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ON THE DWORK TRACE FORMULA

ALAN ADOLPHSON

We prove a generalization of Dwork’s trace formula for certain
completely continuous operators on p-adic Banach spaces. This generali-
zation makes it simpler to apply Dwork’s theory to the study of certain
exponential sums involving both additive and multiplicative characters.
As an example, we treat the case of Gauss sums and give a new proof of
the Gross-Koblitz formula.

0. Introduction. The Dwork Trace Formula is a basic tool for
applying the techniques of p-adic analysis to the study of exponential
sums with an additive character. Let p be a prime and let F, be a finite
field with g = p” elements. Let ¥: F, - C* be an additive character. For

f € Fx,,...,x,), define an exponential sum
(0.1) S(f)y= 2 ¥(flxp,....x,)).
X5 X, €EF,

Bombieri [1] has used the Dwork Trace Formula to study such exponen-
tial sums and their associated L-functions. The purpose of this article is to
prove a generalization of the Dwork Trace Formula (Theorem 1) which
will allow one to treat in a straightforward manner sums of the form

(0.2) 2 xi(x) o xa(x) ¥ (fxyseux,)),
Xise-ns x,,EFq
where x;,...,x,: F; » C* are multiplicative characters. Such sums can be

handled by the earlier trace formula at the expense of certain technical
complications, i.e., change of variable in the polynomial f, which results in
changes in the Frobenius operator and the differential operators with
which Frobenius commutes (see for example [4, egs. (6.47), (6.48), and"
(6.49)]). Our point here is that by enlarging the space on which Frobenius
operates, one obtains the sums (0.1) and (0.2) from the same Frobenius
operator, hence the commuting differential operators are unchanged also.
This enables one to apply the other elements of Dwork’s theory more
directly.

As an example, in §2 we give another proof of the Gross-Koblitz
formula. We follow the ideas of [2], although we simplify by avoiding any
appeal to the dual theory. We hope that the ideas of this paper will lead to
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258 ALAN ADOLPHSON

an interpretation of the Gauss sum relations of [2, §8, Remark 2] in terms
of Dwork cohomology.

We use the standard notation for binomial-type coefficients: for n a
non-negative integer,

(Z)n:{z(z+1)-~- (z+n—1) ifn>0,

1 ifn=20,
(z):{z(z—l)---(z—n-kl)/n! ifn>0,
n 1 ifn=20.

We denote by C, a completion of an algebraic closure of the p-adic
numbers Q,,.

1. Trace formula. Let p be a prime and d a positive integer with
(p,d) = 1. Let Q, denote the p-adic numbers and let K be a discretely-
valued extension field of Q,. We assume the valuation on K normalized so
that ord p = 1, and we let | | denote the corresponding absolute value. In
this section we shall use multi-index notation: i = (i;,...,i,,) and j =
(Jy»-- - .J,) are sequences of non-negative integers, and

i/d.,j — iy/d 1/dy, u
x’/yj__x]l/ .-.x”r‘n/yljl...ynn.

Let 8 € K and put b = ord 8 € R. Let L(b; d) denote the set of all
formal series

(1.1) m= Y a(i, j)x"/,
i,j>0

where a(i, j) € K satisfy
(1.2)  orda(i,j)—b((i, +---+i,)/d+j+---+j)=c

for some ¢ €R and all i, j =0. We are treating x/? as a formal
expression only and hence do not regard 7 as a function. The vector space
L(b; d) is made into a Banach space by the following norm:

(1.3) In|= sup |a(i, j) || BT Fim/dEns ),
i,j=0

This sup exists by (1.2).
Define an operator y by

(1.4) Y(n) = X a(pi, pj)x"/*y/,
i,j=0
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where 7 is as in (1.1). Note that ¢ is a linear map of L(b; d) into
L( pb; d).

Let 6 = (§,,...,0,,) be an ordered m-tuple of integers with 0 <
8,,...,9,<d—1,and let L(b; d, ) be the set of all 1 € L(b; d), n as in
(1.1), satisfying a(i, j) = O unless

iy =98, (modd),...,i, =8, (modd).

Then L(b; d) decomposes as a direct sum of d” subspaces

(1.5) L(b;d)= @ L(b; 4, ).
8

If weputfork =1,...,m,
d; = least non-negative residue of pd, modulo d,

then ¢ maps L(b; d, 6’) into L( pb; d, 6).

For f a positive integer, ¢ = p/, define ¢, = (). Since (d, p) = 1,
there exists f such that d|( p/ — 1), in which case ¥, maps L(b; d, §) into
L(gb; d, d). For F =3, -, A(k, x*y' € L(b; d,0), multiplication by F
is stable on each L(b; d, §). Note that if 8’ € K with ord 8’ = b’ > b,
then L(b’; d) is a subspace of L(b; d), and the canonical injection i:
L(b’; d) - L(b; d) is completely completely continuous ([6,8§9]). Now
suppose b > 0 and let az: L(gb; d, §) - L(gb; d, §) be the composition

i ‘I’q
L(gb; d,8) SL(b; d,8) SL(b; d,8) = L(gb; d, 8).

Then a is completely continuous ({6, §3]). By [6, §5], the trace tr az and
Fredholm determinant det(/ — tay) are well defined, and

(1.6) det(I — ta;) = exp| — D tr(az) 't /r
=1

r

is a p-adic entire function.

THEOREM 1.

(¢ —1)"""tr(ar| L(gb; d,3))
= E xl_(q_l)sl/d...x;;l(q—l)am/dF(xl,‘-"xm;yl"..,yn)'

x77 =1
yi =1
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Proof. By [6, Prop. 7(a) and §9], the trace of a on L(gb; d, §) may be
computed by summing the coefficient of x/?y/ in ar(x"/?y/) over all
(i, j) =0 withi = (mod d):

ar(x/4y) =4, S Alk, Dx+re0y)
k, =0

= 2 Algk + (g —1)(i/d), ql + (g — 1)j)x* /Dy,
k, =0

The coefficient of x/?y/ in this expression is A((q — 1)i/d,(q — 1)j),
hence

(1.7) rap= ¥ A((g— 1i/d,(q—1)j).
iEé’(JmZo% d)
On the other hand,
2 x-(q—l)ﬁ/dF(x, y) = 2 2 A(k, l)xk*(q—l)(s/d)yl,
x9 =7 k=0 ya—1=]
yi=1 yi=1
and

(g—1)""" if there exist i, j = 0 such that

R e k—(q— 1)(6/d) = (g — 1),
x4 =1 I=(qg—-1)J,
ye=l 0 otherwise.
Hence
2 xV¥eF(x, y)
x9 1=
:yll_]:}
=(qg—1)"" T A((g— i+ (¢—1)(8/d),(¢ = 1))
i,j=0
=(g—1"" T Allg—1i/d,(¢—1)j).
iEé’(JmZo(c)ld)
The theorem now follows from eq. (1.7). O

COROLLARY.

(¢" = )" tr(af| L(gb; d, 8))

= X ( 11 xi‘(qr_l)s,/d)F(x; y)F(x9; y7) "-F(x‘i"‘; y""'),
i=1

xﬂ"“:]
yi =1
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2. Application. Fix A € F;, where d|(¢— 1) and ¢ = p/, and
consider the exponential sum

=3 exp( Try, /¥, ()\‘d)).

X €EF,

Let G be the group of dth roots of unity in F,, and let G be its character
group. Then

SR ) =1+ 3 3 x(xe " exp| 2 Tr, 1 (K5)

xE€F; x€G

=1+ 3 () 3 x(@ erp| 2y ().

X€G xeF;

Put

860 = 3 x(7 " exp 20Try g (5)

xeF;

By [2, eq. (4.4)], the Gauss sum g(x), considered p-adically, factors in a
natural way into a product of f factors. The Gross-Koblitz formula
describes these factors in terms of the p-adic gamma function. We
give a proof of the Gross-Koblitz formula for the factorization of
x(A 97 D/4)g(x), in which we also describe how each of the f factors
depends on A.

To apply the trace formula to exponential sums, we need p-adic
analytic lifting of the additive character. Consider the function of two
variables on C, (where now 7 € C, is such that 77 = —p),

(2.1) F(A, x) =expa(Ax — APxP) = 3 A Nx".
r=0
By [3, §4] one has F(A, x) € L((p — )p? + ord A; d,0), where
L((p— Dp 2+ ordA; d,0) is a space as in §1 with m = 1, n = 0. Fur-
thermore, F(1,1) is a primitive pth root of unity, and if A?" =\, x?" =
x, A, x # 0, then
r—1

(2.2) [ F(\, x?) = F(1, 1779,
i=0

where A, X € F,. are the reductions of A, x mod p, and

Tr,: F, - F,
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is the trace map. Put

f—1 _

G(A, x) = [[ F(A?, x?') = exp m(Ax — Aix?).

i=0

For 0 <j < d, define
—g((g—Djsd)= 2 xVG(1, x).
x97 =1
By (2.2) this is an imbedding of a Gauss sum g(x) into C,. By (2.2) and a
simple argument, if A7~ ' = 1, then
N (g = 1)j/d) = B x VG, x),
x99 =1

which is an imbedding of a x(A4~"/4)g(x) into C,.

We assume from now on that ord A > —( p — 1)/p>. For notational
convenience, we abbreviate L((p — 1)/p + ord A; d) (resp: L((p — 1)/p
+ord A; d, j)) by L(A) (resp: L(A; j)). Let ay: L(A; j') = L(N; j)
denote the composition
FQQX)L P —21 +ordA; d, j iL(?\P,j).

p

L(A; j)

Suppose A?~! = 1. Since d| (g — 1), the operator 8, defined by
(2.3) By =aamo cor oayoay (:‘I’q°G(A’x))

is stable on L(A; j) and, by Theorem 1,

24)  u(By|LA; ) =(g—1)" T x@VIG(A, x)

x971=1

= —(g— 1)\ (g — 1)j/d).

The factorization of X9~ D//% ((q — 1)j/d) is derived from (2.3) by
studying the differential operator that commutes with «,. Formally one
has
(2.5) a, = exp(-mAx) o Y o exp(wAx).

This factorization is a priori valid only for |Ax|<1 (where exp(7Ax)
converges), but by analytic continuation it describes the action of a, on
elements of L(A). From (2.5) it is easy to check that

(2.6) ay o Dy = pD,, ° ay,
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where

_ . d . _ . d
(2.7) D, = exp(—7Ax) X exp(mAx) = X + 7 x

is an endomorphism of L(A). Put
UW(A) = L(A)/DyL(A).
Then (2.6) implies that «, induces a map

&: WA) - W(A?).

The operator D, respects the decomposition L(A) = 69;’:‘0] L(A; j), hence
d—1

\L(A) = @ D\L(A; j).

j=0
Thus if we put W(A; j) = L(A; j)/D,L(A; j), then

d—1

WA) = D WA; j),

Jj=0

and a, maps W(A; ;') into W(A?; j).

Suppose A?"! = 1. Since d|(q — 1), the operator B, =
qyerp © -+ © @y, © &yis an endomorphism of CU(A; ;). It is easily checked
from the definition that D, is injective on L(A), hence for each j there is,
by (2.6), a commutative diagram with exact rows:

D
0 - L(A;j) = L(Aj) - WA, - 0
1 g8\ ¥:N LBy
DA . .
0 - L(A;j) - LA;j) - WA;j) - o
It follows from [6, Prop. 9] that

(2.8)  det(Z — 1B, | W(A; j))
= det(1 — 1B\ | L(A; j))/det(I — @By | L(A; j)).
LEMMA 1. tr B, = N9~ D/ ((q — 1) j/d).

Proof. Take the logarithm of both sides of (2.8) and use (1.6) and
(2.9). ‘ O
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Put

g (g = Vjsd)= 3 xOTVAG(L, x)G(1, x7) --- G(1, x7).

.
x9 1=

A similar argument, using the corollary to Theorem 1 to evaluate tr S5,
shows that

(2.9) tr(By) =N/ ((q" —1)j/d).
LEMMA 2. dim W(A; j) = 1.

Proof. Let n =27 ga;,,,xY""9/? € L(A; j). An inductive argu-
ment using the relation

SUtndy/d — ({1— T 1)x<1+<n-1)d>/d ¥ W—l}:D)\(x(/H"_l)d)/d)
shows that
ooy P e,
where
n—1 i . .
£ = E (—1) ((J/d)tln - l)lxj/d‘f'n—i_l.
i=0 7\)’
Hence
00 —1DY(i/d ., 0
010 1= § 0 VWD p( 0, )
n=0 (77}\) n=0

A straightforward calculation using the growth condition satisfied by the
a,,, (inequality (1.2)) shows that the first series on the right-hand side of
(2.10) converges and that the second series lies in L(A; j). Hence
dim W(A; j) < 1.

Suppose j # 0. The equation

[o.0]
i+ndy/d | — ,.j/d
D, 2 bj+ndx(j nd)/d | — i/
n=0
gives a recursion relation which determines the b, , , ,:

b= (=1D)"z"\"
snd s (jd+ 1),
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Thus ord b, ,, <nord A +s,/(p — 1), where s, is the sum of the digits
in the p-adlc expansion of n. This estimate shows

©
2 by aaxVT & L(A; ).
n=0

The image of D, does not contain any series with a non-zero constant
term, so the result is valid when j = 0 also. 0O

REMARK. Lemmas 1 and 2 imply

tr(B,)" = (N~ ((q — 1)j/d))".

Comparing this with (2.9) and using the equality A9~ /774 = N\~ DJ/d
(which follows from ¢ = 1 (mod d) and A?~' = 1), we get

g ((g"—1)j/d)=g(g—1)j/d),

a classical formula of Hasse and Davenport.

Fix j, 0 <j < d, and let j;, j;,...,j,—, be the minimal positive residues
mod d of j, pj,...,p’” Y. Put »’ = f— 1 — » and define v,, » = 0, 1,.

f—1by
(2.11)  ayr(xhn/d) =y, x5/ (mod DA,,ML()\P”'“; jy))_

By Lemma 2, v, is well defined. By the definition of 8,, Lemmas 1 and 2
imply

(2.12) Na~Di/dg (g —1)j/d) = H Y,

The Gross-Koblitz formula expresses the v, in terms of values of Morita’s
p-adic gamma function T),.

Let i be a positive integer, i Z 0 (mod d). Define a function G on
fractions i/d by

(2.13) a,(xP74) = G(i/d)x"/* (mod Dy, L(N?; i)).

The function G is well defined: The same argument as in the proof of
Lemma 2 shows that x*/¢ (resp: x?"/¢) is a basis for W(A?; i) (resp:
U(A; pi)). In fact, we have for n a non-negative integer,

(2.14) x(/d)tn E-(Tl))\(—pl-)/li—)"- x4 (mod D,,L(A?; i)).
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This leads to a formula for G(i/d):

00 0
a}\(xpi/d) = \P( 2 Aanx(Pi/d)*‘") = 2 Apnkpnx(i/d)+"
n=0 n=0

=( S 0 aizarm |5 (moa by (i)

by (2.14). Hence

© (—=1)"4,,(i/d),
(2.15) G(ifd)= 3 (=) W” / .

n=0
Note that although both sides of (2.13) depend on A, G itself is indepen-
dent of A.

Extend G by defining

n

(2.16) G(z) = g (=1)" 4, (2),/7".

Since ord 4, = n(p — 1)/p, equation (2.16) defines an analytic function
on the set

p—1 1

ord z > — .
p p—1

LEMMA 3. Assume p = 3. For z € Z,, G(z) = I ( pz).

Proof. By definition, I, is the unique continuous function on Z,
satisfying

Lr)=(=D" I i
I=<i<r—1
ph
for positive integers r. It satisfies the functional equation
-1 ifzepZ,
(z) - { ’

(2.17) T(z+1)=T . itrerz.

p

Hence for positive integers r,

L(=r)= (_l)r_ I(I Oi—l-
ra;<

In particular,

(2.18) L,(=pr)=(=1)prt/(pr)!
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By (2.1),
Apn = (=175" 3 '/ (pi)t (n = 1)
Observe also that
(2), = (=1)"nt( 7).
Hence by (2.16),

_ éo }nj(—l)"p"i!(’;)(,’,)/(pi)!-

=0
By (2.18) and the fact that

(1)) = (0220,

=3 S0mneEm () (0T

n=0 i=0 h—1

Interchanging the order of summation:

= 3 e (]) 2 (7 = e,

l

since the inner sum collapses. We are now done by the continuity of G
and [, O

Let j, j, (»=0,1,...,f— 1), and »’ be as above. Put k, =
(pj, —Jj,+1)/d. Then 0 <k, <p — 1; in fact, these are the digits in the
p-adic expansion of (¢ — 1)j/d:

(2.19) (g—1)j/d=k;,+kpyp+---+kip/> +kop/™".

By (2.14),

st = TD Ui/,
('n')\”y')k”

Using (2.6) and (2.11),

(2.20)

xi/d (mod Dy L(A'; jy.1)).

(2.21)  ayp(xPh/?)
E(_l)ky(jv+l/d)k,,71/xjy/d (
(mA")"

mod va'HL()\PVH; jp)).
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By (2.13) and Lemma 3,

v, = (=)= )T (pi,/d)/ (Jorr/@)s,-
Repeated use of the functional equation (2.17) gives

Yy = ('”Apy’)kyrp(jv-i- l/d)'

The Gross-Koblitz formula then follows from (2.12) (the powers of A
cancel by (2.19)):

—1
(2.22) glla=1jsd) = Il 74T, (j/d).
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