f = I by

(29) Tn(p):(((TZ;—)—'—)?) ifl|n, otherwise0,

and for f = 4 by

n \2
(30) T,,(p):(n/z) if2|{n, otherwise0.

D. H. Lehmer [5] attributes the case f = 2 in the above corollary to
Sylvester, and he has found the cases f = 3 and 4. In the general case,
formula (28) follows easily from (7) or (19) and is my result (10) in [3].
Only equation (29) needs to be proved but, in view of the comments made
at the beginning of the proof of Theorem 1 in [3], this is achieved by a
straightforward counting argument involving multinomial coefficients.

COROLLARY 3. For distinct odd primes p and q let H be the congruence
group determined from the set

H={x€Zx==x1(mod p); x =1 (modq)}
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of conductor pq. The functions T,( pq) and S,( pq) associated to the circular
number (1) corresponding to H for n < p satisfy

(31) T.(pq) = (nZZ) or 0 as(n,2q)=2ornot,;
27! if (n,2q) =
2 =5 (,7) if(n.29) =

—(¢—12""! if (n,2q) = q,
—(q- 1)2"'+P(" )(nZZ) if (n,29) = 2q.

COROLLARY 4. For distinct odd primes p and q let H be the intersection
of the groups *1 modulo p and q. The functions T,(pq) and S,(pq)
associated to the circular number 0 in (1) corresponding to H satisfy for
n<pandq,

2
(33) T,(pq) = (,;2) or 0 as 2|n or not;
(34)
1 n 2 n n " n ; )
S.(pq) = Z(pq("/Z) —2 q(n/Z) _2”("/2) 2 ) if2|n,
22172 otherwise.

Moreover, the coefficients a, of the minimal polynomial (2) for 0 satisfy
a, = P(p, q), where for each r, P, is a polynomial of degree 2[r /2], which is
of degree[r /2] in both p and q and whose leading term has sign (— 1)1"* D/2]
(Here [ ] denotes the greatest integer function.)

The expressions for 7, and S, in Corollaries 3 and 4 are easily
obtained from Corollary 2 and Proposition 2. The last statement of
Corollary 4 is proved by an argument similar to the one I employed to
deduce Theorem 1 in [3]. In fact, the same techniques readily give the
following generalization of Corollary 4.
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PROPOSITION 3. For prescribed positive integers f,, f,,....f, choose
distinct odd primes 1\, 1,,...,I  with [, =1 (mod ), and for 1 <i=<s, let
H, be the group of (I, — 1)/f; powers modulo 1. Let p, denote the smallest
prime factor of f; (1 <i =<ys). Let H be the intersection of the congruence
groups H, with § its corresponding circular number (1). If each I, > r*W®
(1 =i=<ys) then the coefficient a, for the minimal polynomial (2) of 6
satisfies a, = P(l,, 1,,...,1,) where for each r, P, is a polynomial of degree
lr/p]inl, (1 <i=<s).

5. Recursive relations among the beginning coefficients. Using ex-
plicit formulas similar to (31) and (33) to compute the power sums S, for
a circular number § of form (1) for which m is a product of two distinct
primes and H is cyclic of order f < 4, the Lehmers [S] have shown that the
beginning coefficients of its minimal polynomial are the initial part of a
linear recurrence sequence B = {b,|n =0} which is readily determined
from H. Moreover, for any positive integer s they construct circular
numbers of similar type for which the first s + 1 coefficients of their
minimal polynomials are identically b,, b,,...,b, in the sequence B. These
results can be deduced from formula (7) using the results of the previous
section and completely generalized to treat sums of circular numbers in
(3) without such restriction on the modulus m and choice of congruence
subgroup H. I shall give this generalization next, but first I need an
important lemma.

LEMMA 4. Suppose p(x) = x°+ p,x*~' + -+ +p, is any polynomial
with roots w,, w,,...,w, (not necessarily distinct) and S, = Zw] for each
n > 0. The sequence {b,} given by
(35) by=1 b =5, nb,=b_ S+ - +bS,_+5, (n>1)

n n

is recursive and satisfies the linear relation b, ., + p\b,.,—, +--- +p.,b, =
0 for n = 0. Alternatively, the {b,} are determined by the relations

(36) b,po+ b,_ypy + - +bp,_y +byp, =0 (n=0)

where p, = 1 and p, = 0 for n > e, or, equivalently, from the generating
function

1
l+px+---+p

(37) T = 2 bx'.
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Proof. Clearly it is enough to show that the b, given in (35) satisfy (36)
for n > 0. Consider the square (n + 1) by (n + 1) matrix

(5 8 -5, b,
1§ e S0 by
e
0 O S, b,
|0 0 - n by |

Since [b,_, b,_, "+ b, by —n]-A* =[00 --- 0] from the defining
relations (35), the matrix A is singular. Then the product

1 po P - Dy
0 1 0 0
0 0 1 0| 4,
0 0 0 1|
equal to
(0 0 0 b,p,+---+byp,
1§ Sa-1 b,
0 2 Su—2 b,_,
0o 0 .- n by ]

from the Newton identities expressing the sums S, in terms of the
coefficients of the polynomial p(x), is singular. But this is so if and only if
b,po+ - +byp, = 0.

Now fix a circular number 6, of form (3) corresponding to a con-
gruence subgroup H, of conductor m, and order f for a given set C of
positive integers. Denote its minimal polynomial by

p(x) = xe(mo) —+-plxe(mo)‘1 + ... +pe(m0)

and let B = {b,} be the associated linear sequence given by (35) in the
previous lemma. For a given integer s > 0 choose any positive integer m,
relatively prime to m and to each of the sums

(38) cgte,+-+e, (1=n=<s,¢€C).
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Let H be the congruence group defined modulo m = mum, which is
determined from the set

(39) ¥ = {x € Z|x = x, (mod m,), x = 1 (mod m,) for some x, in H,} .

The congruence group H is of order f, and has conductor m since
(mgy, my) = 1 and H, has conductor m. Further, it is easy to show that
for any pair of divisors d|m, and d, | m,,

(40) Hag, = K, 03,

and H,, = H,. If  is the circular number (3) corresponding to H for the
given set C then the beginning coefficients of its minimal polynomial (2)
are characterized by

THEOREM 2. Under the above hypothesis, the coefficients a,...,a,
depend on the value p(m,) as follows:
@) Ifp(m,) = —1lthena, = b, (1l =r=<s).
(i) If p(m,) = 1 thena, = p, (1 <r < s) wherep, = 0 for r > e(m,).
(iit) If p(m,) =0 thena, =0 (1 =r =y).

Proof. 1 assert that for any 1 < n < s the sum S,(m) = u(m,)S,(m,).
Then from the Newton identities (5) one determines the coefficients
a,...,a; by

(41) p(m)(S, +aS, ., +---+a,,8) = —ra, (I=r=s),

where the S, = S,(m,). The result of the theorem will follow.

To prove my assertion I note that by the choice of m, in (38) that for
any fixed tuple ¢ in C” the component 7 (¢, m,, d,) for d,|m, is 1 or 0 as
d, = m, or not, since no ¢; + ¢, + - - - +¢, may have a factor in common
with m,. Thus for d|m, and d, |m, one finds from (22) and (23) that

(42) T;z(moml’ ddl) = 2 Tn(E, mymy, ddl)
C”

= 2 ]:1(69 my, d)ﬂ(& my,d) = ]:1(”"0’ d)
Cﬂ



MINIMAL POLYNOMIALS FOR CIRCULAR NUMBERS 327

or 0 as d; = m, or not. But using (7) to compute S,(m), I find that

_Lge(m)

_1 3 o(mom,)T,(mom,, dm,)u(dm,)
fdmllm (i)(dml)

:M(ml) 2 ¢(mo)T,(my, d)u(d)
fame o(d)

= u(m,)S,(m,)
from (42) and the multiplicity of ¢ and p.

ExampLE. Pick 6, = &% + &' + &) + € the circular number (3)
corresponding to H, = {1,6} modulo 7 and C = {1, 3}. Associated to its
minimal polynomial p(x) = x>+ 2x*—x — 1 is the sequence B =
{1, —2,5, — 11,25, —=56,...} from Lemma 4 satisfying a,,; = —2a,,, +
a,,, + a,. With m, =5 the congruence group H constructed in (39) has
H = {1,6) modulo 35 and determines for the given set C the number
0 = &8 + g + £ + ¢, The computation of the T,(35, d), S,(35) and
a, for d|35 and 1 =< n =< 6 yields

n T,351) T(355) T,357 T,3535 S, a,
1 0 0 0 4 2 -2
2 0 4 0 12 -6 5
3 0 6 24 34 —-49 9
4 0 44 64 148 —186 25
5 0 130 64 830  —103 —4
6 180 442 780 2694 621 117

The coefficients a, and a, agree with the sequence B above as expected
from Theorem 2. Since 1 + 1+ 3 =5 in (38) one cannot expect a; to
agree.

For the choice C = {1} in Theorem 2 with m, =/, a prime not
dividing m,, one sees from (26) that S,(m) = u(m,)S,(m,) = —S,(m,)
for 1 =n <m,. It follows from Theorem 2 and the argument used in the
proof of (26) that

COROLLARY 5. Let 6, be a circular number (1) corresponding to any
given congruence subgroup of conductor m. For a fixed prime [ not dividing
my, the first [ coefficients of the minimal polynomial of &,6,, agree with those
of the recurrence sequence (35) associated to the minimal polynomial of 0,.
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This last result explains, of course, the behavior of the initial coeffi-
cients for the minimal polynomial of &, + £32 = £3(¢2 + ¢52) in the
example cited in the introduction. However, the corollary is true in a
much broader context as I will show. The next proposition provides an
analog of the factorization formula (x’'—1)/(x — 1) =x'"1+4 x'2
+ ---+x + 1 for primes /.

PROPOSITION 4. Let 6, be algebraic of degree e over a field F with
minimal polynomial p(x) in F|[x), and let | be an odd prime. If the field
F(6,) is algebraically independent of Q(&,) then the minimal polynomial of
&,0, over F is given by g(x) = P(x')/p(x), where P(x) is the minimal
polynomial of 6} over F.

Proof. Denote the conjugates of 6, over F by 8, = 6,, 0,,...,0,. Since
F(8,) is algebraically independent of Q(§,) a complete set of conjugates of
§,0,over Fis {§0,|1 <t=<1[—1,1=<i=<e}. Thus, since

e -1 e
Pax) =1 (x'=6!) = I TI (x=&6)(x),

one finds that the minimal polynomial of ¢,6, over F is P(x')/p(x).

EXAMPLE. Pick 6, = &2 + &' + £ + & and [ = 5 in Proposition 4
where p(x) = x*> + 2x* — x — 1. Since the minimal polynomial of 6; is
P(x) = x*+ 57x* — 16x — 1, one finds that £,6, has minimal poly-
nomial

g(x)=(x"+5x"—16x"—1)/ (x> +2x*—x— 1)
=x2 = 2x" +5x"0 — 11x% + 25x% + x7 + 12x% + 2x°
+9x* —4x3 + 3x2— x + 1.

It readily follows from Proposition 4 that the minimal polynomial
g(x) of &6, given in Proposition 4 for / = e is essentially determined by
the recursion relation

(43) an+e +plan+e-l +oee +pean = 0

and the sequence (35) associated to the minimal polynomial p(x) = x¢ +
px¢" '+ .- +p, of 6, Indeed its first / coefficients match the terms
by, by,...,b,_; of (35). The remaining coefficients are computed from (43)
in sequence, except that for the coefficients a, where /| 7, one finds that

(44) a, = _plavlfl - _peavl—e + q, (1 =r< e)’
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where P(x) = x°+ qx¢" '+ .-+ +¢q
over F.

This behavior for the coefficients of g(x) is exhibited in the last
example.

, is the minimal polynomial of 6]

Appendix. Generating classfields over the rational field Q. The
purpose here is to verify the assertion made in §2 that if H is a congruence
group of conductor m then the circular period n = 2, . 7§, generates the
classfield K/Q corresponding to H. The proof for the case K/Q cyclic of
degree prime to m is given by Hasse [4, p. 435] using Gauss sums. I treat
the general case in similar fashion with the aid of the following technical
lemma.

LEMMA. Let § be a group of numerical characters with conductor m and
fix an integer t relatively prime to m. The following statements are equiva-
lent:

(1) x(¢) = 1 forall x in Q.

(2) x(t) = 1 for all x in & of conductor f = f(x) satisfying(m/f, f) =1
with m /f square-free.

Proof. 1t suffices to show that (2) implies (1) for m not square-free.
Suppose m = [I/_, p - II’'_, q; as a product of distinct primes p,,...,p,,
qy,- - -»q, where each b, > 1 (1 <i < r). Since each p’ divides the conduc-
tor m, it follows, upon analyzing the p-components of each numerical
character of @, that the exponent of @ is divisible by [I/_, p»~'. Thus
there are characters x, in @ (1 =i =r) of order p; with a;, = b, — 1 and
of conductor f(x, ) |m satisfying

(45) p2 f(x,) withf(x,)/pl square-free.

Let x be any character in @, say of order k. If f(x) is divisible by II/_, p*
then, assuming (2), one has x(z) = 1. Otherwise, let S be the set of primes
p; for which p’ 1 f(x). Then the characters ¢ = x - M,esx,and ¢ =X -
I, 5 x, have conductors divisible by II7_, p”, hence by (2),

w(r) =x() IT x,(1) =1 and ¢'(1) =%(1) [T x,(¢) = 1.
PES PES
Thus x2(¢) = ¢(t)¥'(z) =1 so x(¢) = =1. If the order k is odd then
x(t) = 1, else by raising ¥ to a sufficiently high odd power one finds
x(1) = 1if 2 & § or x(1)x,(7) = 1 if 2 € S since each x, is of order p*
for some integer a. In the last instance where 2 € S the same argument
applied to the character [I/_, x p, at ¢ shows x,(7) = 1, so in all cases

4

x(2) = 1. This completes the proof of the lemma.
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Now let { be the group of numerical characters, say of exponent k,
which corresponds to the congruence group H of conductor m through
duality theory. For each x € € define the Gauss sum 7(x) by

(46) (x)= 2 x(x)é,

xmod m
considering x as defined modulo m. If x has conductor f(x), then it is
known [4, p. 427] that

(47) 7(x) #0 iff (m/f(x),f(x)) = 1 with m/f(x) square-free.

In any case 7(x) lies in the compositum Q(§,,, &) = Q(§,,) where
M = LCM(m, k). An integer ¢ prime to M corresponds to an automor-
phism o of Q(£,,) given by the action §,, — £},. Conjugating in (46) by ¢
one finds

48) 1(x)°’= ¥ x'(xEr=x() T x'(x)&r=x"()r(x).
xmod m xmod m
Next, choose coset representatives ¢, = 1, ¢,,...,¢, for H in G(m), as in

the introduction, to define the conjugate circular numbers 0, = 2, 7 &%
The Gauss sums are expressible in terms of the 7, and vice versa, namely:

(49) 0= 3 xe)m,
(50) = (2" 2 x(t)r(x).

I assert that the , (1 =< i < e) are all distinct. If not then 5, = 7, for some
t = t, with i # 1. Since there is no loss in generality in assuming that ¢ is
prime to k, it follows that there is an automorphism o of Q(§,,) given by
the action £,, — &}, which fixes the n,. Then from (49), for any x in £,
7(x)° = S0, X(6)n, = 7(x") 50 7(X") = X(1)7(X") in (48). Thus if 7(x")
# 0 then x(¢) =1 since (¢, k) = 1. In view of (47) and the lemma,
x(2) = 1 for all x in & so ¢ represents H. This contradicts the assumption

t# 1.
To summarize, I have established the following result.

THEOREM. Let K be the subfield of Q(§&,) corresponding through
classfield theory to a given congruence group H of conductor m. Then K is

generated over Q by 2, ¢ 7§, = Trg ) k&
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