Pacific Journal of

Mathematics

SELF-INTERSECTION NUMBER OF IMMERSIONS AND
ENUMERATION OF NONSTABLE VECTOR BUNDLES

SU-WIN YANG




PACIFIC JOURNAL OF MATHEMATICS
Vol. 113, No. 1, 1984

SELF-INTERSECTION NUMBER OF IMMERSIONS
AND ENUMERATION OF NON-STABLE
VECTOR BUNDLES

Su-wIN YANG

Suppose N is a closed n-dimensional smooth manifold and M is a
2n-dimensional smooth manifold. In 1944, H. Whitney defined the
self-intersection number for an immersion with normal crossings f:
N — M. We show that, if N is path-connected and the James-Thomas
number of the normal bundle »(f) of f is greater than 1, then the
self-intersection number is completely determined by the homotopy class
of f and the normal bundle »( f).

Introduction. Suppose N is a closed n-dimensional smooth manifold
and M is a 2n-dimensional smooth manifold. For any immersion with
normal crossings (having singularities of double points only and meeting
itself transversally) f: N - M, the set of double points D( /) = { f(x)|there
exist y # x, f(y) = f(x)} is finite. In 1944, Whitney [13] defined the
self-intersection number I( f):

(A) When n is even and N, M are oriented, I( f) is an integer
(algebraic sum of D( f));

(B) Otherwise, I( f) is the modulo 2 reduction of number of elements
in D(f).

It is well-known that [Lashof and Smale, 10], in case (A), 2I( f) is
equal to the intersection number of the homology class f,([ N]) with itself
minus the Fuler number of the normal n-plane bundle »( f) of f, where
[N] € H(N; Z) is the fundamental class of N. Thus, I( f) is completely
determined by the homology class f,({N]) and the normal bundle »( f).
But, in case (B), I( f) is not always an invariant of the homology class
f«(IN]) and the normal bundle »(f), for example, N = S', M =R?,
consider the two immersions of S' onto the unit circle and the Figure 8,
respectively.

For any n-plane bundle 7 over N, the James-Thomas number of 7 is
the number of equivalence classes of n-plane bundles which are stably
equivalent to 7.

By Whitney [13], there is an immersion with normal crossings f”:
N - M such that f/ = f and I(f’) + I(f). Now, if the James-Thomas
number of »( f) is equal to 1, then »( ') is equivalent to »( f), and I( f)
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cannot be determined by the homotopy class of f and the normal bundle
v( f). The main purpose of this paper is to prove the following:

THEOREM. Suppose N is path-connected and the James-Thomas number
of v(f) is greater than 1. Then I(f) is completely determined by the
homotopy class of f and the normal bundle v( f).

Note. The James-Thomas number of »(f) depends only on the
homotopy class of f.

To prove the Theorem, we utilize the construction of Brown [3] and
give a formula in some stable homotopy class, which is similar to the one
for case (A).

We arrange the paper as follows:

I. In §1, we study the James-Thomas number (the approaches are
motivated by [7]), and show that, if N is path-connected and the James-
Thomas number of 7 is greater than 1, then the Wu-orientation (defined
as in [2]) of 1 is completely determined by the homotopy class of the map
in the base spaces (detail see (1.4) and (1.7)). This was studied by Dupont
[4] and earlier by Brown [3] in another version. Thus, essentially there is
nothing new in this section.

2. In §2, with the help of construction given by Brown [3], we
construct two stable homotopy classes in {S*"*, T({) N K(Z,, n)} (£ is
some k-plane bundle) for an immersion from N” to M?" and the dif-
ference of these two stable homotopy classes gives the self-intersection
number I( f). By (1.7), we have the invariance property of the two stable
homotopy classes and hence that of I( f) (detail see (2.6)). The proof of
the formula in (2.6) depends on the technical result of (2.5), and the proof
of (2.5) quite depends on the Hopf ladder, defined by Boardman and
Steer [1], and the short exact sequence of homotopy classes developed by
Milgram [11].

1. The James-Thomas number. Assume 7 is an n-plane bundle over
the n-manifold N. To find all n-plane bundles which are stably equivalent
to i, we consider the spherical bundle of the Whitney sum of 7 and the
trivial line bundle &' over N and a cross-section f: N — S(n © ¢'). Let
n(f)={ve(n®e) |vLlf(x), x €N} be the orthogonal complement
of the subbundle {#/(x)|x € N, t € R}. Then, any n-plane bundle which
is stable equivalent to 7 is equivalent to n( f) for some cross-section f.
Furthermore, choose an embedding ¢: D" — N and a local trivialization
¢: D" X R" = V(n) such that 7(¢(x, v)) = ¢(x), for x € D", v € R",
where V(7m) is the total space of 7 and #: V(n) — N is the bundle
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projection. Let ¢, D" X R" X R' - V(n ® ¢') be ¢\(x, v, t) = (¢(x, v),
t). We may assume that 3), maps D" X S” into S(n © &'). For each integer
i, choose a map d,: (D",9D") - (8", x,) with degree i/, where x, =
(0,0,...,0,1). Let f: N > S(n ©® ¢') be the cross-section defined by

f(y) — (SO(y)ﬁl)’ fory &q)(D")’

' ¢)(x, d;(x)), fory=ao(x) € o(D"),
where s,: N = V(n) is the zero-section. If N is path-connected, then any
cross-section of S(n @ &') is homotopic to f, for some integer i, and hence
{n(f)]i: integer} consists of all the n-plane bundle which are stably
equivalent to 1. The following facts about {n( f,)} are standard.

PROPOSITION (1.1). Suppose N is path-connected.
() When n is even and V(m) is orientable, n( f,) is not equivalent to
n( /), fori #j.
(i1) If V(n) is non-orientable, n( f, . ,,) is equivalent to n( f,), for all
integers i and k.
(iit) If n is odd, n( f.. ) is equivalent to w( f,), for all integers i and k.

(Proof of (1.1) is in §3.)

Now we introduce a terminology which is related to the James-Thomas
number.

Suppose v is a cohomology class in H""'(BO; G) for some abelian
group G.

DEFINITION (1.2). Suppose & is a k-plane bundle over X. For a vector
bundle automorphism ® of &, A (&, @) is the k-plane bundle &€ X I /(v,0)
~ (®(v), 1) over X X S' (identify 1/01 as S*). If ¢: X = O, is a map into
the orthogonal group of R/, let ®: ¢’ - ¢’ be the automorphism of the
trivial /-plane bundle over X induced from ¢, then we define A(&, ¢) as the
(k + I)-plane bundle A,(¢ @ ¢,id(£) © @), where id(§) is the identity
map of &.

DEFINITION (1.3). A vector bundle £ is v-singular, if there is a map ¢:
X - O,, such that v(A(¢, ¢)) 0. A vector bundle ¢ is said to be
v-nonsingular, if £ is not v-singular.

When dim £ =dim X + 1, ¢ is v-nonsingular, if and only if
v(A(&, ®)) = 0, for all automorphisms P of &.
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Let W,,, € H""(BO; Z,) be the (n + 1)th Stiefel-Whitney class, we
have

PROPOSITION (1.4). Let 1 be an n-plane bundle over N. If  restricted to
each path-component of N has James-Thomas number greater than 1, then n
is W, . \-nonsingular.

Note. 7 is v-nonsingular, if and only if, 7 restricted to each path-com-
ponent is v-nonsingular. It is enough to prove (1.4) for the case that N is
path-connected.

Proof. Assume 7 is W, |-singular, that is, there is an automorphism @
of n ® &' such that W, (A(n ® €', ®)) # 0. f: N - S(n © ¢"), i integers,
are sections defined as above. Let f = ® o f,. Then n( f) is equivalent to
n( fo) by @14, If f is homotopic to f,,, for some integer £, by non-zero-
sections, then we may construct a cross-section on A(n @ &', ) which
meets the zero-section with 2k points and transversally, and this implies
W, (A(n & &', ®)) = 0. Thus fis homotopic to f,, ., for some integer k,
and hence, n( f;) is equivalent to 9( f,,,,)- By (1.1)(1), n is odd or V(7) is
non-orientable; also, by (1.1)(i1) and (iii), n( f;) is equivalent to n( f;) for
all integers i, j. This proves (1.4).

Let v, , be the (n + 1)th Wu class and e; be the class in H(0; Z,)
which transgresses to W,,, for positive integers i. Then there are two
equivalent statements of W, ,-nonsingular.

PROPOSITION (1.5). (i) Suppose N is a closed n-dimensional smooth
manifold, 1 and 7, are two vector bundles over N such that the Whitney sum
n © 1, is equivalent to the normal bundle of N. Then, 1 is W, -nonsingular,
if and only if, m, is v, , ,-nonsingular.

(ii) A vector bundle & over X is W, ,-nonsingular, if and only if, for any
map ¢: X - O, | >dim X, 2., 9*(e,_,) U Wi(§) + ¢*(e,) = 0. (Ifi =
l,e;=0)

(iii) A vector bundle & over X is v, -nonsingular, if and only if, for any
map ¢: X - O, 1 >dim X, 2 o ¢*(ep_ ) U v, (&) =0.

Proof. (i) Suppose ¢: N > O, is a map. Consider the map ¢ "
N> 0, ¢ (x) = (¢(x))”", then A(n, ¢) ® A(n,, ¢ ") is equivalent to
the normal bundle of X X S'. Thus, the Thom spaces T(A(n, ¢)) and
T(A(m,, ¢~ ")) are dual each other, in Spanier-Whitehead S-duality. Con-
sider their Thom classes U, and U,, then Sq"*'(U;) = 0, if and only if,
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X(Sq"*)(U,) = 0, that is, W, (A(n, ¢)) =0, if and only if,
v, 1(A(n;, 1)) = 0. This completes the proof.

(ii) Let m,: X X S' > X be the projection map and 6(¢) be the vector
bundle X X R' X I/(x, v,0) ~ (x, $(x)(v), 1) over X X S', for a map ¢:
X - O,. Then

A€, ¢) = 7" (§) © 0(9).

By the Whitney product formula and W, ,(0(¢)) = ¢*(e;), we have the
result.

For (ii1), it is enough to note: When i 7 27, for r: integer, v,(6(¢)) = 0;
and when i = 2", v,(8($)) = $*(¢;_).

Now, for a class v € H""!(BO; G), we shall define the v-orientation
as in Brown [3] and Browder [2].

Let K denote the Eilenberg-Maclane space of type (G,n + 1),
P(K, =) be the path space {a: I - K|a(0) = =, the base point} and
BO{v)= {(x,a) € BO X P(K, *)|a(l) = v(x)} (consider v as a map
from BO to K). Also, denote by {* the stable vector bundle over BO(v)
induced from the universal vector bundle over BO, by the projection p:
BO{v)- BO, p(x,a) = x.

DEFINITION (1.6). A v-orientation on a vector bundle n over X is a
vector bundle map

LS

n $°
(W,W): | !
w
X 5 BO(v)

Two v-orientations (I7V—,-, W), i =0,1, on 1 are equivalent, if there is a
v-orientation (H, H) on n X I such that H(x, i) = W,(x) for all x €
andi =0, 1.

1 has a v-orientation, if and only if, v(n) = 0. If two v-orientations
(W,, W), i =0,1, are equivalent, then W, is homotopic to W;; the
converse, in general, is not true. But, we have

PROPOSITION (1.7). Suppose a vector bundle n over X is v-nonsingular.
Two v-orientations (W, W;): (1, X) = (§{°, BO(v)), i=10,1 on n are
equivalent, if W, is homotopic to W,.

(Proof is in §3.)
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2. Main result and its applications. First, we state the construction
given by Brown [3].

In the following Wu-orientation is the v, ;-orientation and { is the
vector bundle {*+' of dimension k defined in §1.

For an embedding e: X - R™** of a smooth compact m-manifold X
in R""* with normal bundle »( X) and a Wu-orientation on »(X), (¥, V):
(»(X), X) = (§, BO{v,.,)), we have the (m + k)-S-duality map, associ-
ated with the embedding e, a,: S™** > T(»(X)) A (X/3X) and the map
of Thom spaces induced from V, T(V): T(»(X)) = T(¢). Consider the
map

T(V)/\u

(T(7) Au)oa,: S™ S T(s(X)) A (X/0X) T)A Y

and the associated stable homotopy class {(T(V) A u) o «,} in
{§™*k, T($) A\ Y}, where u is a map from X/9X to a space Y.

PROPOSITION (2.1). Suppose X and u are fixed, k > m + 2, and v( X) is
v, -nonsingular. Then the stable homotopy class {(T(V) N u)° a,} de-
pends only on the homotopy class of V in [ X, BO{v,, )]

Proof. First note that, when k > m + 1, »(X) is independent of the
embedding e.

Consider an embedding g: X -» R™** and a Wu-orientation of the
normal bundle »(g), (W,, W): (»(g), X) - (§, BO{v,4,)) such that W'is
homotopic to V. We should show that (T(W) N\ u) ° a, is homotopic to
(T(V) A u) o a,. By Haefliger [5], there is a smooth 1sotopy H: XXI-
R™** such that H,= g and H, = e, where H(x) = H(x, t). Extend the
Wu-orientation (WO, W) on »(g) to the Wu-orientations (W, W):
(v(H,), X) - (§, BO{v,,,)), for 0 =<t < 1, continuously. Then, the maps
(T(W,) Nu)eay, 0=<t=<1, give the homotopy between (T(W,) A
u) ° a, and (T(W) A u) ° a,. But, by (1.7) and the assumptions, the two
orlentatlons (W,, W) and (V, V) are equivalent. This proves (2. .

For later application, we consider the S-dual of the map T(V). Let Z
be the (m + k + r)-dual of T({) (suppose T({) has been substituted by
its sufficiently high skeleton) and 8: Z A T({) —» S™***" be the S-duality
map. Then, there is a natural isomorphism of stable homotopy classes,

Byi {S™H T() A Y} = (2, 577)
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(consider the two stable homotopy classes as the functors of space Y),
defined by: for g: S"** > T({) N Y,

Bi(g) = (BAId(Y)) o (id(Z) Ng): Z A S™TFT7
LEZATE) A YD smrkt Ay,
where id(4) is the identity map of 4. _
Denote the map B, ([T(V) Nid(X/9X)] o a,) by B(e, V), then, by
the natural property of B, we have

PROPOSITION (2.2). B.({(T(V) N u) o a,}) = {(s"u) o B(e, V)}, where
s"u: S(X/0X) — S”Y is the suspension of u.

Now, we apply the above to immersions. Suppose N is a closed
smooth n-manifold, M is a compact smooth 2n-manifold and ¢: M —
R?*"** is an embedding with normal bundle »( M). Because v, (»(M)) =
0, we may fixed a Wu-orientation on »(M), (W, W): (»(M), M) -
(§, BO{v,,,)). For an immersion f: N - M, we define two stable homo-
topy classes in {S2"*X, T({) A K(Z,, n)} as follows:

First, we choose a smooth map into the unit disk of R, f;: N - D’
such that f X fi: N -> M X D' is an embedding. Consider the embed-
ding ¢,;: M X D' - R*""**1 ¢ (x, y) = (¢(x), y) € R*"** X R’ and the
Wu-orientation (W,, W,): (»(M X D'), M X D*) - (§, BO{v,,,)) on
»(M X D*) = y(M) X D'induced from (W, W).

(1) Let uy: M/9M — K(Z,, n) represent the cohomology class which
is the Poincaré dual of f ([N ]) and

u, = uy Nid(D'/0D"): M X D'/3(M X D') - K(Z,,n) A S".

Define ®(f, N, M, W) = {(T(W)) Nu)) ° a, }

(i1) Let n denote the normal bundle of f and E(7) the disk bundle of
7. Extend f to an immersion on E(7), f: E(n) = M; define f: E(q) X D'
- M X R by f(x, y) = (f(x), f(n(x)) +y) and fy: E(7) X D" > M X
R’ by f,(x, y) = (Ax, Ay), for positive number A < 1, where 7: E() > N
is the bundle projection. By the choice of f,, f, is an embedding for small
A. We substitute f, for f for a small positive A. Then E(n) X D’ is
embedded in R*""4* (by ¢, o f) with normal bundle f#(»(M X D')), and
we denote by f¥(W,) the induced Wu-orientation on f(»(M X D')). Let
U: E(n)/3(E(n)) = K(Z,, n) be the Thom class and U, = U N id(S"’).

Define

V(£ N, M W) = {[(TFHW,)) AU 0. )
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The stable homotopy classes are actually independent of the choice of
fi- Under some assumption, we have stronger results.

PROPOSITION (2.3). (i) If the two immersions f, g: N - M are homo-
topic, then ®(f, N, M, W) = ®&(g, N, M, W).

(i) Suppose f¥(v(M)) is v, -nonsingular. If the two immersions f, g:
N — M are homotopic and the normal bundles v( ) and v( g) are equivalent,
then ¥(f, N, M, W) = ¥(g, N, M, W).

(iii) Suppose g;: N - M,, g,: N - M, are two immersions, dim M, =
2n, i = 1,2, the James-Thomas number of v(g,) is greater than 1 and
(I7V_i, W) (v(M,), M) = (§, BO(v,,,)), i = 1,2, are Wu-orientations. If
v(g,) is equivalent to v(g,) and W, g, is homotopic W,° g,, then
‘I’(gl’ N’ Ml’ Wl) = ‘I'(gz, N7 MZ’ I’Vz)

Proof. (i) follows the definition directly. By (2.1), we have (ii). For
(iii): By (1.4), »(g,) is W, ,-nonsingular. »(g;) ® gf(»(M,)) is equivalent
to »(N), by (1.5), gf(»(M,)) is v, ,-nonsingular. Hence, by (2.1), we have
(iii).

PROPOSITION (2.4). (i) Bo(®(f, N, M, W)) = {5"u, ° B($1, W))}.

(ii)

Bu(¥(f, N, M, W)) = {s'U, os'1(f) o B(¢1, W)}

where 7(f): M/IM N S' - (E(n)/aE(n)) N 8" is the Thom-Pontrjagin
construction associated with the embedding f.

Proof. By (2.2), we have (i) and
B.(¥(f, N, M,W)) = {s"U, o B(o, o f, 7*(77)))}.

Thus, we need to show B(¢, o f, FHW))) = s7(f) o B(¢,, W,). Let f*
denote the inclusion f¥»(M X D')) » »(M X DY), then T(fHW,)) =
T(W,) o T( %), and, by the definition of Thom construction, we have the
equality

(%) (T(7%) Nid) o ey, o jy = (Id A T(f)) © @,

B(o: o £, 74(W)) = Bu([T(5())) Aid] o« . ;) (by definition)
id] o [T(7%) Aid] ° a, . )

id] o (id A7(f)) e e, ) (by (%))

(/)] o ay,) =51(F) 2 B(o, W) (by (2.2)).
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PROPOSITION (2.5). If f: N = M is an immersion with normal crossing,
f, can be chosen as a map from N into R' (t = 1). Then

uy— U o T(f) =I(f)p, in [SM/E)M, SK(Z,, ”)],

where ., € [SM/0M, SK(Z,, n)] is the composite of the generator p, of
[S2" ! SK(Z,, n)] and the map of degree 1 from SM /M to S*"*'.

(Proof of (2.5) is in §3.)
Combining (2.3), (2.4) and (2.5), we have the following main result.

THEOREM (2.6). Suppose N is a closed n-dimensional smooth manifold,
M is a compact 2n-dimensional smooth manifold, ¢: M — R*"** s an
embedding with normal bundle v(M), and (W,W): (v(M), M) -
(§, BO{v,.,)) is a Wu-orientation on v(M). Then, for any immersion with
normal crossings f: N — M, the stable homotopy classes ®( f, N, M, W) and
Y(f, N, M, W) are defined and the following equality holds

S(f,N,M,W)—Y(f, N, M,W ) =I(f)p

where p = B3 (s 'u, o B(¢,, W) is an element of order 2. If f¥(v(M))
is v, ,-honsingular, then the left-hand side of the above equality is com-
pletely determined by the homotopy class of f and the normal bundle of f, and
hence so does the modulo 2 reduction of I( f).

REMARK. (i) In (2.6), I( f) can be substituted by the number of double
points in M.
(i) Let g: S* — T(¢) be the inclusion of S* as a fibre in 7(¢), and

gx: (S¥H SYNK(Zy, n)} =SP4, T(S) NK(Zy,m))

be the induced map. Denote by p, the generator of {S2"* Sk A
K(Z,, n)}. Then

gx(po) = .

COROLLARY (2.7). Suppose N is a closed n-dimensional smooth manifold
and f: N — M is an immersion with normal crossings into a 2n-dimensional
smooth manifold. Then, the following statements are equivalent:

(1) The normal bundle of f restricted to each path-component of N has
James-Thomas number greater than 1.
(i1) The normal bundle of f is W, -nonsingular.
(iii) fH(»(M)) is v, . ,-nonsingular.
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(av) If g2 N - M is an immersion with normal crossings satisfyin the
following two conditions:

(1) g is homotopic to f,

(2) the normal bundle of f and g are equivalent, then I(g) = I(f)
(mod 2).

Proof. We need only to show that (iii) implies (iv). Assume (iii) and
the assumption in (iv). Consider a compact 2n-submanifold M’ of M such
that the homotopy of f and g is contained in M’. Then, by (2.6),
I(f) = I(g).

The following two applications directly follow (2.7) and (1.5).

COROLLARY (2.8). If the dimension of N is not equal to 2' — 1, for any
integer i and M is almost parallelizable, then f*(v(M)) is v, . ,-nonsingular
and hence the statement (1v) in (2.7) holds.

COROLLARY (2.9). Suppose, for any map ¢: N — 0, ¢*(e,) = 0. Then,
for any two homotopic immersions f, g: N — M with trivial normal bundle,

I(f) = I(g).
3. Proofs.

Proof of (1.1). (1) When n is even and V(7) is orientable, the Euler
number x(n) of n is defined and x(7( f;,,)) = x(n(f,)) + 2. This implies
the result.

(1) If ¥(n) is non-orientable, then f,,,, is homotopic to f, for all
integers i and k.

(i) First, we define the connected sum of two vector bundles.
Suppose M,, i = 1,2 are m-manifold, 5, are k-plane bundles over M,,
i=1,2, and 6: D" X R >, i=1,2 are local trivializations. The
connected sum 7, #1, is defined as the k-plane bundle

{"71 - 01(15;;1 X RA)] U[le - 02(Dom X R")]/ﬂl(x, v) ~ 0)(x,v),
x €S veER,
over M\ #M,.
By the definition of f,, we have n(f ) = n( f,)#7(S"), where 7(S")

is the tangent bundle of S”. But, 7(S")#7(S") is a trivial vector bundle,
this proves (1.1).
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Proof of (1.7). Let p: {* = §, denote the vector bundle map covering p
and let g = p o W,, g = p o W,. By the assumption that W, is homotopic
to W, there is a Wu-orientation (W, W,) on _n which is equivalent to
(W,, W,). Comparing the two bundle map W, and W, there is an
automorphism ® of 7 such that W} = W, o ®. Consider the vector bundle

A(n, @), let (0, 8): (Ay(n, @), X X §') > (§,, BO) be a classifying map
of Ay(n, ®) such that (6 > j)(y,0) = g(»), (8  j)}(x,0) = g(x), for y € 1,
x € X, where (j, j): (9 X I, XX I) - (A(n, ®), X X S") is the identi-
fication map in the construction of A,. Let (&, h) = (0, 8) © (J, j): (1 X
I, X X I) - (¢, BO), then hy=h, = g, h, = g and h, o ® = g. Further-
more, by assumption that 7 is v-nonsingular; v e §: X X S' > K is null-
homotopic; this implies that there is a homotopy H: X X I X I - K such
that H(x, s,,0) = o(h(x, s,)) and H(x,0, s,) = H(x,1,s,) = H(x, s;, 1)
= v(g(x)), for all 5, 5, in [0, 1] and x in X. Let a: X - K’ be the map
such that %(x) = (g(x), a(x)), for all x € X, and consider the maps
H .. X->K', SX)0) = H(x, 51, 5,), then a(x)(1) = v(g(x)) =
H, (x)(0) and we have the map a * H, ,: X > K', (a * H, | )(x) = the
path product of a(x) and H ,(x). When (sl, s,) is in the path-connected
set C = [0, 1] X {0} U {1} X[0,1], (a * H, , )(x)(1) = o(h(x, s))), W, ,,
= (h,, 5,) X > BO(v) is a well- defined map. For (s, 5,) € C,
let W i - { g be the unique vector bundle map such that W,  covers
W, s, and pe W h Then W00 is equivalent to Wll and W11 =
17170’0 o @' But, it 1s easy to see that WOO is equivalent to WO This shows
that W, is equivalent to W,.

Proof of (2.5). Let L = M /dM. By Brown [3] or Milgram [11], there is
a short exact sequence

0- H>(L; Z,) i>[SL, SK(Z,, n)] iH"(L; Z,) -0,

where j(x,) = p,, for x, the generator of H>"(L; Z,); A is defined by: for
g: SL > SK(Z,, n), A(g) = s '(g*(A)), A is the fundamental class of
SK(Z, n)in H""'(SK(Z,, n); Z,) and s is the suspension isomorphism in
cohomology.

Thus, AU, o 7(f)) = uy, A(u,) = u,, and hence, U, o 7(f) — u, =
mu,, for some integer m.

Consider the Hopf ladder A, of degree 2, defined by Boardman 2nd
Steer {1, A,: [SL, SY] - [S°L, SY A SY]. By the natural property of A,
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U: T(n) = K(Z,, n) induces a commutative diagram

[SL,sT(m)] = [SL,ST(n) A ST(n)]

{sU L(sU A sU),

*

[SL, SK(Z,, n)] n [S2L, SK(Z,, n) N SK(Z,, n)]
2
[L, K(ZZ,Zn)]

Let x, be the generator of [S2L, ST(n) N\ ST(n)] (= Z or Z,), then
(sU N\ sU)(x,) = x,. By the result of Koschorke and Sanderson [8],
A (1(f)) = I(f)x,, and hence A (U, o 7( f)) = I(f)x,. Also, by the defi-
nition of Hopf ladder and u, is the suspension of u,, A,(#;) = 0. For any
maps g: SL — SB and h: SL~ SC, let g- h=(gAh) o (s*d):. S’L -
SB N SC denote the cup product, as in [1}, where d: L - L N\ L is the
reduced diagonal, then we have A (g + h) = A,(g) + g+ h + A,(h). Let
g,: SL — S*"*! be the map of degree 1 and p, € [S*"*!, SK(Z,, n)] be
the generator, then pu, = py° g, and p, - 4, = (py AN id) o (g, - u;). But,
g, - u, maps S°L into §*"*' N\ SK(Z,, n) which is 3n-connected; when
n=1, g -u, = 0. Thus, we have A,(mp, + u) = A,(mp,) + A (u)) =
mA (). u, is of order 2, U, o 7( f) = mpu, + u,, hence we have I( f)x, =
mA,(p,). Because there is some immersion f such that I( f) # 0, A,(p,) =
x, and hence I( f) = m (mod 2).
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