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FLAT HILBERT CUBE MANIFOLD PAIRS

Luis MONTEJANO

The purpose of this paper is to study embeddings of Q-manifolds
into Q-manifolds. Mainly, we relate flat Q-manifold pairs with PL
manifold pairs by using a relative version of the Chapman Splitting
Theorem. The concepts of QPL embedding and QPL homeomorphism
are introduced.

1. Introduction and definitions. For topological spaces (polyhedra)
X and Y an embedding f: X - Y is said to be a (PL) locally flat
embedding provided that every point of X has a neighborhood U and an
open (PL) embedding 4: U X R”™ - Y such that A(x,0) = f(x), for all
x € U. If U can be taken to be all of X, then the embedding is said to be a
(PL) flat embedding. Furthermore, the pair (Y, X) is said to be a flat pair
if the inclusion X =» Y is a (PL) flat embedding. Note that if (M, N) is a
flat finite-dimensional manifold pair, then N N 9M = 9N and (M, dN)
is a flat manifold pair.

We use Q to denote the Hilbert cube and by a Q-manifold we mean a
separable metric manifold modeled on Q.

The purpose of this paper is to relate flat Q-manifold pairs with flat
PL manifold pairs by using a relative version of the Chapman Splitting
Theorem [6]. The following is our first result in this direction.

THEOREM 1. Let (9N, 9U) be a flat compact Q-manifold pair. Then
there exists a flat PL manifold pair (M, N) and a homeomorphism h:
(M, M) = (M, N) X Q.

Chapman [4] has proved that there exists a codimension 3 locally flat
embedding 9 = 9N between Q-manifolds such that 9U has no tubular
neighborhood and, moreover, no stabilization 9 X {0} = 9L X R" has a
tubular neighborhood. On the other hand, Milnor [9] and Kister [8]
proved the stable existence of tubular neighborhoods for embeddings of
finite dimensional manifolds. Consequently an analogue of Theorem 1 for
locally flat Q-manifold pairs is not possible.

Let M and N be PL manifolds. An embedding (homeomorphism) f:
N X Q- MXQ is said to be a QPL embedding (homeomorphism) if
there exists a PL embedding (homeomorphism) g: N X I" - M X I™
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such that f=gXId: (NXI"Y X Q,., = (M XI")XQ,.,, where
1d(g,.1---) = (gyi1---) € Q- If, in addition, g is a PL flat embed-
ding, then fis called a QPL-flat embedding. The next theorem relates flat
embeddings of Q-manifolds with PL flat embeddings of their underlying
spaces.

THEOREM 2. Let N be a compact PL manifold and let M be a PL
manifold. A flat embedding f: N X Q - M X Q is isotopic to a QPL-flat
embedding if and only if f is homotopic to a QPL-flat embedding.

We say that two maps f, fi: (X, X;) = (Y, Y,) are homotopic by
pairs if there exists a homotopy 4,: (X, X — X, Xy) = (Y, Y — Y, ;)
such that &, = f and h, = f,. If, in addition, A, is a homeomorphism for
every ¢ € I, we say f, 1s isotopic by pairs to f,.

The next theorem, which was virtually proved by Chapman in [5] for
M, = N, = &, relates homeomorphisms of flat Q-manifold pairs with
homeomorphisms of flat PL manifold pairs.

THEOREM 3. Let (M™%, M{") and (N"**, NJ') be flat compact PL
manifold pairs. A homeomorphism h: (N, Ny) X Q = (M, M) X Q is iso-
topic by pairs to a QPL homeomorphism if and only if h is homotopic by
pairs to a QPL homeomorphism.

At the end we give an example showing that the condition
h,((N - No) X Q) - (M“ Mo) X Q,

in the homotopy of Theorem 3, is necessary.

We let R” denote Euclidean n-space, I the closed unit interval [0, 1]
and for r > 0, B = [-r, r]” C R". As usual, 0B/ denotes the boundary of
B and B” denotes its interior. For any space X and 4 C X we use Int , 4
and Bd , 4 to denote the topological interior and boundary of 4 in X. The
subscript will be omitted when the meaning is clear.

We represent Q as Q = I, X I, X ---, where [, is a copy of the closed
unit interval [0,1]. We also let I" =1, X ---XI, and Q,=1,X1,,,
X ---,sothat Q =1"X Q,,,. We use 0 to represent (0,0,...) € Q,. In
this paper it will be convenient to identify X with X X {0} in X X Q and,
in general, X X I"with X X [" X {0} in X X I" X Q, ..

A compact subpolyhedron Y of a polyhedron X is said to be straight
provided that Bd Y is PL collared in both Y and X — IntY. By a PL
manifold we will mean a piecewise-linear manifold with or without
boundary as in [1].
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In general we use results and notation from [2] concerning Q-mani-
folds and from [7] concerning PL-topology.

2. A relative splitting theorem. Let 91U be a compact connected
Q-manifold and let (M, N) be a flat PL manifold pair. Let A: 9L X
(B",{0}) X R - (M, N) X Q be an open embedding.

A splitting of h is a decomposition, I X B* X R = 9, U IN,, such
that if 9, =M, NI, N, =M, N (I X {0} X R), N, =9I, N
(M X {0} X R), and 9, = 9N, N 9N,, then

(1) 9N, and 9N, are non-compact Q-manifolds which are closed in
M X B* X R,

(2) 9, and 9, are non-compact Q-manifolds which are closed in
M X {0} X R,

(3) there is a polyhedron 4 C M X ["such thatif B=A4 N (N X I"),
then A is PL bicollared in M X I", B is PL bicollared in N X I", and
h(My, W) = (A X Q, 41, BX Q,41),

(4) (I, I9,) is a compact Q-manifold pair, and

(5) there is an open PL embedding ¢: N X I" X R" - M X I" such
thatgp = Idon N X I" X {0} and (N X I" X R") N A = ¢(B X R™).

The purpose of this section is to prove the following relative version
of the Chapman Splitting Theorem [6].

THEOREM 2.1. There exists a splitting of h, QU X B X R=9, U
OM,, such that the inclusions I, = M X B" X R, Ny = M X {0} X R,
and M, — Ny = IM X (B — {0}) X R are homotopy equivalences.

LemMMA 2.1. Splittings of h exist.

Proof. Since h(9 X B{* X {0}) is compact and A(9 X B* X R) is
openin M X Q, it follows that there is a compact polyhedron K C M X "]
and an open set U C M X [" such that

h(Cz)R/><Blm>< {O}) CKXQn+1 cUX Qn+1
Ch(OMXB"XR)CMXQ.

Let K=K N (N X I"). Since (M X I", N X I") is a codimension m flat
PL manifold pair, we may assume without loss of generality that N X "
X R™ C M X I" and, for some r>0, KN (N X I" X B™) =K X B™.
Therefore, there exists a polyhedron R in U such that

() KCIntRCRCU,

(b) Bd R is PL bicollared in M X I",
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(¢) if Ry,= RN (N X I"), then BdR, is PL bicollared in N X I”,
and

(d) for some r, >0 Bd RN (N XI"XB"™ =BdR, XB
Since Int R X Q,,, is a neighborhood of A(IN X B X {0}) in
h(9N X B X R), we can decompose Bd R as Bd R = R” U R”, where

R X Q.. Ch(IMX B"X (~0,0))
and

R" X Q,.1 Ch(OM X B X (0, 0)).
Similarly Bd R, = R} U R/, where

Ry X Q,11 Ch(M X {0} X (~00,0))

and
RY X Q41 Ch(IM X {0} X (0, 0)).
Let
M, = (M X B X (-00,0)) =2 (Int RX Q,,,)
and

M, = (M X B" X (0,0)) UL (RXQ,.,).
Then we have /(M) = R" X 0, .4,
N, = (I {0} X (~e0,0)) = k7 (Int R, X Q,,),
N, = (X {0} X (0,0)) U (R, X O,
and h(N,) = R} X Q,,,,, thus giving the desired splitting of .

LEMMA 2.2. Let O X B" X R = O, U I, be a splitting of h. Then
we may assume there is a compact polyhedron K C N X I" containing B
such that the inclusion K = h(9U,) is a homotopy equivalence.

Proof. We will first prove there is a compact polyhedron K, contain-
ing B and an embedding f: K, - h(9,) such that f|B=1d and f is a
homotopy equivalence.

Since 9N is compact, then , has the homotopy type of a compact
polyhedron K,. Let g: K, » h(9,) be a homotopy equivalence and let g:
h(9,) - K, be a homotopy inverse of g. Let ¢: B —» K, be a PL map
homotopic to g|B and let K, be the mapping cylinder of ¢. Let p:
K, - K, be the mapping cylinder retraction onto the base. Note that K is
a compact polyhedron containing B and that the map gp: K, — h(9,) is
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a homotopy equivalence with the property that go|B: B — h(9,) is
homotopic to the inclusion. Since B C A(9,) is a Z-set, it follows that
there is a Z-embedding f: K, — h(9L,) such that f| B = 1d, f is homotopic
to gp and consequently, fis a homotopy equivalence.

The compact set f(K,) U (B X Q, ) is contained in

h(OM X {0} X R)

which is open in N X Q. Therefore, there is an / = 0 and an open subset
U of N X I' such that f(K,)) U (B X Q,.,) CUXQ,., C
(D X {0} X R). Choose U = U, U U,, where U, X Q,,, C h(9,) and
U, X Q. Ch(9,). We may assume f = (f,, f,): K, = U, X Q,,, is an
embedding. Let f|: K, — U, be a PL map homotopic to f, such that
filB=1d.Letf,: K, = I, X --- XI,beaPL map such that f/( B) = {0}
and fJ|K, —B: K, — B -1, , X -+ XI, — {0} is one to one. It is easy
to see that f" = (f/, f,): K, = U, X 1,,, X--- X, is a PL embedding
which is homotopic to fin A(9,). Furthermore, since B X I, X --- XI,
is bicollared, we can push f(K, — B) off B X1, , X ---XI,. This
means we may assume f'(K,) N (B X I, ,, X --- X1, ) = B. Consider the
compact subpolyhedron K of N X I* defined by

K:f,(Kl) UB(B X In+l Xoeee ><1/\)

Then we have B X [, X --- XI, C K C N X I*. Furthermore, the in-
clusion K = h(90,) is a homotopy equivalence. This completes the proof
of Lemma 2.2.

LEMMA 2.3. There exists a splitting of h such that the inclusion I, = N
X {0} X R is a homotopy equivalence.

Proof. Assertion. Let O X B X R = 9N, U M, be a splitting of A.
Then there is a splitting of A, O X B{* X R = 9} U IS, such that
9 C Int 9, and the inclusions Ig =I5 — Int O, and N = N are
homotopy equivalences.

Proof of Assertion. Let K be as in the Lemma 2.2. Without loss of
generality we may assume there is an open set U of M X [" containing A
such that U= U, U U,, U N U,=A4, U XQ,., Ch(,),U, X Q,.,
C h(9,), and for some r >0, (K X B”) C U,. Let D be a regular
neighborhood of (¢(K X B") X {1}) U (4 X 1,,,)in U, X I, satisfy-
ing the following properties:

(a) D, = D N (N X I""") is a regular neighborhood of (K X {1}) U
(BXI,.,)in (U, N (NXI") X1,
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(b)BA D N (N X I"*')y = Bd D,, and

(c)BdDNoXId, (NXI""'XB") = ¢X1d, (BdD, XB)
for some r; > 0.

Note that the inclusion K =» D, is a homotopy equivalence. Since
(KX {1}) U(BX1I,.,) CD, is a Z-set, it follows that the inclusion
Bd D, =» D, is a homotopy equivalence.

Let

M, =M, -~ (IntD X Q,,,) and M, =M, Ur (DX Q,,,).
Then we have

hH(M))=BdD X Q,,,, N, =9%N,—hr'(IntD, X Q,.,),

€Ny =9,Uh (D, XQ,.,), and h(9;)=BdD, X Q,,,.

Since Bd D, =» D, is a homotopy equivalence, the inclusion 9] => INj —
Int 9, is a homotopy equivalence, hence there is a strong deformation
retraction of N5 — Int 9, onto 9N} (see [11, p. 31] for further details),
and consequently, the inclusion 9} = 9, is a homotopy equivalence. On
the other hand, since the inclusions K = D, X @, ., and K => h(9,) are
homotopy equivalences, the inclusion Bd D, X Q,, ., = h(9,) is a homo-
topy equivalence but, hence, 9 => 9, is a homotopy equivalence and,
consequently, N, = N is a homotopy equivalence. This concludes the
proof of the Assertion.

Let us now return to the proof of the lemma. By Lemma 2.1 and the
Assertion, there is a splitting of 2, N X B" X R = 9, U IM,,, such that
the inclusion 9, = N, is a homotopy equivalence. Again, by the Asser-
tion, there is a splitting of 4, 9 X By X R =9} U 9, such that
) C Int 9N, and the inclusions Ny = N; — Int N, and NG = | are
homotopy equivalences. Since there is a strong deformation retraction of
9N, onto Ny, the inclusion I — Int 9N, = 9N is a homotopy equiva-
lence, but hence, 9N = I, is a homotopy equivalence and, consequently,
the inclusion 9(; = 9N X {0} X R is a homotopy equivalence. This com-
pletes the proof of Lemma 2.3.

LEMMA 2.4. Let M X B* X R =M, U M, be a splitting of h such
that the inclusion 9y = M X {0} X R is a homotopy equivalence and for
some r >0, M, N (M X B X R) = N, X B/". Then there exists a split-
ting of h, M X B" X R = M| U ), such that the inclusions Ny => M X
{0} X R, O =M X B"XR, and M — I =M X (B — {0}) X R
are homotopy equivalences.
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Proof. The proof is similar to the proof of Lemma 2.3, but using the
following fact for ANR’s. If ZC S, S=S,US,, S, =S,NS,, and the
inclusions ZN §,,ZN S, = S,, and Z N S, = S, are homotopy equiva-
lences, then the inclusion Z => S is a homotopy equivalence.

Proof of Theorem 2.1. By Lemma 2.3, there is a splitting of 4,
M X B* X R =9I, U IN,, such that I, = M X {0} X R is a homo-
topy equivalence. We will first show there exists a homeomorphism #4,:
M X B X R - M X B X R such that h, = Id on I X {0} X R and
hy(Mg) N (MM X B X R) = Ny X B" for some r; > 0.

Let o: N X I" X R" - M X I" be an open PL embedding such that
p=1Id on NXI"X {0} and (N X I" X R")NA=¢(BXR").
Therefore, ¢ X Id, : NX QX R"—>M X Q is an open embedding
such that @ X Id,, ., = Idon N X Q@ X {0} and

¢ X1d, (NXQXR")Nh(M,)=¢xId, (BXR").

+1

Hence, using a small continuous function A: 9L X R - (0, 1) such that if
(m, x,1) € OM X R” X Rand ||x|| X A(m, t) then

¢ X1d, (h(m,0,1),x) Ch(IN X B X R),

we can construct an open embedding g: ON X R” X R - 9N X B" X R
such that g = Id on 9N X {0} X R and g(9(, X R™) = g(IN X R” X R)
N 9M,. Using the proof of Lemma 4.3 of [10], it is easy to find a
homeomorphism f: 9 X B" X R - M X B* X R such that f=Id on
M X {0} X Rand f= g on M X B X B' for some small » > 0. Hence,
there exists r, > 0 such that if #, = f~', then h,(9M,) N (I X B X R)
= 9N, X B/". This completes the construction of /.

By Lemma 2.4 there exists a splitting of #h;', M X By* X R = M/ N
M5, such that the inclusions Iy = M X B* X R, Ny = M X {0} X R
and Iy — Iy = M X (dBy" — {0}) X R are homotopy equivalences.
Therefore, I X By" X R = h7(IM}) U AT (IN}) is the desired splitting
of h. This completes the proof of Theorem 2.1.

3. QPL-flat embeddings. The purpose of this section is to prove
Theorem 2, which can be restated as follows.

THEOREM 2. Let N" be a compact PL manifold and let (M"*™, N") be
a flat PL manifold pair. If h: N X Q - M X Q is a codimension m flat
embedding homotopic to the inclusion, then there exists an | =0 and a
codimension m PL flat embedding g: N X I' = M X I' such that h is
isotopic to the QPL embedding g X 1d,, .
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COROLLARY 3.1. Let M""™ be a PL manifold and let f: Q - M X Q be
a codimension m locally flat embedding. Then there exists an | = n and a
codimension m PL flat embedding g: I' = M X I'™" such that g X 1d:
I'}X Qi1 = (M X I'™") X Q,_,, is isotopic to f: Q - M X Q.

COROLLARY 3.2. Any two codimension m (m # 2) locally flat embed-
dings f,, fi: Q = Q are ambient isotopic.

The following lemma is the main ingredient in the proof of Theorem
2. Its proof is virtually identical to the proof of Theorem 2 of [5].

LEMMA 3.1. Let M"***! and N" be PL manifolds and let K C N be a
compact set. Let a: N X Bf - OM be a PL embedding and let h: I X N X
Bf X Q — M X Q be an open embedding such that h = a X Id, on {0} X
N X Bf X Q. Then there exists an | = 0, a compact PL submanifold N, of
N with K C Int N,, a PL embedding g: I X N, X Bf X I' > M X I' such
that g(I X Int N; X Bf X I') is open in M X I', and an open embedding f:
I X N X BfX Q> M X Q such that

(1) f=aX1Id,on {0} X N X Bf X Q,

()f=gXx1d,, onIX N, XBfXQ,

(3) f = h outside a neighborhood U of I X N, X Bf X Q, and

(4) f is isotopic to h relative to

({0} X NX BEX Q) U ((IXNXBEXQ)—U).

Proof of Theorem 2. Let a: N X R" - M be a PL embedding such
that « =1Id on N X {0}. Let i: N XR" X Q- M X Q be an open
embedding such that » = hon N X {0} X Q. Since

aXIdy: (NXB)") X {0} X Q, > MX I XQ,
and
RN X B X {0} X Q,: NX B X {0} X Q, » M X I, X Q,

are homotopic Z-embeddings, we may assume without loss of generality
that A: I, X (N X l§2'") X Q,=(I; X M) X Q, is an open embedding
such that 4 = a X Id, on {0} X (N X BJ") X Q,, where a: N X B} —
d(I; X M) is a PL embedding. By Lemma 3.1 there exists a PL embed-
ding g: N X B X I' > M X I' such that (N X B X I') is open in
M X I'and § X 1d, : N X BP*X Q - M X Q is isotopic to h|N X B"
X Q. Therefore, g = g|N X {0} X I'is a codimension m PL flat embed-
ding and g X Id,, is isotopic to A. This concludes the proof of Theorem
2.
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4. Triangulating flat Q-manifold pairs. Throughout this section, by
a flat Q manifold pair (91, 9 ), we mean a flat Q-manifold pair for which
N is compact and N can be triangulated with a PL manifold. We say that
the pair (9N, 9U) can be triangulated if there exists a flat PL manifold
pair (M, N) and a homeomorphism 4: (91, 9N) - (M, N) X Q.

THEOREM 1. Every flat Q-manifold pair can be triangulated.

Proof. Let (9N, 9) be a flat Q-manifold pair. Let ¢: Bd I" - 9Ube a
continuous map and let ¢: Bd 1" X Q — 9Ube the composition Bd 1" X Q
2B 1" 59U, Let ¢: Bdi" X Q — 9 be a Z-embedding homotopic to .
Since Y(Bd I" X Q) C 9 is a Z-set, there is an open embedding f:
Bd I” X Q X [0,1) - 9 such that f =14 on Bd I” X Q X {0}. Further-
more, since the inclusion 9N = I is a flat embedding, there exists an open
embedding f: (Bd I" X Q X [0,1) X B™, BdI" X Q X [0,1) X {0}) —»
(9N, 9) such that f = fon Bd I" X Q X [0,1) X {0}. Lety = f|Bd I" X
Q % {0} X B Put

M, =MU;(I"X QX B") and N, =N U, (1" X Q X {0}).

Note that (90, 90,) is a flat Q-manifold pair and 9, has the homotopy
type of 9L U, I". Here is the main step in the proof. After having
established this, it will be easy to deduce Theorem 1.

Assertion. If (9N, 9,) can be triangulated, then so can (91, 9).

Proof of Assertion. Let (M**™ N*) be a flat PL manifold pair and let
h: (R"X QO XB"R" X QX {0})>(MXQ,NX Q) be an open em-
bedding. Assume, without loss of generality, that (91, 9U,) = (M X
Q, N X Q) and

(DM, 9) = (MxQ—h(B; X QXBI"),NXQ—h(B} X QX {0})).

By Theorem 2.1, there exists a straight PL submanifold A of M X I9
such thatif B=A4 N (N X I9), then

(a) B is a straight PL submanifold of N X I9,

(b)(M X I9— Int A, N X I? — Int B) is a flat PL manifold pair,

(c)

h(Bi,, X QX B") CIntAX Q. CAX Q.
C h(B} X Q X B}"),



416 LUIS MONTEJANO
(d)
h(B,, X Qx{0})CIntBX Q ., CBXQ, .,
C h(By x Q x {0}),

and
(¢) the inclusions Bd 4 X Q ., = h((B} — B} ,,) X Q X Bl") and
Bd B X Q,_, = h((By — BY,;) X Q X {0}) are homotopy equivalences.
By (a) thru (e), there is a homotopy equivalence between Q-manifolds

m:h((Bf — By) X Q X Bl") > h(B} X Q X B") —Int A X Q4
such that
7|h(3By X Q X B"): h(dB} X Q X Bl")
—>h(Bf X QX B") —Int4 X Q,_,,
is homotopic to the inclusion. Hence, there is a homeomorphism
gMXQ—h(B} X QXBp")>(MXI"—IntA) X Q4

such that g =1Id on M X Q — h(B} X Q X B!"). Similarly there is a
homeomorphism

gNXQ—h(ByxQx{0})>(NXI"-IntB) X Q,
such that g = Idon N X Q — h(B} X Q X {0}).
Let
raMXQ—h(B} X QXB")>MXQ—h(B]XQXB}")

be the strong defprmation retraction of M X Q — k( ﬁf X Q X Bym)
onto M X Q — h(Bj X Q X B}') along the rays of

h((By — BY) X Q X By").

It is not difficult to prove, using 7,, that the following map is homotopic to
the inclusion:

(N X I?—Int B) X Qqﬂg;le Q — h(B! X Q X {0})

SMXQ—h(B] X QXBl")5(MXQ7—Intd) X Q..
Therefore, by Theorem 2, the pair
(M X Q—h(By X QXB"),NxQ—h(B} X QX{0}))=(9M,N)

can be triangulated. This concludes the proof of the Assertion.
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We now return to the proof of Theorem 1. Since every compact ANR
can be transformed into a compact contractible ANR by attaching a finite
number of cells, it follows that we can construct a sequence of flat
Q-manifold pairs (M, M) = (Mg, W), (M, Ny),... (M, IN,), where
each pair (9, ,, 9, ,) is obtained from (9N, O,) by attaching a copy
of (1" X Q X By", I" X Q X {0}) as above, and I, is homeomorphic to
Q. By Corollary 3.1 and, of course, since locally flat embeddings of
Hilbert cubes are flat [3], the pair (9, 9,) can be triangulated and,
therefore, by the Assertion, the pair (9L, 9U) can be triangulated. This
concludes the proof of Theorem 1.

REMARK. For flat compact Q-manifold pairs, there is a completely
different proof of Theorem 1 which avoids the use of the Relative
Splitting Theorem 2.1.

5. QPL homeomorphisms. Let M and N be compact PL manifolds.
Chapman [5] proved that a homeomorphism A: N X Q > M X Q is
isotopic to a QPL homeomorphism if and only if 4 is homotopic to a QPL
homeomorphism. The purpose of this section is to obtain the same result
at the level of flat Q-manifold pairs. We shall relay heavily on Chapman’s
paper [5].

Our first task is to prove the following theorem.

THEOREM 5.1. Let (M™"*""' MF™") be a flat compact PL manifold
pair, N" a compact PL manifold and a: N X (B[",{0}) —» (0M, dM,) a PL
embedding. Let h: 1 X N X (B]",{0}) X Q - (M, M,) X Q be a homeo-
morphism such that h = a X Id, on {0} X N X B{" X Q. Then there exists
an | = 0 and a PL homeomorphism g: I X N X (B{",{0}) X I' > (M, M,)
X I' such that g = a X Id;; on {0} X N X B" X I' and h is isotopic by
pairs to g X 1d,  relative to {0} X N X B" X Q.

The proof of Theorem 5.1 requires some lemmas.

LEMMA 5.1. Let (M™%m0 M™%+ 1) be a flat compact PL manifold
pair, a: R" X (BF*™ Bf) > (0M,0M,) a PL embedding and h: I X R" X
(BEF™ Bf) X Q = (M, My) X Q an open embedding such that h = a X
Id, on {0} X R" X B{*™ X Q. Then there exists an | =0 and a straight
submanifold A C M X I' such that:

(1) B=A N (N X I') is a straight submanifold of N X I',

(2) Bd B = Bd A N (N X I') (where Bd B is computed in N X I'),
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(3)
h(IX By, X Bf*" X Q) CIntAX Q,,, CAXQ,,
C h(I X B} X BE"" X Q),
(4) the following inclusions are homotopy equivalences:
Bd A X Q.= h(IX (B} — Bj,)xB*""xQ),
Bd B X Q. =h(IX(By—B},)xBfx0),
and
(Bd A —Bd B) X Q.= h(IX(By— Bj,) X (B"" = Bf) X Q),
(5) there exists an open PL embedding ¢: N X I' X R™ — M X I' such
that 9 = Id on N X I' X {0} and
Bd A Ng(NXI'XR") =¢(BdBXR"),
(6)
(4, B) N[a(R" X (B, BX)) X I'] = « B} X (Bf*™, BY)) x I',
and
(7N
(Bd 4,Bd B) N[a(R" X (B, Bf)) x I']
= a(0B] X (BE*", BY)) X I'.
Proof. The proof is similar to the proof of Lemma 2.3 of [5], but using
the Relative Splitting Theorem 2.1 and its proof instead of the Chapman
Splitting Theorem [6].

If X is a compact space, we define Cone X = X X [0, 1]/X X {1} and
we shall assume X X {0} C Cone X.

LEMMA 5.2. Let h: I X (B]",{0}) X Q = I X (B[",{0}) X Q be a ho-
meomorphism such that h =1d on {0} X B{" X Q. Then h is ambient
isotopic by pairs to 1d relative to {0} X B{" X Q.

Proof. Since there is a homeomorphism &: I X (B, {0}) X Q -
Cone((B[",{0}) X Q) such that 6 = Id on {0} X B/" X Q (for the con-
struction of 8, see proof of Lemma 5.1, IV of [3]), the problem reduces to
proving that if A": Cone((B{",{0}) X Q) — Cone((B}",{0}) X Q) is a
homeomorphism such that #” = Id on {0} X B{" X Q, then i’ is ambient
isotopic by pairs to Id relative to {0} X B[ X Q. But this is just a version
of the well-known Alexander trick.
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LEMMA 5.3. Let 9 be a compact Q-manifold with m,(9U) free or free
abelien and let f: 1 X 9UX R™ - I X 9U X B} be an open embedding such
that

(1) f=1Id on {0} X 9 X {0},

(2) f(I X X R™) N {0) X 9N X B = ({0} X 9N X R™),and

(3) the inclusion

(0} XX (B —{0}) > I X NXB"— f(1XIX{0})

is a homotopy equivalence.
Then there is a homeomorphism h: I X 9U X B{" = I X 90 X B such
that h = 1d on {0} X 9UX B{" and hf = 1d on I X 9U X {0}.

Proof. Using the construction of 4, in the proof of Theorem 2 of [3]
and the construction of u in the proof of Assertion 1, Lemma 4.3 of [10],
we may assume without loss of generality that f = Id on {0} X 9U X B/
for some r > 0. Since the inclusion {0} X 9U X (B — {0}) = I X 9¢ X
B — f(I X 9 X {0}) is a homotopy equivalence, it follows that the
inclusion f(I X 9 X dB™) = I X 9N X B! — f(I X 9N X B™) is a homo-
topy equivalence and, consequently a simple homotopy equivalence.
Hence, there exists a homeomorphism

A IXOUX (B —B") > I XX B — f(IXINXB”)

such that A = fon 7 X 9U X 9B/”. Furthermore, we may choose A in such
a way that A = Id on {0} X 90 X (B}" — B”). Then A and f | I X 9U X B
piece together to give a homeomorphism whose inverse is our desired
homeomorphism 4.

LEMMA 5.4. Let f: By X {0} X Q —» B} X BY" X Q be a locally flat
embedding such that

()f=1Idon B X {0} X Q,

(2) f(BY X {0) X Q) N By X By' X 0 = B} X {0} X Q.

(3) the inclusion

0By X (B3 — {0}) X Q= (B} — By) X By X Q — f(B} X {0} X Q)

is a homotopy equivalence, and

(4) there exists an open embedding ¢: l§2” X Bol’” X Q- By XB"XQ
such that ¢ = fon By X {0} X Q and ¢ = Id on B! X B" X Q.

Then there exists a homeomorphism h: By X By X Q — B} X By X Q
such that h = 1d on B! X B)' X Q and hf = Id.
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Proof. By Theorem 1 of [3], f is a flat embedding. Moreover, by
Lemma 4.3 of [10], there exists an open embedding ¢: Bj X B" X Q -
B! X BJ* X Qsuch thatp = fon B X {0} X Q,¢ = Idon B! X B" X Q
for some r > 0, and @(BJ X B” X Q) N Bl X By X Q = B! X B" X Q.
Lemma 5.4 now follows from Lemma 5.3.

LEMMA 5.5. Let
fiIX B X (B, {0})) X Q—-IXR'X (B, {0}) X Q
be an embedding such that
(1) f=1d on {0} X B! X B/" X Q,
(2) f(IXBXB"X Q)N ({0} XR*"X B" X Q)
= {0} X By X B" X Q,
(3) Bd f(I X B} X B" X Q) = f(I X 0B} X B" X q)

is bicollared in I X R" X B" X Q and f(I X 0B} X {0} X Q) is bicollared
inI X R" X {0} X Q,
(4) the inclusions

f(IX 3B} X B X dQ) = 1X (B} — B},,) X BI" X Q,
S(I X< 3B} X (B — (0}) X Q) = I X (B} — Bi,) X (B = {0}) X Q,
and

S X 9B} X {0} X Q) = I X (B} — B ,,) X {0} X Q

are homotopy equivalences, and
(5) there exists an open embedding

¢: 1 X (B! —By,,) XR"X Q > IX (B!~ Bj,) X B"XQ
such that ¢ = Id on I X (By — B} ,,) X {0} X Q, and
(i) (X (Br—Bj,) X R" X Q) Nf(IXIB} X B"X Q)
= ¢(f(1 X 3B X {0} X Q) X R"),
(ii)
o(1Xx (B — B} ,,) X R" X Q) N ({0} X (B — B},,) X B" X Q)
= ¢({0) X (By = By 2] X R" X Q).
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Then there is a homeomorphism
h: I XR*X (B, {0}) X Q- IXR"X(B"{0}) XQ
such that h = fon I X B X B" X Q and h is isotopic by pairs to 1d relative
to ({0} X R" X B" X Q) U (I X (R"— Bj) X B" X Q).

Proof. We will construct a homeomorphism
h: I XR*X (B",{0}) X Q - I XR"X (B, {0}) X Q

such that h = fon I X B X B" X Q and # = Id on ({0} X R" X B" X
Q) U (I X (R"— By) X B" X Q). Then the 1sotopy follows from Lemma
5.2.

As in the proof of Lemma 3.1 of [5], there are homeomorphisms

A IXR'XB"X Q->IXR'XB"XQ
and
A IXRXA{0} X Q->IXR X{0} XQ

such that Ay, =f on I X Bl X B" X Q, A, =f on I X By X {0} X Q,
Ao =1Id on ({0} X R" X B X Q) U (I X (R"— B}) X B" X Q), and A,
=1Id on ({0} XR"X {0} X Q)U (I X (R"— BI') X {0} X Q). Unfor-
tunately, AJ/(1 X By X {0} X Q) — f(I X B! X {0} X Q)) may not be
contained in I X (B} — B') X {0} X Q. In order to modify Ay to obtain
k™', by using Lemma 5.4, we need to prove the following facts:

(I) the inclusion

(1 3By < (B = (0}) X Q)
U ({0} x (By — By) x (B — {0}) X Q)
UF(I X 3B X (B —{0}) X Q)
= (1% By X(B" —{0}) X @) — f(I X B} X BI" X Q)

is a homotopy equivalence, and
(IT) there is a neighborhood U of

A= (Ix 3By % {0} X Q) U ({0} x (By — By') x {0} X Q)
Uf(1 X 3B X {0} X Q)
in (I X By X {0} X Q) — f(I X B} X {0} X Q) and an open embedding
®: UXR">(IX B} XBx Q) —f(IX B! XB"XQ)
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such that
(1) ® =Idon U X {0},
(ii) ®(U X R™) N (4 X B") = ®(A4 X R™), and
(iii) ® =1d on (I X 3By X B” X Q) U ({0} X (B} — B}') X B X
dQ) and for each (¢, x,q, y) €1 X 0B} X Q X ﬁ,’” ®(f(¢t, x,0,q), y) =
f(t, x, y, q), for some r > 0.

Proof of (1). It follows from the fact that the inclusion
fIX 8By X (Bl = {0}) X Q) = I X (By — B,) X (Bl" = {0}) X Q

is a homotopy equivalence.

Proof of (II). Using the fact that there is a homeomorphism

@: I X BIXB"X Q—>I1XBIXB"XQ
such that ™! = Id on ({0} X Bs X B" X Q) U (I X dBZ X B* X Q) and
@ '=fon IXBXB"XQ, it is not difficult to see that we may
assume, without loss of generality, there exists » > 0 such that ¢ = Id on
{0} X (By — Bj,4) X B" X Q and, for each (¢, x,q,y) € X IB! X Q
X B", ¢(f(t,x,0,q),y)=f(t,x,y,q) (see first part of the proof of
Lemma 5.3).

The desired open embedding ® can be obtained from ¢ by observing
that there is a homeomorphism

m: I X BI X (B, {0}) X Q > I X By X (B, {0}) XQ
such that T =Idon I X B} X B" X Q,
7({0) X (By — B}) X B" X ) = ({0} X (B — B}) X B{" X Q)
U (I X 9By X B" X Q),
and
({0} X (B — By) X By x Q) = ({1} X (B} — By,,) X BI" X Q).
This completes the proof of Lemma 5.5.

Proof of Theorem 5.1. The proof of Theorem 5.1 is virtually identical
to the proof of Theorem 2 of [S] but using our Lemma 5.1 instead of their
Lemma 2.3, our Lemma 5.5 instead of their Lemmas 3.1 and 5.3.

Our next step is to prove the following theorem.
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THEOREM 5.2. Let (M"*"*"!, My™") and (N"*™, Ng") be flat compact
PL manifold pairs and let a: (N, Ny) — (0M, 0M,) be a PL embedding. Let
h: I X (N, Ny) X Q = (M, My) X Q be a homeomorphism such that h = «
X 1d, on {0} X N X Q. Then there exists an | =0 and a PL homeomor-
phism g: I X (N, Ny) X I' = (M, My) X I' such that g = a X 1d on {0}
X N X I'and h is isotopic by pairs to g X Id,, . relative to {0} X N X I'.

The proof of Theorem 5.2 requires two more lemmas.

LEMMA 5.6. Let M"***! be a PL manifold, a: R" X Bf - dM a PL
embedding and h: 1 X R" X Bf X Q - M X Q an open embedding such
that h=a X 1d, on {0} X R" X Bf X Q. Then there exists a straight
submanifold A C M X I', a PL embedding g: I X B} X Bf X I' > A such
that g = a X 1d; on {0} X B! X Bf X I', and an open embedding f:
I X R" X Bf X Q - M X Q such that

(1) f=a X 1d,on {0} X R" X Bf X Q,

(2)f=gX1d,,  onlX By XBf X Q,and

(3) f is isotopic to h relative to ({0} X R* X Bf X Q) U (I X (R" —
Bj) X Bf X Q).

Proof. The proof is contained in the proof of Theorem 2 of [5].

LEMMA 5.7. Let M"*? be a PL manifold, N" a compact PL manifold,
a: RX N = 0M a PL embedding and let h: | X R X N X Q - M X Q be
an open embedding such that h = a X 1d, on {0} X R X N X Q. Then
there exists a bicollared submanifold A C M X I', a PL homeomorphism g:
IX {0} X NXI'"> A such that g=a X 1d; on {0} X {0} X N X I,
and an open embedding f: I X R X N X Q - M X Q such that

(Df=aXIdyon {0} XRXNXQ,

(2)f=gX1dy, onl X {0} XNXQ,and ]

(3) f is isotopic to h relative to ({0} X RX N X Q) U (I X (R — B))
X N X Q).

Proof. We consider a PL handle decomposition of N, N., C N, C N,
C---CN,= N, where N_, is a regular neighborhood of 9N in N and
each N, is obtained from ¥, | by adding disjoint handles of index i.

Set

X =([0,{] X RXN)U(IXRXN)CIXRXN

1
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and
Y, = ([09%] X By ;11 X N) U (IX B, ., X N:)
CIXB!_,,,XN, -l1si=sn.

It is clear that there exists a collection {¢;}{* of PL embeddings ¢;:
IXRXR"'XB->(IXRXN)—Int X,_ 1suchthat
(@) (I X RXR"'X B)X0X,_, = ¢,({0} X R X R"™' X Bj),
(b)) (I X R X R"™* X B}) N 3Y,_, =¢,({0} X B,_,,, XR""' XBY),
(©) )
/Yi = Xl—l U U (PJ(IX R X B{lai X Bi)’
1

(d)
P,
Y=, NUXBEB a1 X N)) U U(pJ(IX —ie1 X BT X By,

and

(e) the ¢;(1 X R X R"™* X B{)’s are pairwise disjoint.

By inductively working through these “handles” we will prove the
following statement.

S,(-1 <i < n): There exists a straight submanifold 4, C M X I, a
PL embedding g;: Y; X I > A4, such that g = a X Id,, on {0} X B)_ .,
X N X I, and an open embedding f: I X RX N X Q - M X Q such
thatf; = g, X Idy, on Y, X Q, and f, is isotopic to f relative to ({0} X R
><N><Q)U(1><(R B,}+3)><N><Q)

It is easy to establish S, (see proof of Theorem 2 of [5]). Further-
more, S;,, can be obtained from S; by applying Lemma 5.6 to the open
embeddings

figyr I X (B’ri-i-i—l X Rn*iﬂl) X (BiH X II') X Qs
—’((M X 1) — Int Ai) X Q41
We finish the proof of Lemma 5.7 by letting /4 be 4, and 4 be
g,(IX {0} X N X I™).
Proof of Theorem 5.2. Let us assume N, X R” is contained in N as an
open subset. By Lemma 5.7 we may assume without loss of generality that
there exists a straight submanifold 4 of M, containing M, as a flat

submanifold, and a PL homeomorphism S: I X N, X dB{" X Q - Bd 4
such that 8 = aon {0} X Ny X 9B{",h = B X Idyonl X N, X dB" X Q,
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and A(I X Ny X (B, {0}) X Q) = (4, M,) X Q. Theorem 5.2 now fol-
lows by applying Theorem 5.1 to 4|1 X N, X BJ* X Q and Theorem 2 of
[S]toh|I X (N — (N, X Bl")) X Q. This completes the proof of Theorem
5.2.

We will now prove Theorem 3, which can be restated as follows.

THEOREM 3. Let (M"*™, M) and (N"*™, N§) be flat compact PL
manifold pairs. Let a: (N, Ny) = (M, M) be a PL homeomorphism and let
h,: (N,N — Ny, Ny) X Q> (M, M — M,, M) X Q be a homotopy such
that h is a homeomorphism and h, = a X 1d,. Then h is isotopic by pairs
to a QPL homeomorphism.

Proof. By Theorem 3.2 of [10], & is isotopic by pairs to a homeomor-
phism A: (N, Ny) X Q » (M, M;) X Q such that A = a X Id, on N X
{0} X Q,. Hence, by Theorem 5.2, there exists an /=0 and a PL
homeomorphism g: (N, N,) X I' > (M, M,) X I' such that & is isotopic
by pairs to g X Id,, . This concludes the proof of Theorem 3.

ReMARK. The hypothesis #,(N — Ny) X Q) C(M — M) X Q, in
the homotopy of Theorem 3, is necessary. To see this, let h: 0B X Q —
0B} X Q be a homeomorphism which is not ambient isotopic and hence
not homotopic to a QPL homeomorphism. Using a coordinate-switching
technique, it is not difficult to construct a homeomorphism 4: B! X Q —
B X Q such that h =1d on {0} X Q and & = h on 3B} X Q (see proof
of Lemma 3.1 of [3]). It is clear that there is a homotopy A,: (B, {0}) X
Q - (B!, {0}) X Q such that h, = h and h, = Id. Nevertheless h is not
ambient isotopic by pairs to a QPL homeomorphlsm otherwise, 7 would
be homotopic to a QPL homeomorphism, contradicting the choice of 4.
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