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In this paper we employ the techniques introduced by Wu-Yi Hsiang
in [4] to perform Stiefel-Whitney class calculations for the possibilities of
connected principal isotropy type listed in Theorems 1-3 of [4]. We show
that some of the possibilities listed there do not occur if we assume in
addition that sufficiently many Stiefel-Whitney classes of the G-manifold
vanish. We therefore obtain a slightly shorter list of possibilities of
connected principal isotropy type for compact connected Lie group
actions on parallelizable manifolds. Stiefel manifolds which are not
spheres, for example, fall under this category. We also give an example
of how our results may be used to study actions on Stiefel manifolds. As
this paper is actually a supplement to [4], we refer the reader to it for
notation and general philosophy.

1. Preliminaries on Stiefel-Whitney classes and 2-weights. In this
section we set the stage for our calculations, which will be described in the
next section. Basically, the statements here are parallel to those in §§1 and
2 of [4].

DEfFINITION. Let ¢: H — G be a homomorphism of compact Lie
groups. Suppose P and Q are, respectively, maximal 2-tori of H and G,
and Y(P) C Q. Let {y,} be a basis for Hom(Q, Z/2) ~ H'(BQ, Z/2) and
v*: H(BQ, Z/2) - H\(BP, Z/2). Then {x, = y*y,} are called the 2-
weights of ¢ relative to (P, Q). In particular, if Yy = Ad H, G = O()),
then the 2-weights are called the 2-roots of H relative to the maximal
2-tori (P, Q).

We list below the non-zero 2-roots of some classical groups.

G 0 2-roots multiplicity
U(n) diag(ey,...,¢,), e, = =1 Vi—y,i<j 2
SU(n) diag(e,...,e,), 6 = *1 " 2
n
2e=0
1
O(n) diag(ey,...,e,), g = =1 " 1
SO(n) diag(ey,...,e,), g, = =1 " 1
n
2e=0
1
Sp(n) diag(ey,...,e,), ¢ = =1 " 4
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We shall also need to know the maximal 2-tori in the exceptional Lie
groups G, and F,. We refer the reader to the papers {1, 2] for details.
However, to summarize, let us mention that if the Cayley numbers are
given by R+ Re, + Re, + Re; + --- +Re,, then G, is the group
Aut(Cay). Suppose S,: Cay — Cay are given by S,(e,.;) = e,,,, Si(e,.s)
=e,5 S(€16) =€ ¢and S(e) = —e¢;ifj#i+ 1,i+5,i+ 6. Then
0={18,,...,S,} are the automorphisms of the Cayley numbers which
form a maximal 2-torus of G,. We let x; in Hom(Q, Z/2) be given by
x,(S;) = §;;. The 2-roots of G, with respect to Q are x, + x,, i <j, with
multiplicity 2, x, + x, + x; with multiplicity 2, together with x; with
multiplicity 2.

In the case of F,, note that Spin(9) C F, and every maximal 2-torus in
F, is conjugate to one in Spin(9). Consequently, we may take the maximal
2-tori in Spin(9) to be maximal 2-tori in F,. Now G, C Spin(7) C Spin(8)
C Spin(9), and center(Spin(7)) = Z /2, center(Spin(8)) =~ (Z/2)*. There-
fore, we may parametrize a maximal 2-torus in Spin(9) by x,, x,, x5, y, z,
where the x;’s come from G,, y from center(Spin(7)) and z from
center(Spin(8)). Then the 2-roots of F, consist of x,, x, + x, with i <},
x; t X, + x,, all with multiplicity 4, together with y, y + x,, y + x, + x,
ytxitx, x5z, z+x,z+x;tx,z+xtx, Fxy,ytzytz
+x,y+z+x +y,y+z+x +x,+ x;with multiplicity 1 and i <j.

PROPOSITION. Let § be a principal H-bundle, where H is compact Lie.
Let Q be a maximal 2-torus of H and ®: H — SO(n) (respectively O(n),
SU(n), U(n), Sp(n)) a representation of H. Assume ®(Q) C Q’, the
standard maximal 2-torus of SO(n) (respectively O(n), SU(n), U(n),
Sp(n)). Let w: E(§)/Q — B(§) and {w,} be the 2-weights of ® with respect
to (Q, Q") counted with multiplicity. If v is the extension of & by the
representation ®, and i: E(§)/Q — BQ is the classifying map of the
principal Q-bundle Q — E(§) —» E(§)/Q, then

i* H (1 + w,d) = w*(w*'q),
w,EQy(P)

where d = 1, 2, 4, and w.n denotes the total Stiefel-Whitney class, the total
Chern class reduced mod 2, or the total quaternion Pontrjagin class reduced
mod 2. Q,(®) denotes the system of 2-weights of the representation ®.

Proof. This is basically Theorem 11.3 in [1]. We have a commutative
diagram
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EE) ———— EE)/Q —"—— B(s)

B R

E(n) l

E(n )/Q .

i

BQ —g |—BH

RN AN

BO o — BG

We consider first the cases of SO(n) and O(n). For this recall that
H*(BO(n); Z/2) » HX(BQ'; Z/2) ~ Z/2]y,,...,y,] identifies
H*(BO(n); Z/2) with Z/2[w,,...,w,] C Z/2[y,,...,y,]. The w’s are
elementary symmetric polynomials in the y’s which form a basis for
HY(BQ’; Z/2). Now

w*(w*n) = 7¥i*Q*w, = *a*O*w, = *O*a'Fw,,

where w, denotes the total universal Stiefel-Whitney class. But a’*w, =
7 (1 +3,). 50

n

#H(wan) = 0| T +0)| = T10+ 00y

i=1

=i* ] (1+w).
W, EQ,(®)
For the case of SO(n), the only difference is that w, = 0.
Next we consider the parallel cases of SU(#), U(#n) and Sp(#n). As an
example, we discuss the case of U(n) in detail. The only observation we
have to make is that

H*(BU(n); Z/2) = Z/2[cy,....c,] CZ/2][y,,....y,] = H*(BQ'; Z/2),

where ¢, is the ith elementary symmetric polynomial in the y’’s. There-
fore, if ¢, is the universal total Chern class reduced mod 2, ¢, = [I(1 + y?).
This accounts for the power of 2 in the proposition. For SU(n), ¢, = 0.
The case of Sp(n) is similar. O

Let H be a compact connected Lie group and ¥: H - SO(m) = G
(respectively SU(m), Sp(m)) almost faithful representations of H. We
should think of W(H) as the connected component of some isotropy
group of a classical group action on a compact manifold M which has
some vanishing Stiefel-Whitney classes. Let x € M and ¥(H) = G,
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Then we have G/Y(H) LNe /G, 4 G(x) EA M. Employing reduction 2 in
§1 of [4], we have

(G/¥(H)) = p'1(G/G,) = p'h'1(G(x))

in KO(G/¥(H)). It is well known that 7(G/¥( H)) is the extension of the
principal ¥(H) bundle ¥Y(H) - G - G/¥Y(H) by the isotropy represen-
tation. If x is on a principal orbit, then »(G(x)), the normal bundle to the
orbit through x, is trivial. Since Stiefel-Whitney classes obey a product
formula and are stable characteristic classes, vanishing conditions on the
Stiefel-Whitney classes of M pull back to vanishing conditions on those of
7(G/Y(H)).
Let us denote the principal ¥( H) bundle above by a( ¥, H). Then

(G/¥(H)) = (¥, H)(AdG|¥(H) — AdY¥Y(H)),

so the fundamental observation of Hsiang (reduction 4 in §1 of [4]) allows
us to transfer the vanishing conditions on w/(G/¥(H)) to
w,(a(¥, H)(Ad ¥(H))). In Proposition 1, we can set { = a(¥, H), ® =
Ad¥(H), and {a,} = the 2-roots of Ad¥(H) counted according to
multiplicity. Then provided that ®(¥(Q)) C Q’, we have

w*(w*n):i*( H (1+¢)).

a,EAH(DP)

As in [4] we must determine Ker i*. The arguments in [4] go through
if we replace T by ¥(Q) and if we use Z/2 coefficients. We must,
however, justify the existence of the Serre spectral sequence for the
fibration 7;: E; X g9y G = BYQ, since the base is not simply-connected.
However, we simply have to note that we have here a principal G-bundle
with G connected, and it is well-known that this is a case where we have
simple coefficients.

To compute Ker i*, let us consider G = SU(m) or Sp(m) first. These
groups have no torsion. Let ¢, be the total universal Chern class reduced
mod?2 in H*BSU(m); Z/2), and g, the total universal quaternionic
Pontrjagin class reduced mod 2 in H*(BSp(m); Z/2). Then the argument
in [4] shows that Ker i* = Ker n} = the ideal in H*(BYQ; Z/2) gener-
ated by the images of all differentials of the Serre spectral sequence of 7.
If A: BYQ — BG is the classifying map of the principal G-bundle 7,
Ker i* = the ideal in H*(BYQ; Z/2) generated by {A*c,} or, in the case
of Sp(m), by {A*q,}. We apply Proposition 1 again with § = [VYQ — E; —
BYQ], H= Y¥(Q), ® = the inclusion of ¥(Q) into G, n = 7., i = id to
obtain A*c, =11, cg @1 + W) or Mgy =11, cg o1 + w}). So Ker i*
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is the ideal (W®)3,...,(W®)2) for G = SU(m) and (W®){,...,(W®);)
for G = Sp(m), where (W®) is the jth elementary symmetric polynomial
in the w;’s.

w, € 2,(®).

If G =S0(m), then G has 2-torsion. However, the generators of
H*(SO(m); Z/2) ~ A(x,,...,x,,_,) are universally transgressive. So the
problems of transgression encountered in Pontrjagin classes actually do
not occur here. Thus exactly the same argument as in the previous cases
yields Ker i* = the ideal (W®),,...,(W®),,).

REMARK. We emphasize here that the weights w, in the above discus-
sion lie in H'(BYQ; Z/2) and the equation

w*(W*n) = j* H (1 + a,‘.’)
a,EAL(D)

belongs to H*(E,y 1,/ YQ; Z/2). Order two elements in Q may very well
go to 0 under ¥. This will be a point for us to be careful about in our
calculations. However, it turns out that there are always enough points in
our 2-tori so that we need not worry about elements going to 0.

2. Symmetric products of 2-roots of simple Lie groups. In this
section we shall compute certain symmetric products of the 2-roots of
some of the simple Lie groups. If K is a compact connected Lie group, we
let WK, denote the ith symmetric product of the 2-roots of K, SK, denote
the ith symmetric sum of the 2-roots of K. If y,,...,y, are variables, then
o, will denote the ith symmetric polynomial in the y ’s. s; will denote the
ith symmetric sum in the y;’s.

We begin with the observation that WSO(n), = II,_(1 + y, + y)),
WSU(n), =1I,.,(1 +y,+ )% and WSp(n), =1I,.,(1 + y, + y)*. For-
mally we must have WSU(n),, = WSO(n)?2. For the case of Sp(n), if we
use the sub-2-torus of the standard 2-torus, consisting of diag(e,,...,¢,),
e, = =1, S¢, =0, then we have WSp(n),, = WSO(n)?. We note the
proof of Proposition 1 does not use the maximality of Q. Neither does the
discussion of the vanishing conditions and Ker i*. All this means that
while symmetric products of 2-roots of SU(#n) and Sp(#n) may be hard to
compute directly, they can be obtained from the results of SO(n). We
therefore begin by computing WSO(n),.

Let k(n) be 2n + 1 if we are considering SO(2n + 1) = B,, and
k(n) = 2n if we are considering SO(2n) = D,. The basic technique of
calculation is the use of Newton’s formulas, followed by reduction mod 2.
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PROPOSITION. Let WH, denote the ith symmetric product of the 2-roots
of the Lie group H. Then we have:

(a)

(b)

(c)

(d)

H=SU(n)=4,_,,

WH_ 44 = 0,
WH, = 0,
WH, = no},
WH, = no},
n/2] + 1)o} + o2 ifnisodd,
i - [/ et 402 if
([n/2] + 1)a) if n is even,
6; ifnisodd,
WH,, =
10 {O if n is even,

ol +([n/2] + V)os + ([n/2] + 1)o)

e = {([n/zl + 1)
H=5S002n+ 1),

WH, =0, WH,=o, WH,=o,
WH, =0, + (n + 1)o},

WHs = os,

WH, = o, +(n + 1)o; + (n + 1)o7,

H=5Sp(n)=C

n?'

WH ;s = 0= WH,,
WH, = (n + 1)o/,

WH, =0,

WH, = no,

WH]2 = noy,

. = {of + ([n/2] + V)o?  ifnisodd,
o ([n/2] + 1)ad if n is even;

H = S0(2n),

WH, = WH, = WH; = 0,
WH, = (n + 1)a},

WH = 0,

WH, = (n + 1)o7,

if nisodd,

if n is even;

Wi, = o} + of + () + (B)n* + (3)n)o? + o
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(e) (WG,y),=1+ (018 + o0i0] + 024)
+ (062 + of + 02626} + oio;)
+ (0340]2 + of‘ozzcrf);
(f) Ler
A =0} + 0,0, + 02, B=ojo, + 0} + 0,0,0, + 0l07,
C = o0, + 0}0,0;,
and
W(u)=1+u+u*+u’+(u*+4)+ (uw + Au)
+ (u® + Au> + B) + (u" + 4u’ + C).

Then (WF,), = WO)*W(y)W(z)W(y + z). In particular, (WF,), # 1
sincefory=1,z=x=x,=x;=0,(WF),=0=1+(WF,), +---

Proof. Among (a)—(d), the essential calculations occur with the SO(n)’s
by a previous remark. Let k(n) be 2n + 1 or 2n as described. It is clear
that WH, = 0.

We have WH, = (5Y)SH, = (F)k(n)s, = k(n)e, = o, for k(n) =
2n + 1 and 0 for k(n) = 2n. SHy = (k(n) — 4)s, = (k(n) — 4)30;. So
WH, = (k(n) — 4)o, = k(n)o,. Similarly, SH, = k(n)s, + (3)(3)s; =
k(n)—4o, + 203) + 3(46?) = —4k(n)o, + 2k(n)o} + 120;. WH, =
—(H(—4dk(n)o, + 2k(n)of + 1267) + ()k(n)*40? =0, + (n + 1)o7
if k(n)=2n+1 and (n+ 1)o} if k(n) = 2n. Other calculations are
similar, though the demand for perseverance increases.

We obtain the formulas for (a) by either direct computation or by the
fact that WSU(n),, = WSO(n)?2. The formulas in (c), (€), (f) are obtained
by direct calculation or by the relationship WSP(n),, = WSO(n)?*, where
W are the symmetric products calculated using the corank 1 sub-2-torus
of the maximal 2-torus chosen. O

3. Connected principal isotropy types and Stiefel-Whitney classes.
Let G denote SO(m), SU(m), or Sp(m) and let G act smoothly on a
manifold M whose first three Pontrjagin classes and all Stiefel-Whitney
classes vanish. As can be seen, we do not really need the full force of the
latter vanishing condition. For applications, we have in mind all stably
parallelizable manifolds whose first three Pontrjagin classes vanish. For
example, Stiefel manifolds and sufficiently high-dimensional homotopy
spheres have this property.
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At this point we refer the reader to Theorems 1-3 in [4]. Basically, we
show that certain cases in these theorems cannot occur if Stiefel-Whitney
classes vanish. As described at the end of §1, if ¥: H — G is an almost
faithful representation of H and ® = Ad(¥(H)) takes ¥(Q) to a subtorus
of Q’, then we have the following vanishing condition:

(WH),=0 mod((W®){,..., (W®){,sy), d=1,2,4,

where WH, is the ith symmetric product of the 2-roots of ¥(H) and
(W®), = the ith symmetric product of the 2-weights of the representation
®: VY(H) C G. We recall the remark in §2 that the 2-torus ¥(Q) need not
be maximal in ¥( H), so that the above vanishing condition holds for any
sub-2-torus Q of H.

PROPOSITION 1. Let SU(n) act smoothly on a manifold M such that the
first three Pontrjagin classes and all Stiefel-Whitney classes vanish. Let V:
H - SU(m) be an almost faithful complex representation of a compact
connected Lie group H. Then for the following pairs of (H, Y), Y( H) cannot
be the connected principal isotropy type of the SU(m) action:

. H is semisimple, connected, compact, ¥ = Ad.
. H = SU(l) X H,, | divides 30, ¥ = u,® u, + Ad H,.
.H=SU(l),¥ = 2u,, and | is odd.
.H=S50(),¥ =p,, 1 odd.
.H=Sp(l), ¥ = v, [ even.
.H = G,,¥ =2A,, A, is the T-dimensional representation of G,.
H =G, X G, ¥ =2A, + AY).
. H=SUQ) X SUB), ¥ = 2p; + pa), 2 + 15), (s + 1) +
(B + Ji)-

9. H = SU@3) or SU(5), ¥ = u, + ;.

10. H=SUQ), ¥ = kpu; +lpg;, k+1=6.

01NN~

Proof. 1. Since ¥ is allowed to be almost faithful, we may assume
H = H, X --- XH,, where H; are simple normal factors of H. By reduc-
tion 2 in [4], one easily sees that we may assume H itself is simple.

(a) H = SU(!).

If /is even, then Z(SU(/)) contains only one element of order 2 of the
standard maximal 2-torus. Therefore we may performs the 2-weights
calculation in SU(/). The vanishing condition is

WH, = 0 mod( WH?,...,WH?).
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Now WH, = ((3)! + 1)o; while WH? = 0, WH? = 0. This forces (})/ to
be odd. On the other hand,

WH,, = WSO(1); = of + Ca? + 0,05,
WH}=0= WH2 = WH2 = WH

because (3)/ is odd. Therefore, / must be odd. In this case Z(SU(/))
contains no element of order 2. Since WH, = o} and WH; =0, we
conclude / cannot be odd either.

(b) H = SO(2!/ + 1) or Spin(2/ + 1).

Z(Spin(2/ + 1)) ~ Z/2 and Z(SO(2!/ + 1)) = 0. Since calculations are
done in the adjoint group, we need only consider the case of SO(2/ + 1).
Here we simply notice that WH, = o, and Ker /* contains no element of
this degree. So H = B, does not occur.

(c) H = Sp(!).

Z(Sp(!)) = Z/2 with generator —I, where / is the identity matrix.
Now WH, = (I + Yo}, WH? = 0, and WH? = 0. So if [ is even, WH, =
o,', which is not 0 even after removing the center. Hence / must be odd. In
this case we compute 2-weights using the corank 1 2-torus in the standard
maximal 2-torus as explained before. This 2-torus does not contain the
generator of the center. Here we have WH, = lo;, while WH2 = 0. So [
cannot be odd either.

(d) H = SO(2/) or Spin(2/).

Now Z(Spin(2/)) = Z/4or Z/2 + Z/2 and Z(SO(2/)) = Z /2. Again
we perform our calculations on SO(2/) since actually this should be
performed on the adjoint group. WH, = (I + 1)of and WH}? = 0 = WH;.
So / must be odd because WH, # 0 even if we stay away from the
generator of Z(SO(2/)). For [ odd, we examine WH, = o] + 0,05 + Co5,
where C = 0,1. WH, = WH, = WH, = 0 = WH,. Therefore, WH; = 0.

(e) H = G,.

Z(G,) = 0. From (WG,), we see that (WG,), # 0.

() H = F,, E, E;, Es.

For these cases we avoid specific computation by noticing the follow-
ing:

If P(o,,...,0/) i1s a homogeneous polynomial over a field k in the
elementary symmetric polynomials {o;} in the variables y,,...,y,, and
P =P +---+P, is the decomposition of P into homogeneous poly-
nomials of the same degree, then if, for all i/, P, =0 mod PZ,... ,P[ZI oL
then actually P, = O for all /.

In view of this, we need only show that (WH), does not equal 1. We
stress that by P =0 we mean P, is the zero polynomial and not a

1
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polynomial that evaluates to be 0. We have shown (WF,), Z 1. For E, we
use the maximal 2-torus of 4, X A4 in E, which is contained in that of
E¢. So the 2-weights of Ad E¢|4, X A; = Ad A, + Ad A5 + N’pg are A,
y; T y; with i <j and multiplicity 2, y, + y; + y, + A with i <j <k and
multiplicity 2. So

W= AT +y+5) TT (L+y +y, 40 +2)

i<j i<j<k
Take (A, y;,...,0) = (0,1,1,0,0,0,0) and evaluate W, at this point. We
get 0; on the other hand, W, =1+ W, + W, + --- + W,. So some W,
must be nonzero. Now Z(E¢) = Z/3, so it does not contain elements of
order 2.
For E; we take the maximal 2-torus of A3 C Eg. Since Ad Eg|Ag =
Ad Ag + Npg + Apg, the 2-weights are y, + y, withi <jand y, + y; + y,
with i <j < k, with multiplicity 2. Hence
We=1+W+Wt-=(1+y+y) I (+y+y+n)
i<j i<j<k

We evaluate at (1,1,0,...,0). Then W, =0 and so some W, must be
nonzero. Notice that Z(Eg) = 0. The argument for E; proceeds analo-
gously. We use the maximal 2-torus of A, C E; and the fact that
Ad E;|A, = Ad A, + A*pg. Although Z(E,) = Z/2, we have enough
points to choose from for the evaluation argument.

2. Again we may use reduction 2 in [4]. It follows that we are
reduced to case 1, which cannot occur.

3. ¥ is injective and WH, = lo}, while the 2-weights of ¥ are y, with
multiplicity 2. Hence (WV¥)3,...,W¥}?) = (0;,...,0;') implies WH, =0
mod the ideal if / is odd.

4. The 2-weights are y,...,y, with multiplicity 1 and so
(W¥2,...,W¥}) =(0},...,6}). Forlodd, WH, = ¢, Z 0.

5. The 2-weights are y,,...,y, with multiplicity 2. (W¥;,..., W¥})
= (0y,...,05). Since WH, = (I + 1)o{, [ cannot be even.

6. Let A, denote the 7-dimensional representation of G,. Then
WA,, =1+ A + B + C (for notation see the proposition in §2) and so
one sees that (WG, )s = (W2A,), Z0mod((W2A,)3,...,(W2A,)3).

7. Let A, B, C and A’, B’, C’ be, respectively, the expressions given
in the proposition in §2 for two copies of G,. Then

WH,=(1+4%+ B>+ C*)(1+ 4% + B? + C?),
and if ¥ = 2(A, + A%), then
W¥,=(1+4*+B*+ CH)(1+ 4"+ B*+C"*),

so clearly this case is impossible.
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8. If H = SU(3) X SU(3) and o, and 7, are, respectively, symmetric
polynomials corresponding to each factor of SU(3). A straightforward
computation shows that

WH, =1+ (022 + 722) + (032 + 732) + (022722) + (0321'32 + 022732) + of7l.

If ¥ is one of the representations listed, then W¥2 = WH2 and we see
that this case cannot occur.
9. This case is similar to (3).
10. WH, =1+ of + of. If k + | = 6, the 2-weights are the same as
those of 6u 4, which are y,, y,, y; with multiplicity 6. Therefore,

W¥i=1+o0]+0f+0of+ (f +0)2) + 0fof + ofof + 0.

Thus the vanishing condition is not satisfied. O

PROPOSITION 2. Let Sp(m) act smoothly on a manifold such that the
first three Pontrjagin classes and all Stiefel-Whitney classes vanish. Let V.
H — Sp(m) be an almost faithful symplectic representation of a compact
connected Lie group H. Then (H,Y) in the following cannot have Y(H) as
the connected principal isotropy type of the Sp(m)-action:

1. H=SU(n),n=3,45%¥Y=u,+p,.

2. H=SU@B) X SUQ), ¥ = pu; + py + pj + pf.

3. H=G, X G,, Y =2(A, + A)), where A, is the 7-dimensional
representation of G,.

4. H=G,, ¥ =2A,.

Proof. The calculations are exactly the same as those for the previous
proposition. O

PROPOSITION 3. Hypotheses as in Proposition 2 except with Sp(m)
replaced by SO(m). Then the following pairs (H,¥) cannot have Y(H) as
the connected principal isotropy type of the SO(m)-action:

1. H= G,, ¥ =4A,.

2. H = SU(3), SU(5), ¥ = 2(p,, + I,,)-

3. H=SU(3) X SUQ3), ¥ = 2(u; + p5 + g5 + 5).

4. H = Sp(n), n even, ¥ = 2v,.

5.H =S0(n),nodd, ¥ = 2p,.

6. H is semisimple and contains simple normal factors of type B,, C,
D,,,¥=2Ad¥Y(H).

n*

Proof. Again the calculations are similar to those of Proposition 1 and
so are omitted. O
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As an application of these propositions, let us prove

PROPOSITION 4. Let G = Sp(m) act smoothly on W, , . = complex
Stiefel manifold of orthonormal n-k planes in C" with k = n/2, n = 11, and
dim Sp(m) = dim SU(n). Then the action is trivial.

Proof. Combining Proposition 2 in this section with Theorem 2 in [4]
we conclude that the connected principal isotropy type of the action must
be one of the following:

1. any torus 7,

2. 7(Sp(1)),

3.V + - D) Sp(DHP X - - - XSp(D)?D), r=1,2,4. In case 1,
if (H®) is the connected principal isotropy type, then dim H® < m. One
easily sees that m < /3/8 n < 0.615n. In case 3, dim H® < 3r/ < 3m and
one checks that m < 0.615n + 1. On the other hand, n = 11 and kK = n/2
together with dim Sp(m) = dim SU(#n) imply m = 0.615n + 1. Hence case
2 must occur and, by Theorem C1 of §8 of [4], all connected isotropy
groups are of the type »,(Sp(/,)), /, =/, where / is the rank of the
connected principal isotropy type. If G(x) is any orbit, then, since it is
covered by a quaternionic Stiefel manifold, 7,(G(x)) = 0 whenever i < 4/
+ 2. Consequently, H(G(x); Q) =0 for i <4l + 2. By the Vietoris
mapping theorem (see for example, §6.4, p. 142 of [3]) we have

H(W, ,_/G; Q) ="H' (W, , Q) ifi<dl+2,

where p is the orbit map. Therefore, there are nonzero elements a,,...,a g
in H**XW, /G, Q), ¢ =min(2l,n — 1), dega, = 2i + 1, so that
p*a;=x, in H*"\W, ,_,; Q), where HXW, ,_,; Q) = A(xy,....%,_).
Hence a, - - - a, # 0. But note that
dim(W, ,_./G)=n>—k*— 2m* + m—2I> =)
s@P—-k)+ (=22 +1+1).
Ifi>1-2I*+1+1<0,s0
dim(W, ,_,/G) <4l* — k* <dim(a, ---a,) if21=gq,
or equivalently, n — 1 = 2/, which is a contradiction. So n — 1 <2/, in

which case dim(W, ,_,/G) = n* — k?, implying / = m, or, equivalently,
the action is trivial.
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Added in Proof. This paper was written in 1979 before the author’s
thesis. Circumstances have delayed its publication. Meanwhile actions on
the complex Stiefel manifolds W, ,, n odd, were studied more extensively
in the author’s papers listed below.

[6] Trans. Amer. Math. Soc., 272 (1982), 589-610, 611-628.

[7] Canad. Math. Soc. Conf. Proc., Vol. 2, Part 2, (1982), 303-311.
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