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Let £ be the von Neumann algebra crossed product determined by a
maximal abelian selfadjoint algebra L*°(X) and an ergodic automor-
phism of L=( X). The algebra £ is generated by a bilateral shift L and an
abelian algebra 91, isomorphic to L*(X). The non selfadjoint subalge-
bra £ of £ is the weakly closed algebra generated by L and 91, . The
invariant subspaces of £ are studied. The notion of multiplicity function
is analysed and it is shown that every function m with nonnegative
integral values and whose integral, over X, is not greater than the
measure of X, is a multiplicity function. The condition is also a necessary
one. We also discuss the notion of canonical models in this setting.

1. Introduction. The invariant subspaces of non selfadjoint crossed
products were studied by M. McAsey, P. Muhly and S. K. Saito in [4].
They let £ be the von Neumann crossed product determined by a finite
von Neumann algebra M and a trace preserving automorphism, and
investigated the invariant subspace structure of the subalgebra £, , of £,
consisting of those operators whose spectrum, with respect to the dual
automorphism group on £, is non-negative. The subalgebra £, stands,
roughly, in the same relation to the von Neumann algebra £ as H*(T), the
space of boundary values of bounded analytic functions on the unit disc
stands in relation to L*(T).

Among other results, it is shown, in [4], that M is a factor if and only
if a version of the Beurling, Lax. Halmos theorem (analysing the invariant
subspaces of the bilateral shift) is valid for £ ([4, Theorem 4.1]).

In [3], M. McAsey continued this investigation for the case where M
is a maximal abelian selfadjoint algebra. He found conditions for two full,
pure invariant subspaces for £, to be unitarily equivalent by a unitary
operator in 9%, the commutant of £ ([3, Theorem 3.5]). To accomplish this,
the concept of a multiplicity function was introduced and studied.

In this paper we will study further properties of multiplicity functions
in the case where M is L*( X, n), p is a non atomic finite measure and the
automorphism is ergodic. We show, in Theorems 3.6 and 3.7, what
functions can appear as a multiplicity function of some invariant sub-
space.
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We will also show (Theorem 4.1) what are the multiplicity functions
of the two-sided invariant subspaces (to be defined later) and we shall see
that the situation here is somewhat different than in the case when X is a
finite set (see [2]). We conclude with remarks about canonical models for
the set of the pure invariant subspaces.

2. Definitions and preliminaries. Let X be a standard Borel space
with a finite, non atomic measure g. Let 7 be an invertible measure-pre-
serving ergodic transformation on X. Using the product of the counting
measure on the integers, Z, and the measure p and X, we can realize
Z X X as a measure space. The space L*(Z X X), of all (equivalence
classes of) functions on Z X X satisfying

S [ dul) < o,

n=-—oo
is a Hilbert space with inner product

o0
(frg)= 3 [fnx)gmx)du(x)  (f g€ LHZXX)).
We shall write K for this Hilbert space.

Define the following linear, bounded, operators on K :

(L/)(n, x) = f(n = 1,77 %),

(Rf)(n, x) = f(n =, x),

(Lof)(n, x) = 9(x)f(n,x), @€ L"(X),
(Rof)(n, x) = @(r7"x)f(n,x), @ € L*(X).

Note that L and R are unitary operators.

Let O, (respectively IM,) denote the algebra generated by {L,:
¢ € L*(X)} (resp. {R,: ¢ € L*(X)}). Clearly I, and I, are abelian
von Neumann algebras. The left (resp. right) von Neumann algebra crossed
product of L*(X) with 7 is defined to be the von Neumann algebra £
(resp. R ) generated by O, and L (resp. N, and R). Define the left (resp.
right) non selfadjoint crossed product to be the weakly closed algebra £_
(resp. R, ) generated by O, and L (resp. M, and R).

In this paper we will be interested in subspaces of K that are invariant
under the algebra £, . Corresponding results hold for @, -invariant
subspaces.

It is known that £ and 9 are finite factors satisfying £’ = & and
R’ = £ (see[1]).
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It can be easily seen that, for each integer » and each ¢ € L*(X),
L"L,=L,, _,L" Hence L"M,L™" = I, for each n in Z, and £ (resp.
£, ) is the closure, in the weak operator topology, of the set of operators
of the form 25__, L, L" (resp. 25_,L, L").

DEFINITIONS. A (closed) subspace M of K is invariant (or £, -
invariant) if £, 9 C . It will be £, -reducing if LI C IM; pure if M
is invariant and contains no (non zero) £, -reducing subspace; and full if
the smallest £ -reducing subspace containing 9N is K.

The following proposition can be found in [3] or [4].

PROPOSITION 2.1. Let 91U be an invariant subspace in K. Then
(1) O reduces O, ;

(2) O reduces L if and only if O reduces L;

(3) O is pure if and only if N _,L"ON = {0}; and

(4) O is full if and only if V ,—o L"ON = K.

For each closed subspace 9 C K we write Py for the orthogonal
projection whose range is 9. If 9N is an invariant subspace, then 9N
reduces I, , hence Py lies in O (the commutant of I, ). The subspace
L9 is also invariant (since I, L = LI, ) and, if we let Nbe M © LI,
then Py lies in O} .

Every invariant subspace is an orthogonal sum of an £, -reducing
subspace and a pure subspace, and each £, -reducing subspace is the
range of a projection in R (see [3, Proposition 3.3 and the remark
preceding it]). Therefore, we will be concerned mainly with pure invariant
subspaces.

An important tool for dealing with invariant subspaces is the mul-
tiplicity function introduced in [2]. To define it, note that the
space H (= L*Z X X)) may be identified with the direct integral
/¥ I*(Z) du(x), and the algebra 9}, acting on it, may be identified with
/< B(I*(Z)) du(x) where B(1*(Z)) is the algebra of all linear and bounded
operators on /*(Z). (For details, see [3]).

Let 9T be an invariant subspace, then P, the orthogonal projection on
M © LI, lies in 9N, and may be written, using the identification above,
as a direct integral [y P(x) dp(x), where P(x) is a projection in B(/*(Z))
for almost every x in X. We define the multiplicity function, m, by letting
m(x) be the dimension of the range of P(x).
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The following result is Theorem 3.4 of [3].

THEOREM 2.2. For i = 1,2 let 9N, be a pure invariant subspace. Let O,
be I, © LN, and m, be the multiplicity function of IN,. The following
statements are equivalent:

(1) Py, = TPy T* for a partial isometry T € R, so that M, = TI,.

(2) m\(x) =m,(x) a.e.

(3) Py, < Py in QN (i.e. there is a partial isometry W, in O}, such
that WW* = Py, W*W < Py ).

Using the arguments that appear in the proof of the theorem above
(in [3]) we can also prove the following proposition.

PROPOSITION 2.3. With the notations and assumptions of the preceding
theorem, the following statements are equivalent:

(1) O, = TN, for a partial isometry T € R, with initial space that
contains IN,.

(2) m|(x) = my(x)a.e.

(3) Py, ~ Py in ;.

Proof. (1) implies (2): since the initial space of T contains I,, T
maps 9N, isometrically onto 9N, and 7* maps I, isometrically onto
IM,. Hence Py = TPy = T*Poy T and T*IN, = IN,. Applying Theo-
rem 2.2 we see that m,(x) =< m,(x) a.e. and also m,(x) =m(x) a.e.
(since M, = T —» M, and Poy, = T*Pey T).

Thus m(x) = m,(x) a.e..

(2) implies (3): Obvious from Theorem 2.2.

(2) implies (1): Suppose Py = WW* and Py = W*W (W € ;).
Then, by Theorem 2.2, there is a partial isometry 7, in R, such that
Poy = TPy T*. It follows from the proof of Theorem 2.2 (see [3; Theo-
rem 3.4]) that the initial space of T is 2= @ L"(W*WIL,) and the
final space is 27, © L"9,. Since here W*W = Py , the initial space
of Tis Z¥___ &® L"9,. But IM, is pure (hence M, _,L"N, = {0})
therefore

n—1 0
M, =V (M, 6 L"M,) = V ( 2 @Lk%) = 2 @ LY,
n=0 n=0 \ k=0 k=0
and 9N, is contained in the initial space of 7. g

REeEMARK. From the proof of the last implication in the theorem, one
can see that if 9N, (or IN,) is full, then TT* =1 (or, respectively,



MULTIPLICITY FUNCTIONS OF INVARIANT SUBSPACES 205

T*T = I). Since the algebra 4, is finite, we conclude, in this case, that T is
a unitary operator and both 9, and 9N, are full.

3. Invariant subspaces and the multiplicity function. In this section
we will show what are the functions that are multiplicity functions of
some pure invariant subspace. This is shown in Theorems 3.6 and 3.7.
Before we proceed to prove them we need some lemmas, the most
important of which is Lemma 3.5, which enables us to construct an
invariant subspace, with a specific multiplicity function, contained in a
specific invariant subspace.

LEMMA 3.1. Let {9} be a finite or countable collection of pure
invariant subspaces such that 9, is orthogonal to G.)R,j, whenever i # j. Let
m(x) be the multiplicity function of OU,. Then the space M. = Z @ I, is a
pure invariant subspace with multiplicity function m(x) = Zm(x)a.e.

Proof. 9N is clearly invariant. To prove that 9l is pure we show that
/N =0 L"OW = {0}. For this, let x be in I, then x = T @ x,, x, € M. If
x # 0, then one of the x; — s, say x,, is different from zero, hence there is
some n > 0 such that x, & L"91,, thus x & L"9N. Therefore I is pure.
For the multiplicity function, let 9 be the subspace M © LI and I, be
the subspace I, © LI, so that N =3 D N, and Py = = @ Py . For
almost every x, in X, {Py(x)} is an orthogonal set of projections in
B(I*(Z)) and Py(x) = Z @ Py (x). Therefore m(x) = = m,(x). O

We say that an invariant subspace 9 is generated by some function
f € X if M is the closed linear span of {L"L,f: ¢ € L*(X), n = 0}; i.e.
O is the smallest (closed) invariant subspace containing f.

LEMMA 3.2. Let e, € K be defined as follows: ey(n, x) = 0 if n # 0 and
eo(0, x) = x g(x) (the characteristic function of a measurable set E in X).
Then the invariant subspace 9N, generated by e, is pure and its multiplicity
function is x . We will denote this subspace by ON(E).

Proof. For a subset B of Z X X, let L?( B) be the subspace of all the
functions in L*(Z X X) whose support is contained in B. Define B, =
{(k,x) EZ X X; k=0, x € 7%(E)). Clearly e lies in L*(B,). For g € X,
n >0, and ¢ € L*(X),

(*) (LyL"g)(k, x) = @(x)g(k — n, 77"(x)).
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Therefore if g lies in L*(B,), so does LoL"g, and the subspace L*( B,) is
an invariant subspace containing e,. Thus IN(E) C L*(B,). Let g be in
L*(By) N L*(Z X X) and define functions g, € L°(X), for n >0, by
8,(x) = g(n, x). Then the functions {Lg,L"¢;},~ are pairwise orthogo-
nal and their sum is g. Thus g lies in 9N(E), and by the density of
L*(By) N L*(Z X X)in L*(B,), L*(By) = M(E).

Now Let B, be the subset {(k, x) € B,; k =1}, then L(L*(B,)) =
L*(B,) (by (+)) and

M © L = L*(B,) © L2(B,) = L(B\B,).

But B\B, = {0} X E, thus the projection onto 9N © LI is
[ P(x)du(x) where P(x) =0 if x € E and, for x € E, P(x) is the
projection onto the subspace C8,, in /*(Z), where 8(n) = 0 if n # 0 and
8,(0) = 1. Thus m(x) = rank P(x) = x z(x).

As noted above, L(-L*(B,)) = L*(B,) and, similarly, if we let B, be
the set {(k, x) € B,: kK = n}, then

L"(L*(By)) = L*(B,)

and

A L'(M)= A LXB,) = LZ( N B,,) = (o).

n=0 n=0 n=0

Thus 9N is pure.

LEMMA 3.3. Let E, F be measurable subsets of X with p(E) = p(F).
Then there are measurable subsets { E, }7_, and { F,}_, satisfying:

() E, C Eand F, C Fandeachn = 0;

QE,NE, = @ and F,\ F, = & for each n # m;

G)MEN\ U E,) =0=pu(F\ Uy_ F,); and

(4) F, = 1"(E,) for each n = 0.

Proof. Define the sets {E,}>_, and { F,};>-, inductively. For n = 0 let
E,=F,=ENF. For n=1 let F,=1E\E)) N(F\F,) and E, =
v (F,). When {E,})%_, and {F,)r_, are defined we let F,_, be
T*(E\ UY_,E,) N (F\ U%_ F)and E,,, = 7 * (F,,). The sets we

get in this manner clearly satisfy (1), (2) and (4). For each k > 0,

k
mF\Ua)

n=0

k
Feon = "'k(E\ U E,
n=0
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and
k k+1
QZT"(E\UEn Nn\{F\ F)
n=0 n=0
;rk(E\GE,,)ﬂ(F\DFn)-
n=0 n=0

Hence, let E’ be E\ U*_ E, and F’ be F\ US_ F,, then 7(E") N F’
= @ for each k> 0. It follows, from the ergodicity of 7, that either
p(E’) = 0or u(F’) = 0. But

p(E) = p(E) — 2 w(E,) = — 2 w(E) = pu(F).
n=0 n=0
Hence p(E’) = p(F') = 0. U

LEMMA 34. If E, F and {E,} o, {F,}io are as in the preceding
lemma, then:

(1) The operator U = 27_,L, L is a partial isometry in £, with
initial projection L, _and final pr0]ect10n L, ;and

(2) the operator V=2 ,R,, Rk is a partzal isometry in R, with
initial projection R, _and final prOJectzon R, .

Proof. It can be easily checked that, for each» € Z and k = 0,
L'L, L™ =1L and R"R, ,R"=R

Xr—mEg) Xr—n(ER)"

Therefore L, L" is a partial isometry with initial projection L, _, ., and
final pro;ectlon L, .SinceL, ., =L, . and {L, k} {L, k} are orthog-
onal families of prOJections, Uisa partial isometry with initial projection

k=oLly, = Ly, and final projection 23_, Ly, =L, Itis in £, because
the sum is in the sense of convergence in the strong operator topology and
each of the operators L, L*isin £, .

The statement for V is proved similarly. O

LEMMA 3.5. Let 9 be a pure invariant subspace with multiplicity
function m(x) = x g(x), for some measurable subset E, in X. Let F C X be
a measurable set with p(F) = u(E). Then there is a pure invariant subspace
N, contained in N, with multiplicity function X .

Proof. Let OW( E) be the pure invariant subspace given by Lemma 3.2.
Since m(x) = x g(x), Proposition 2.3 applies to give a partial isometry 7,
in 4, whose initial space contains 91L( E), its final space contains 9N, and
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M = TAN(E). Since IM(E) is the closed linear span of the set {L"L e,:
¢ € L% X),n =0}, and T commutes with £, 91 is generated by Te,
(recall that ey(n, x) = 0if n = 0 and e,(0, x) = x z(x)).

We assumed that p(E) = u(F), hence we can use Lemma 3.4 to
define the partial isometries

U= YL, L" and V= 3 R, R,
k=0 * k=0 "*
where {E,}¥-, and { F, }¥-, are given by Lemma 3.3.
Let f, € K be defined by: fy(n, x) =0 if n % 0 and f(0, x) = xr
Then, using properties of { E,}5_, and { F, }7=,,

(Ueo)(k, x) = 2 XF J(L"eo)(k, x) = XFk(x)XE(T_k(x))

= XFk(‘x)XTk(E)(x) = XFk(x)

and
(Vi)(k, x) = k§OXEn(T~k(x))(Rnfo(ka n)) = XTk(Ek)(x)XF('x) = XE x).

If we now define f(n, x) = x g(x), we have that f = Ue, = V.
Let 9L, be the invariant subspace generated by f. The initial projec-
tion of V'is r, and we have

(Ry, fo)(n, x) = xp(17"(x) fo(n, x) = fo(m, x).

Thus the initial space of ¥ (which is an invariant subspace, since V € R
= O’) contains f;, and hence contains ON(F) (the invariant subspace
generated by f;). Therefore ¥ maps 9N (F) isometrically onto 9, and,
since ¥ lies in R, it also maps L"9W(F) isometrically onto L"9(,, for
each n = 0. The subspace I(F) is pure (ie. /\ oo L"IN(F) = {0}),
hence so is .

Applying Proposition 2.3, for OW(F) and 9,, we find that the
multiplicity function, n,(x), of 9, equals x z(x) almost everywhere.

Now, let 9 be the subspace T90,. Since 9, is generated by f (= Ue,)
and U lies in £, , we see that 9, C ON(E) and, therefore, T maps 9N,
isometrically onto 9. It also maps L"9, (n = 0) isometrically onto L"
and consequently 9U is pure (since 9N, is). Applying Proposition 2.3, we
find that the multiplicity function of 9 equals x » almost everywhere.

Since N, C M(E), W= TN, C TI(E) = M and we are done. [J
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REMARK. With the notations of the lemma, ey = U*f and f = Ue,.
Since U lies in R (= £),

V{L"OM(E):n €Z} = Ley,=Lf = V{L"Ny:n E Z}.

The initial space of T is a range of a projection in ¢ and contains I (E),
hence contains £e,. It follows that

V{L'"OM:n € Z} = V{TL"W(E): n € Z} = TCe, = TEf
=V{TL'"N,:n € Z} = V{L"N:n € Z}.

THEOREM 3.6. If m(x) is a measurable function on X with values in Z
(the non-negative integers) and [y m(x) du(x) < u( X), then there is a pure
invariant subspace W with multiplicity function m(x). Moreover, if
[xm(x) du(x) = p(X) then we can find such a subspace O that is also full.

Proof. We can write m(x) = 2°_,x g, Where {E,}*| are measurable
sets (not necessarily pairwise disjoint) and 2%, u(E,) =< u(X). Since p is
non atomic, we can find subsets { F,}-, of X, pairwise disjoint, such that
p(E,) = w(F) for each n = 1. Let B, be the set {(k,x) EZ X X; k =0,
x € %(F,)}. Then it follows from the proof of Lemma 3.2 that IN(F,) =
L*(B,) n = 1. Since the sets { F,}2_, are pairwise disjoint, so are { B,}%_,
and the subspaces O ( F, )¢, are pairwise orthogonal. By Lemma 3.1, the
subspace 9N = T @ IM(F,) is a pure invariant subspace with multiplicity
function that equals 7., x r almost everywhere.

Applying Lemma 3.5, we find, for each n =1, a pure invariant
subspace 9N, contained in OL( F,), with multiplicity function that equals
X g, almost everywhere. By Lemma 3.1, the subspace N =2 @ I, is a
pure invariant subspace with multiplicity function m(x) (= 2 x g )-

For the last assertion, note that, when [,m(x)dp(x) = p(X),
U%_, F, = X and therefore U_ | B, = Z, XX and N = L(Z, X X).

But, for each n =1, V{L*IM : k € Z} = V{LIM(F,): k € Z}
(see the remark following Lemma 3.5) and then,

V{LOm:keZ} =V {L*M,: k€ Z,n=1}
= V{L*W(F,):k€Z,n=1}=V {L*9: k € Z}.

Since N = L¥Z, XX), L*N = L¥{(n,x): x €X, n=k)) and
V{L*9: k € Z} = L*(Z X X). Hence 9, and also I, is full. O

We shall show now that the condition [,m(x)dp(x)=p(X) is
necessary, in order to find a pure invariant subspace with multiplicity
function m(x).
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THEOREM 3.7. Let 9N be a pure invariant subspace with multiplicity

function m(x). Then [, m(x) dp(x) < p(X) and equality holds if and only
if M is full.

Proof. Suppose [, m(x) du(x) = p(X). Then, since the measure p is
non atomic, we can find another measurable function m (x), with non-
negative integral values, such that m(x) = m(x) and [, m(x)dp(x) =
p(X) (and if [, m(x)du(x) = p(X), then m(x) = m(x)). Applying the
preceding theorem we can find a pure and full invariant subspace 9N,
with multiplicity function m (x).

Since m,(x) < m(x) we can use Theorem 2.2 to obtain a partial
isometry 7, in R, such that 9, = T9N. The final space of T is the
range of a projection in %, and, since it contains 9N, it contains
V{L"I,: n € Z}. But 9, is full, hence the final space of T is K and,
by finiteness of the algebra &, 7 is a unitary operator. Applying Prop-
osition 2.3 we have m(x) = m(x) a.e. and, therefore, [, m(x) du(x) =
p(X).

If [ym(x)du(x) = p(X) then, as we have seen above, I = T*IN,
where 9L, is the subspace constructed in Theorem 3.6 (for the function
m(x)). Therefore I, is full and

V{(L'N:n €Z) = V (T*L",: n € Z)
=T*V (L', neZ)=%.

Hence 9N is full.

On the other hand, suppose I is full. Since [, m(x) du(x) < p(X),
we can find a measurable function m (x), with values in Z_ , such that
my(x) =m(x) and [, m,(x) du(x) = p(X). Using Theorem 3.6 and The-
orem 2.2 we can find a pure and full invariant subspace 9W,, with
multiplicity function m,(x), and a partial isometry 7, in %4, such that
M = TON,. The final space of T contains I, a full invariant subspace,
hence T is a unitary operator and, by Proposition 2.3, m(x) = m(x) a.e.
and [y m(x) dp(x) = p(X). O

4. Two-sided invariant subspaces and canonical models. Define a
subspace I of K to be two-sided invariant if it is an invariant subspace
for the algebra £, VR, the weak-operator closed algebra generated by
Poand R, .

In [2] M. McAsey introduced the notion of canonical models for
invariant subspaces. A complete set canonical models was defined to be a
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family of full, pure invariant subspaces {91, },., with:

(a) for no two distinct indices i and j is Py unitarily equivalent to Poy
by a unitary operator in %} ; and

(b) for every pure invariant subspace 9, there is an i in / and a
partial isometry 7 in % such that TPy T* = P (in particular I = TI,).

In the setting of [2], the space X'is a finite set, X = {x;: 0 <i<=n — 1}
(with the counting measure ) and 7(x,;) = x, ., (i #n — 1), 7(x,_;) = X,.
The definitions of the algebras £ and A and the notions of invariance and
multiplicity function are analogous to the ones in our setting.

It is shown there ([2, Theorem 4.1]) that a finite set of two-sided
invariant subspaces can be used as a set of canonical models for the pure
invariant subspaces. In order to establish this result one has to show that
for each measurable function m on X having values in Z, and satisfying
[xm(x)du(x) = u(X) (when X is a finite set 27, m(x,;) = n) there is a
two-sided invariant subspace with multiplicity function m. This is proved
in Theorem 3.4 of [2].

In the setting of our study this cannot always be done and, as we shall
soon see, the existence of such a subspace, for m(x), is related to whether
1 — m(x) is a coboundary or not.

THEOREM 4.1. Let m(x) be a measurable function with values in Z. . and
satisfying [y m(x) du(x) = p( X). Then there is a two-sided invariant sub-
space I, with multiplicity function m(x), if and only if there is a measura-
ble function d, on X, with values in Z, such that

(%) dix)—d(r ' (x)) =1—m(x) a.e.

Proof. Suppose, first, that such a subspace I exists. It is shown in [3,
Theorem 4.3] that there is a subset B, in Z X X, satisfying A(B) C B and
p(B) C B where A(k, x) = (k + 1, 7(x)), p(k, x) = (k + 1, x), and 9N
=L*B) (={f€H: fk,x)=0 for (k,x) €& B}). Define d(x)=
inf{k: (k, x) € B} whereinf @ = o0 and infZ = — 0.

Let C, be the set {x € X: (k, x) € B for each k € Z} and C, be the
set {x € X: (k, x) € B for some k € Z}. Since A(B) C B, we have that if
(k, x) lies in B then (k + 1, 7(x)) is in B. Therefore 7(C,) C C,, i = 1,2.
It follows from the ergodicity of 7 that, for each i = 1,2, either u(C;) = 0
or p(X\C, = 0. If u(X\C,) = 0 then (k, x) lies in B, for every k € Z
and almost every x € X. Hence M = L*(B) = K in this case and the
multiplicity function would be zero almost everywhere. As [y m(x) du(x)
= p(X), this cannot occur and, so, u(C,) = 0 and d(x) > — o0 a.e.
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If u(C,) =0, then M = L*(B) = {0}. This also contradicts the as-
sumption about m and we have that u( X\ C,) = 0 and d(x) < o a.e.

It follows that we can, by changing d on a set of measure zero, assume
that d is finite everywhere. To see that (*) holds we let 4 be the set
B\A(B) and 4,, for x € X, be the set {k € Z: (k, x) € A}. Since
M = L*(B), we have LI = LL*(B) = L*(A(B)) and

@
M © LI = LA B\A(B)) = L*(A) :f 1,(A,) du(x).
X
Therefore m(x) = number of elements in 4, (to be denoted by #(A4,)).

Note that, from the definition of d(x), if (k, x) lies in B then
d(x) = k. Also, if d(x) =< k, then (d(x), x) lies in B and

(k, x) = p*~“9(d(x), x) € p"“*(B) C B.

Hence B = {(k, x): d(x) <k} and N\(B) = {(k, x): d(7'(x)) =k — 1}.
Thus

A={(k,x):d(x) =k <1+d(r7(x))},
A,={k€Z:id(x)<k<1+d(r'(x))},
#(A4,)=1+d(r(x)) — d(x).

]

Thus m(x) = 1 + d(7'(x)) — d(x).
To prove the converse, suppose that d satisfies (*). Let B be the set
{(k, x): d(x) < k}, then

AB) = {(k,x):d(r7'(x)) sk —1}

= {(k,x):d(x) + m(x) — 1<k —1},

and A(B) is contained in B since m(x) =0. We also have p(B) C B
because p(B) = {(k, x): d(x) =<k — 1} C B.
' Hence the subspace 9 = L*(B) is a two-sided invariant subspace
(see Theorem 4.3 of [3]) and 9N © M = L*(B\A(B)) (= L*(A)). Again,
A, ={ke€Z:dx)=sk<1+d(r'(x))}
={ke€Z:d(x)<k<d(x)+ m(x)}

and the multiplicity function of 9N is m(x). O
We cannot, therefore, find a complete set of canonical models among

the two-sided invariant subspaces. We can, however, find a complete set
of canonical models among the pure and full invariant subspaces.
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For each measurable function m(x), with values in Z, , satisfying
[xm(x)dp(x) = p(X), we can, using Theorem 3.6, construct a pure, full,
invariant subspace 9 with multiplicity function m(x). The set obtained
in this manner, to be denoted by &, can serve as a complete set of
canonical models. Indeed, for each pure invariant subspace 9N, with
multiplicity function m, there is some measurable function m (x), with
values in Z, and such that m(x)=m(x) almost everywhere and
[xmy(x) dp(x) = p(X). Using Theorem 2.2 we can find a partial isome-
try T € R such that Py, = TPy T* where 9, is the subspace in ¥ having
multiplicity function m (x) almost everywhere.

We conclude by pointing out that the ergodicity of 7 (assumed
throughout the paper) is necessary for Theorem 3.6 to hold.

PROPOSITION 4.2. If 7(E) = E for a subset E, of X, with u(E) >0,
p(X\ E) > 0, then there is no pure invariant subspace O with multiplicity
function m(x) = x g(x) + x z(x) where F C E is a subset of positive mea-
sure (even if [ym(x)dp(x) < p(X)).

Proof. Let Q be the set X\ E. Then L*(Z X X) =L*Z X E) ®
LX(Z X Q). Denote L(Z X E) by K, and L*(Z X Q) by H,. Then
X, is invariant for both £ and R and we can write £ = £, ® £, (where

=LK and R =R, ® R, (where R, = R|K,).

If O C K is a pure invariant subspace, then O = I, & I, where
9N, is a pure invariant subspace in K, (invariant with respect to £, | K,)
because each K, is the range of a central projection. If m(x) is the
multiplicity function of 9T then, as one can easily see, m,(x) = x z(x)m(x)
and m,(x) = x o(x)m(x) are the multiplicity of 91, and .

If we assume that m(x) = xx(x) + xp(x), FCE, and p(F) >0
then m(x) = xg(x) + x p(x) and, hence, restricting our attention to K ,,
we see that O, is a pure invariant subspace with multiplicity function
greater than one. Since the multiplicity function of L*Z, XE) (as a
subspace of X)) is identically one, Theorem 2.2 implies that there is a
partial isometry T, in 4,, that maps 9N, onto L*(Z, XE) (note that
Theorem 2.2 and Proposition 2.3 do not use ergodicity and, hence, might
be used here). The range subspace of T contains L*(Z, X E) and the
corresponding projection lies in R, hence the range of T is K, and, since
% is finite, T is a unitary operator. This shows that m, = 1 (using
Proposition 2.3 for 9, and L*(Z, XE)) and, thus, contradicts our
assumption. O
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