Pacific Journal of Mathematics

ON THE DWORK TRACE FORMULA

ALAN ADOLPHSON

Vol. 113, No. 2

April 1984

ON THE DWORK TRACE FORMULA

Alan Adolphson

We prove a generalization of Dwork's trace formula for certain completely continuous operators on p-adic Banach spaces. This generalization makes it simpler to apply Dwork's theory to the study of certain exponential sums involving both additive and multiplicative characters. As an example, we treat the case of Gauss sums and give a new proof of the Gross-Koblitz formula.

0. Introduction. The Dwork Trace Formula is a basic tool for applying the techniques of *p*-adic analysis to the study of exponential sums with an additive character. Let *p* be a prime and let \mathbf{F}_q be a finite field with $q = p^f$ elements. Let $\Psi: \mathbf{F}_q \to \mathbf{C}^x$ be an additive character. For $f \in \mathbf{F}_q[x_1, \ldots, x_n]$, define an exponential sum

(0.1)
$$S(f) = \sum_{x_1,\ldots,x_n \in \mathbf{F}_q} \Psi(f(x_1,\ldots,x_n)).$$

Bombieri [1] has used the Dwork Trace Formula to study such exponential sums and their associated L-functions. The purpose of this article is to prove a generalization of the Dwork Trace Formula (Theorem 1) which will allow one to treat in a straightforward manner sums of the form

(0.2)
$$\sum_{x_1,\ldots,x_n\in\mathbf{F}_q}\chi_1(x_1)\cdots\chi_n(x_n)\Psi(f(x_1,\ldots,x_n)),$$

where χ_1, \ldots, χ_n : $\mathbf{F}_q^x \to \mathbf{C}^x$ are multiplicative characters. Such sums can be handled by the earlier trace formula at the expense of certain technical complications, i.e., change of variable in the polynomial f, which results in changes in the Frobenius operator and the differential operators with which Frobenius commutes (see for example [4, eqs. (6.47), (6.48), and (6.49)]). Our point here is that by enlarging the space on which Frobenius operates, one obtains the sums (0.1) and (0.2) from the same Frobenius operator, hence the commuting differential operators are unchanged also. This enables one to apply the other elements of Dwork's theory more directly.

As an example, in §2 we give another proof of the Gross-Koblitz formula. We follow the ideas of [2], although we simplify by avoiding any appeal to the dual theory. We hope that the ideas of this paper will lead to an interpretation of the Gauss sum relations of [2, §8, Remark 2] in terms of Dwork cohomology.

We use the standard notation for binomial-type coefficients: for n a non-negative integer,

$$(z)_{n} = \begin{cases} z(z+1)\cdots(z+n-1) & \text{if } n > 0, \\ 1 & \text{if } n = 0, \end{cases}$$
$$\binom{z}{n} = \begin{cases} z(z-1)\cdots(z-n+1)/n! & \text{if } n > 0, \\ 1 & \text{if } n = 0. \end{cases}$$

We denote by C_p a completion of an algebraic closure of the *p*-adic numbers Q_p .

1. Trace formula. Let p be a prime and d a positive integer with (p, d) = 1. Let \mathbf{Q}_p denote the *p*-adic numbers and let K be a discretely-valued extension field of \mathbf{Q}_p . We assume the valuation on K normalized so that ord p = 1, and we let || denote the corresponding absolute value. In this section we shall use multi-index notation: $i = (i_1, \ldots, i_m)$ and $j = (j_1, \ldots, j_n)$ are sequences of non-negative integers, and

$$x^{i/d}y^j = x_1^{i_1/d} \cdots x_m^{i_m/d}y_1^{j_1} \cdots y_n^{u_n}.$$

Let $\beta \in K$ and put $b = \text{ord } \beta \in \mathbb{R}$. Let L(b; d) denote the set of all formal series

(1.1)
$$\eta = \sum_{i,j>0} a(i,j) x^{i/d} y^j,$$

where $a(i, j) \in K$ satisfy

(1.2) ord
$$a(i, j) - b((i_1 + \dots + i_m)/d + j_1 + \dots + j_n) \ge c$$

for some $c \in \mathbf{R}$ and all $i, j \ge 0$. We are treating $x^{i/d}$ as a formal expression only and hence do not regard η as a function. The vector space L(b; d) is made into a Banach space by the following norm:

(1.3)
$$|\eta| = \sup_{i,j\geq 0} |a(i,j)||\beta|^{-((i_1+\cdots+i_m)/d+j_1+\cdots+j_n)}.$$

This sup exists by (1.2).

Define an operator ψ by

(1.4)
$$\psi(\eta) = \sum_{i,j\geq 0} a(pi, pj) x^{i/d} y^j,$$

where η is as in (1.1). Note that ψ is a linear map of L(b; d) into L(pb; d).

Let $\delta = (\delta_1, \dots, \delta_m)$ be an ordered *m*-tuple of integers with $0 \le \delta_1, \dots, \delta_m \le d-1$, and let $L(b; d, \delta)$ be the set of all $\eta \in L(b; d)$, η as in (1.1), satisfying a(i, j) = 0 unless

$$i_1 \equiv \delta_1 \pmod{d}, \dots, i_m \equiv \delta_m \pmod{d}.$$

Then L(b; d) decomposes as a direct sum of d^m subspaces

(1.5)
$$L(b; d) = \bigoplus_{\delta} L(b; d, \delta)$$

If we put for $k = 1, \ldots, m$,

 δ'_k = least non-negative residue of $p\delta_k$ modulo d,

then ψ maps $L(b; d, \delta')$ into $L(pb; d, \delta)$.

For f a positive integer, $q = p^f$, define $\psi_q = (\psi)^f$. Since (d, p) = 1, there exists f such that $d \mid (p^f - 1)$, in which case ψ_q maps $L(b; d, \delta)$ into $L(qb; d, \delta)$. For $F = \sum_{k,l \ge 0} A(k, l) x^k y^l \in L(b; d, 0)$, multiplication by F is stable on each $L(b; d, \delta)$. Note that if $\beta' \in K$ with ord $\beta' = b' > b$, then L(b'; d) is a subspace of L(b; d), and the canonical injection i: $L(b'; d) \to L(b; d)$ is completely completely continuous ([6, §9]). Now suppose b > 0 and let α_F : $L(qb; d, \delta) \to L(qb; d, \delta)$ be the composition

$$L(qb; d, \delta) \xrightarrow{i} L(b; d, \delta) \xrightarrow{F} L(b; d, \delta) \xrightarrow{\psi_q} L(qb; d, \delta)$$

Then α_F is completely continuous ([6, §3]). By [6, §5], the trace tr α_F and Fredholm determinant det $(I - t\alpha_F)$ are well defined, and

(1.6)
$$\det(I - t\alpha_F) = \exp\left(-\sum_{r=1}^{\infty} \operatorname{tr}(\alpha_F)^r t^r / r\right)$$

is a *p*-adic entire function.

THEOREM 1.

$$(q-1)^{m+n} \operatorname{tr}(\alpha_F | L(qb; d, \delta)) = \sum_{\substack{x_1^{q-1}=1\\y^{q-1}=1}} x_1^{-(q-1)\delta_1/d} \cdots x_m^{-(q-1)\delta_m/d} F(x_1, \dots, x_m; y_1, \dots, y_n).$$

Proof. By [6, Prop. 7(a) and §9], the trace of α_F on $L(qb; d, \delta)$ may be computed by summing the coefficient of $x^{i/d}y^j$ in $\alpha_F(x^{i/d}y^j)$ over all $(i, j) \ge 0$ with $i \equiv \delta \pmod{d}$:

$$\begin{aligned} \alpha_F(x^{i/d}y^j) &= \psi_q\Big(\sum_{k,l\geq 0} A(k,l) x^{k+(i/d)} y^{l+j}\Big) \\ &= \sum_{k,l\geq 0} A(qk+(q-1)(i/d),ql+(q-1)j) x^{k+(i/d)} y^{l+j}. \end{aligned}$$

The coefficient of $x^{i/d}y^j$ in this expression is A((q-1)i/d, (q-1)j), hence

(1.7)
$$\operatorname{tr} \alpha_F = \sum_{\substack{i,j \ge 0 \\ i \equiv \delta \pmod{d}}} A((q-1)i/d, (q-1)j).$$

On the other hand,

$$\sum_{\substack{x^{q-1}=1\\y^{q-1}=1}} x^{-(q-1)\delta/d} F(x, y) = \sum_{\substack{k,l \ge 0 \\ y^{q-1}=1}} \sum_{\substack{x^{q-1}=1 \\ y^{q-1}=1}} A(k, l) x^{k-(q-1)(\delta/d)} y^l,$$

and

$$\sum_{\substack{x^{q-1}=1\\y^{q-1}=1}} x^{k-(q-1)(\delta/d)} y^{l} = \begin{cases} (q-1)^{m+n} & \text{if there exist } i, j \ge 0 \text{ such that} \\ k - (q-1)(\delta/d) = (q-1)i, \\ l = (q-1)j, \\ 0 & \text{otherwise.} \end{cases}$$

Hence

$$\sum_{\substack{x^{q-1}=1\\y^{q-1}=1}} x^{-(q-1)\delta/d} F(x, y)$$

= $(q-1)^{m+n} \sum_{i,j\geq 0} A((q-1)i + (q-1)(\delta/d), (q-1)j)$
= $(q-1)^{m+n} \sum_{\substack{i,j\geq 0\\i\equiv\delta\pmod{d}}} A((q-1)i/d, (q-1)j).$

The theorem now follows from eq. (1.7).

COROLLARY.

$$(q^{r}-1)^{m+n} \operatorname{tr}(\alpha_{F}^{r}|L(qb;d,\delta)) = \sum_{\substack{x^{q^{r-1}}=1\\y^{q^{r-1}}=1}} \left(\prod_{i=1}^{m} x_{i}^{-(q^{r-1})\delta_{i}/d}\right) F(x;y) F(x^{q};y^{q}) \cdots F(x^{q^{r-1}};y^{q^{r-1}}).$$

2. Application. Fix $\overline{\lambda} \in \mathbf{F}_q^x$, where d|(q-1) and $q = p^f$, and consider the exponential sum

$$S(\bar{\lambda}, d) = \sum_{\bar{x} \in \mathbf{F}_q} \exp\left(\frac{2\pi i}{p} \operatorname{Tr}_{\mathbf{F}_q/\mathbf{F}_p}(\bar{\lambda}\bar{x}^d)\right).$$

Let G be the group of d th roots of unity in \mathbf{F}_q , and let \hat{G} be its character group. Then

$$S(\bar{\lambda}, d) = 1 + \sum_{\bar{x}\in\mathbf{F}_q^x} \sum_{\chi\in\hat{G}} \chi(\bar{x}^{(q-1)/d}) \exp\left(\frac{2\pi i}{p} \operatorname{Tr}_{\mathbf{F}_q/\mathbf{F}_p}(\bar{\lambda}\bar{x})\right)$$
$$= 1 + \sum_{\chi\in\hat{G}} \chi(\bar{\lambda}^{-(q-1)/d}) \sum_{\bar{x}\in\mathbf{F}_q^x} \chi(\bar{x}^{(q-1)/d}) \exp\left(\frac{2\pi i}{p} \operatorname{Tr}_{\mathbf{F}_q/\mathbf{F}_p}(\bar{x})\right).$$

Put

$$g(\chi) = \sum_{\bar{x} \in \mathbf{F}_q^{\chi}} \chi(\bar{x}^{(q-1)/d}) \exp\left(\frac{2\pi i}{p} \operatorname{Tr}_{\mathbf{F}_q/\mathbf{F}_p}(\bar{x})\right).$$

By [2, eq. (4.4)], the Gauss sum $g(\chi)$, considered *p*-adically, factors in a natural way into a product of *f* factors. The Gross-Koblitz formula describes these factors in terms of the *p*-adic gamma function. We give a proof of the Gross-Koblitz formula for the factorization of $\chi(\bar{\lambda}^{-(q-1)/d})g(\chi)$, in which we also describe how each of the *f* factors depends on $\bar{\lambda}$.

To apply the trace formula to exponential sums, we need *p*-adic analytic lifting of the additive character. Consider the function of two variables on C_p (where now $\pi \in C_p$ is such that $\pi^{p-1} = -p$),

(2.1)
$$F(\lambda, x) = \exp \pi (\lambda x - \lambda^p x^p) = \sum_{r=0}^{\infty} A_r \lambda^r x^r.$$

By [3, §4] one has $F(\lambda, x) \in L((p-1)p^{-2} + \text{ ord } \lambda; d, 0)$, where $L((p-1)p^{-2} + \text{ ord } \lambda; d, 0)$ is a space as in §1 with m = 1, n = 0. Furthermore, F(1, 1) is a primitive *p*th root of unity, and if $\lambda^{p'} = \lambda, x^{p'} = x, \lambda, x \neq 0$, then

(2.2)
$$\prod_{i=0}^{r-1} F(\lambda^{p'}, x^{p'}) = F(1, 1)^{\operatorname{Tr}_r(\bar{\lambda}\bar{x})},$$

where $\overline{\lambda}, \overline{x} \in \mathbf{F}_{p'}$ are the reductions of $\lambda, x \mod p$, and

$$\operatorname{Tr}_r: \mathbf{F}_{p^r} \to \mathbf{F}_p$$

is the trace map. Put

$$G(\lambda, x) = \prod_{i=0}^{f-1} F(\lambda^{p'}, x^{p^i}) = \exp \pi (\lambda x - \lambda^q x^q).$$

For $0 \le j < d$, define

$$-g_q((q-1)j/d) = \sum_{x^{q-1}=1} x^{-(q-1)j/d} G(1,x).$$

By (2.2) this is an imbedding of a Gauss sum $g(\chi)$ into C_p . By (2.2) and a simple argument, if $\lambda^{q-1} = 1$, then

$$-\lambda^{(q-1)j/d}g_q((q-1)j/d) = \sum_{x^{q-1}=1} x^{-(q-1)j/d}G(\lambda, x),$$

which is an imbedding of a $\chi(\overline{\lambda}^{(q-1)/d})g(\chi)$ into \mathbf{C}_p .

We assume from now on that $\operatorname{ord} \lambda > -(p-1)/p^2$. For notational convenience, we abbreviate $L((p-1)/p + \operatorname{ord} \lambda; d)$ (resp: $L((p-1)/p + \operatorname{ord} \lambda; d, j)$) by $L(\lambda)$ (resp: $L(\lambda; j)$). Let α_{λ} : $L(\lambda; j') \to L(\lambda^p; j)$ denote the composition

$$L(\lambda; j') \xrightarrow{F(\lambda,x)} L\left(\frac{p-1}{p^2} + \text{ ord } \lambda; d, j'\right) \xrightarrow{\psi} L(\lambda^p, j).$$

Suppose $\lambda^{q-1} = 1$. Since d | (q-1), the operator β_{λ} defined by

(2.3)
$$\boldsymbol{\beta}_{\lambda} = \boldsymbol{\alpha}_{\lambda^{q/p}} \circ \cdots \circ \boldsymbol{\alpha}_{\lambda^{p}} \circ \boldsymbol{\alpha}_{\lambda} \quad \left(= \psi_{q} \circ G(\lambda, x)\right)$$

is stable on $L(\lambda; j)$ and, by Theorem 1,

(2.4)
$$\operatorname{tr}(\beta_{\lambda} | L(\lambda; j)) = (q-1)^{-1} \sum_{x^{q-1}=1} x^{-(q-1)j/d} G(\lambda, x)$$

= $-(q-1)^{-1} \lambda^{(q-1)j/d} g_q((q-1)j/d)$

The factorization of $\lambda^{(q-1)j/d}g_q((q-1)j/d)$ is derived from (2.3) by studying the differential operator that commutes with α_{λ} . Formally one has

(2.5)
$$\alpha_{\lambda} = \exp(-\pi\lambda x) \circ \psi \circ \exp(\pi\lambda x).$$

This factorization is a priori valid only for $|\lambda x| < 1$ (where $\exp(\pi \lambda x)$ converges), but by analytic continuation it describes the action of α_{λ} on elements of $L(\lambda)$. From (2.5) it is easy to check that

(2.6)
$$\alpha_{\lambda} \circ D_{\lambda} = p D_{\lambda^{p}} \circ \alpha_{\lambda},$$

where

(2.7)
$$D_{\lambda} = \exp(-\pi\lambda x) \circ x \frac{d}{dx} \circ \exp(\pi\lambda x) = x \frac{d}{dx} + \pi\lambda x$$

is an endomorphism of $L(\lambda)$. Put

$$\mathfrak{V}(\lambda) = L(\lambda)/D_{\lambda}L(\lambda).$$

Then (2.6) implies that α_{λ} induces a map

$$\overline{\alpha}_{\lambda}$$
: $\mathfrak{W}(\lambda) \to \mathfrak{W}(\lambda^p)$.

The operator D_{λ} respects the decomposition $L(\lambda) = \bigoplus_{i=0}^{d-1} L(\lambda; j)$, hence

$$D_{\lambda}L(\lambda) = \bigoplus_{j=0}^{d-1} D_{\lambda}L(\lambda; j).$$

Thus if we put $\mathfrak{V}(\lambda; j) = L(\lambda; j)/D_{\lambda}L(\lambda; j)$, then

$$\mathfrak{V}(\lambda) = \bigoplus_{j=0}^{d-1} \mathfrak{V}(\lambda; j),$$

and $\overline{\alpha}_{\lambda}$ maps $\mathfrak{V}(\lambda; j')$ into $\mathfrak{V}(\lambda^{p}; j)$. Suppose $\lambda^{q-1} = 1$. Since $d \mid (q-1)$, the operator $\overline{\beta}_{\lambda} = 1$. $\overline{\alpha}_{\lambda^{q/p}} \circ \cdots \circ \overline{\alpha}_{\lambda^{p}} \circ \overline{\alpha}_{\lambda}$ is an endomorphism of $\mathfrak{V}(\lambda; j)$. It is easily checked from the definition that D_{λ} is injective on $L(\lambda)$, hence for each j there is, by (2.6), a commutative diagram with exact rows:

It follows from [6, Prop. 9] that

(2.8)
$$\det(I - t\overline{\beta}_{\lambda} | \mathfrak{W}(\lambda; j)) = \det(I - t\beta_{\lambda} | L(\lambda; j)) / \det(I - qt\beta_{\lambda} | L(\lambda; j)).$$

LEMMA 1. tr $\overline{\beta}_{\lambda} = \lambda^{(q-1)j/d} g_q((q-1)j/d).$

Proof. Take the logarithm of both sides of (2.8) and use (1.6) and (2.4).

Put

$$g_{q'}((q'-1)j/d) = \sum_{x^{q'-1}=1} x^{-(q'-1)j/d} G(1,x) G(1,x^q) \cdots G(1,x^{q'-1}).$$

A similar argument, using the corollary to Theorem 1 to evaluate tr β_{λ}^{r} , shows that

(2.9)
$$\operatorname{tr}(\overline{\beta}_{\lambda})^{r} = \lambda^{(q^{r}-1)j/d} g_{q^{r}}((q^{r}-1)j/d).$$

LEMMA 2. dim $\mathfrak{V}(\lambda; j) = 1$.

Proof. Let $\eta = \sum_{n=0}^{\infty} a_{j+nd} x^{(j+nd)/d} \in L(\lambda; j)$. An inductive argument using the relation

$$x^{(j+nd)/d} = -\left(\frac{j}{d} + n - 1\right) x^{(j+(n-1)d)/d} + \frac{1}{\pi\lambda} D_{\lambda}(x^{(j+(n-1)d)/d})$$

shows that

$$x^{(j+nd)/d} = \frac{(-1)^{n} (j/d)_{n}}{(\pi\lambda)^{n}} x^{j/d} + D_{\lambda}(\xi_{n}),$$

where

$$\xi_n = \sum_{i=0}^{n-1} \frac{(-1)^i (j/d+n-i)_i}{(\pi\lambda)^{i+1}} x^{j/d+n-i-1}.$$

Hence

(2.10)
$$\eta = \left(\sum_{n=0}^{\infty} a_{j+nd} \frac{(-1)^n (j/d)_n}{(\pi\lambda)^n}\right) x^{j/d} + D_{\lambda} \left(\sum_{n=0}^{\infty} a_{j+nd} \xi_n\right).$$

A straightforward calculation using the growth condition satisfied by the a_{j+nd} (inequality (1.2)) shows that the first series on the right-hand side of (2.10) converges and that the second series lies in $L(\lambda; j)$. Hence dim $\mathfrak{W}(\lambda; j) \leq 1$.

Suppose $j \neq 0$. The equation

$$D_{\lambda}\left(\sum_{n=0}^{\infty} b_{j+nd} x^{(j+nd)/d}\right) = x^{j/d}$$

gives a recursion relation which determines the b_{j+nd} :

$$b_{j+nd}=\frac{\left(-1\right)^{n}\pi^{n}\lambda^{n}}{\left(j/d+1\right)_{n}}.$$

Thus ord $b_{j+nd} \le n \text{ ord } \lambda + s_n/(p-1)$, where s_n is the sum of the digits in the *p*-adic expansion of *n*. This estimate shows

$$\sum_{n=0}^{\infty} b_{j+nd} x^{(j+nd)/d} \notin L(\lambda; j).$$

The image of D_{λ} does not contain any series with a non-zero constant term, so the result is valid when j = 0 also.

REMARK. Lemmas 1 and 2 imply

$$\operatorname{tr}(\overline{\beta}_{\lambda})^{r} = \left(\lambda^{(q-1)j/d}g_{q}((q-1)j/d)\right)^{r}.$$

Comparing this with (2.9) and using the equality $\lambda^{(q-1)jr/d} = \lambda^{(q^r-1)j/d}$ (which follows from $q \equiv 1 \pmod{d}$ and $\lambda^{q-1} = 1$), we get

$$g_{q'}((q'-1)j/d) = g_q((q-1)j/d)',$$

a classical formula of Hasse and Davenport.

Fix j, 0 < j < d, and let j_0 , j_1, \ldots, j_{f-1} be the minimal positive residues mod d of j, $pj, \ldots, p^{f-1}j$. Put $\nu' = f - 1 - \nu$ and define γ_{ν} , $\nu = 0, 1, \ldots, f - 1$, by

(2.11)
$$\alpha_{\lambda^{p^{\nu'}}}(x^{j_{\nu+1}/d}) \equiv \gamma_{\nu} x^{j_{\nu}/d} \pmod{D_{\lambda^{p^{\nu'+1}}}L(\lambda^{p^{\nu'+1}}; j_{\nu})}.$$

By Lemma 2, γ_{ν} is well defined. By the definition of $\overline{\beta}_{\lambda}$, Lemmas 1 and 2 imply

(2.12)
$$\lambda^{(q-1)j/d}g_q((q-1)j/d) = \prod_{\nu=0}^{f-1} \gamma_{\nu}.$$

The Gross-Koblitz formula expresses the γ_{ν} in terms of values of Morita's *p*-adic gamma function Γ_{p} .

Let *i* be a positive integer, $i \not\equiv 0 \pmod{d}$. Define a function *G* on fractions i/d by

(2.13)
$$\alpha_{\lambda}(x^{pi/d}) \equiv G(i/d)x^{i/d} \pmod{D_{\lambda^p}L(\lambda^p;i)}.$$

The function G is well defined: The same argument as in the proof of Lemma 2 shows that $x^{i/d}$ (resp: $x^{pi/d}$) is a basis for $\mathfrak{W}(\lambda^p; i)$ (resp: $\mathfrak{W}(\lambda; pi)$). In fact, we have for n a non-negative integer,

(2.14)
$$x^{(i/d)+n} \equiv \frac{(-1)^n (i/d)_n}{(\pi \lambda^p)^n} x^{i/d} \pmod{D_{\lambda^p} L(\lambda^p; i)}.$$

This leads to a formula for G(i/d):

$$\begin{aligned} \alpha_{\lambda}(x^{pi/d}) &= \psi \bigg(\sum_{n=0}^{\infty} A_n \lambda^n x^{(pi/d)+n} \bigg) = \sum_{n=0}^{\infty} A_{pn} \lambda^{pn} x^{(i/d)+n} \\ &\equiv \bigg(\sum_{n=0}^{\infty} (-1)^n A_{pn}(i/d)_n / \pi^n \bigg) x^{i/d} \pmod{D_{\lambda^p} L(\lambda^p; i)} \end{aligned}$$

by (2.14). Hence

(2.15)
$$G(i/d) = \sum_{n=0}^{\infty} \frac{(-1)^n A_{pn}(i/d)_n}{\pi^n}.$$

Note that although both sides of (2.13) depend on λ , G itself is independent of λ .

Extend G by defining

(2.16)
$$G(z) = \sum_{n=0}^{\infty} (-1)^n A_{pn}(z)_n / \pi^n.$$

Since ord $A_{pn} \ge n(p-1)/p$, equation (2.16) defines an analytic function on the set

ord
$$z > -\left(\frac{p-1}{p} - \frac{1}{p-1}\right).$$

LEMMA 3. Assume $p \ge 3$. For $z \in \mathbb{Z}_p$, $G(z) = \Gamma_p(pz)$.

Proof. By definition, Γ_p is the unique continuous function on \mathbf{Z}_p satisfying

$$\Gamma_p(r) = (-1)^r \prod_{\substack{1 \le i \le r-1 \\ p \nmid i}} i$$

for positive integers r. It satisfies the functional equation

(2.17)
$$\Gamma_p(z+1) = \Gamma_p(z) \cdot \begin{cases} -1 & \text{if } z \in p \mathbf{Z}_p, \\ -z & \text{if } z \notin p \mathbf{Z}_p. \end{cases}$$

Hence for positive integers r,

$$\Gamma_p(-r) = (-1)^r \prod_{\substack{-r \leq i < 0 \\ p \nmid i}} i^{-1}.$$

In particular,

(2.18)
$$\Gamma_p(-pr) = (-1)^r p^r r! / (pr)!$$

By (2.1),

$$A_{pn} = (-1)^n \pi^n \sum_{i=0}^n p^i / (pi)! (n-i)!$$

Observe also that

$$(z)_n = (-1)^n n! \begin{pmatrix} -z \\ n \end{pmatrix}.$$

Hence by (2.16),

$$G(-r) = \sum_{n=0}^{r} \sum_{i=0}^{n} (-1)^{n} p^{i} i! \binom{n}{i} \binom{r}{n} / \binom{pi}{i!}.$$

By (2.18) and the fact that

$$\binom{n}{i}\binom{r}{n} = \binom{r}{i}\binom{r-i}{n-i},$$
$$G(-r) = \sum_{n=0}^{r} \sum_{i=0}^{n} (-1)^{n+i} \Gamma_{p}(-pi)\binom{r}{i}\binom{r-i}{n-i}.$$

Interchanging the order of summation:

$$G(-r) = \sum_{i=0}^{r} (-1)^{i} \Gamma_{p}(-pi) {r \choose i} \sum_{n=i}^{r} (-1)^{n} {r-i \choose n-i} = \Gamma_{p}(-pr),$$

since the inner sum collapses. We are now done by the continuity of G and Γ_p .

Let j, j_{ν} ($\nu = 0, 1, \dots, f - 1$), and ν' be as above. Put $k_{\nu} = (pj_{\nu} - j_{\nu+1})/d$. Then $0 \le k_{\nu} \le p - 1$; in fact, these are the digits in the *p*-adic expansion of (q - 1)j/d:

$$(2.19) \quad (q-1)j/d = k_{f-1} + k_{f-2}p + \dots + k_1p^{f-2} + k_0p^{f-1}$$

By (2.14),

(2.20)
$$x^{pj_{\nu}/d} \equiv \frac{(-1)^{k_{\nu}} (j_{\nu+1}/d)_{k_{\nu}}}{(\pi \lambda^{p^{\nu'}})^{k_{\nu}}} x^{j_{\nu+1}/d} \pmod{D_{\lambda^{p^{\nu'}}} L(\lambda^{p^{\nu'}}; j_{\nu+1})}.$$

Using (2.6) and (2.11),

(2.21)
$$\alpha_{\lambda^{p^{\nu'}}}(x^{pj_{\nu}/d}) = \frac{(-1)^{k_{\nu}}(j_{\nu+1}/d)_{k_{\nu}}\gamma_{\nu}}{(\pi\lambda^{p^{\nu'}})^{k_{\nu}}} x^{j_{\nu}/d} \pmod{D_{\lambda^{p^{\nu'+1}}}L(\lambda^{p^{\nu'+1}}; j_{\nu})}.$$

By (2.13) and Lemma 3,

$$\gamma_{\nu} = (-1)^{k_{\nu}} (\pi \lambda^{p^{\nu}})^{k_{\nu}} \Gamma_{p} (pj_{\nu}/d) / (j_{\nu+1}/d)_{k_{\nu}}.$$

Repeated use of the functional equation (2.17) gives

$$\gamma_{\nu}=(\pi\lambda^{p^{\nu'}})^{k_{\nu}}\Gamma_{p}(j_{\nu+1}/d).$$

The Gross-Koblitz formula then follows from (2.12) (the powers of λ cancel by (2.19)):

(2.22)
$$g_q((q-1)j/d) = \prod_{\nu=0}^{f-1} \pi^{k_\nu} \Gamma_p(j_\nu/d).$$

References

- [1] E. Bombieri, On exponential sums in finite fields, Amer. J. Math., 88 (1966), 71-105.
- [2] M. Boyarsky, p-adic Gamma functions and Dwork cohomology, Trans. Amer. Math. Soc., 257 (1980), 359-363.
- [3] B. Dwork, On the Zeta function of a hypersurface, Publ. Math. I.H.E.S., 12 (1962), 5-68.
- [4] _____, p-adic cycles, Publ. Math. I.H.E.S., 37 (1969), 327-415.
- [5] B. Gross and N. Koblitz, Gauss sums and the p-adic Γ-function, Ann. of Math., 109 (1979), 569-581.
- [6] J.-P. Serre, Endomorphismes Complement Continues des Espaces de Banach p-adiques, Publ. Math. I.H.E.S., 12 (1962), 69–85.

Received September 13, 1982, Partially supported by NSF grant MCS 79-03315.

UNIVERSITY OF WASHINGTON SEATTLE, WA 98195

PACIFIC JOURNAL OF MATHEMATICS

EDITORS

DONALD BABBITT (Managing Editor) University of California Los Angeles, CA 90024

Hugo Rossi University of Utah Salt Lake City, UT 84112

C. C. MOORE and ARTHUR OGUS University of California Berkeley, CA 94720 J. DUGUNDJI Department of Mathematics University of Southern California Los Angeles, CA 90089-1113

R. FINN and H. SAMELSON Stanford University Stanford, CA 94305

F. WOLF

ASSOCIATE EDITORS

R. ARENS E.

E. F. BECKENBACH (1906–1982)

B. H. NEUMANN

K. Yoshida

SUPPORTING INSTITUTIONS

UNIVERSITY OF ARIZONA UNIVERSITY OF BRITISH COLUMBIA CALIFORNIA INSTITUTE OF TECHNOLOGY UNIVERSITY OF CALIFORNIA MONTANA STATE UNIVERSITY UNIVERSITY OF NEVADA, RENO NEW MEXICO STATE UNIVERSITY OREGON STATE UNIVERSITY UNIVERSITY OF OREGON UNIVERSITY OF SOUTHERN CALIFORNIA STANFORD UNIVERSITY UNIVERSITY OF HAWAII UNIVERSITY OF TOKYO UNIVERSITY OF UTAH WASHINGTON STATE UNIVERSITY UNIVERSITY OF WASHINGTON

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the *Pacific Journal of Mathematics* should be in typed form or offset-reproduced (not dittoed), double spaced with large margins. Please do not use built up fractions in the text of the manuscript. However, you may use them in the displayed equations. Underline Greek letters in red, German in green, and script in blue. The first paragraph must be capable of being used separately as a synopsis of the entire paper. In particular it should contain no bibliographic references. Please propose a heading for the odd numbered pages of less than 35 characters. Manuscripts, in triplicate, may be sent to any one of the editors. Please classify according to the scheme of Math. Reviews, Index to Vol. 39. Supply name and address of author to whom proofs should be sent. All other communications should be addressed to the managing editor, or Elaine Barth, University of California, Los Angeles, California 90024.

There are page-charges associated with articles appearing in the Pacific Journal of Mathematics. These charges are expected to be paid by the author's University, Government Agency or Company. If the author or authors do not have access to such Institutional support these charges are waived. Single authors will receive 50 free reprints; joint authors will receive a total of 100 free reprints. Additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is issued monthly as of January 1966. Regular subscription rate: \$132.00 a year (6 Vol., 12 issues). Special rate: \$66.00 a year to individual members of supporting institutions.

Subscriptions, orders for numbers issued in the last three calendar years, and changes of address should be sent to Pacific Journal of Mathematics, P.O. Box 969, Carmel Valley, CA 93924, U.S.A. Old back numbers obtainable from Kraus Periodicals Co., Route 100, Millwood, NY 10546.

The Pacific Journal of Mathematics ISSN 0030-8730 is published monthly by the Pacific Journal of Mathematics at P.O. Box 969, Carmel Valley, CA 93924. Application to mail at Second-class postage rates is pending at Carmel Valley, California, and additional mailing offices. Postmaster: Send address changes to Pacific Journal of Mathematics, P.O. Box 969, Carmel Valley, CA 93924.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION Copyright © 1984 by Pacific Journal of Mathematics

Pacific Journal of Mathematics Vol. 113, No. 2 April, 1984

Alan Adolphson, On the Dwork trace formula
Amos Altshuler and Leon Steinberg, Enumeration of the quasisimplicial
3-spheres and 4-polytopes with eight vertices
Kenneth R. Goodearl, Cancellation of low-rank vector bundles
Gary Fred Gruenhage, Ernest A. Michael and Yoshio Tanaka, Spaces
determined by point-countable covers
Charles Lemuel Hagopian, Atriodic homogeneous continua
David Harbater, Ordinary and supersingular covers in characteristic p 349
Domingo Antonio Herrero, Continuity of spectral functions and the lakes
of Wada
Donald William Kahn, Differentiable approximations to homotopy
resolutions and framed cobordism
K. McGovern, On the lifting theory of finite groups of Lie type
C. David (Carl) Minda, The modulus of a doubly connected region and the
geodesic curvature-area method
Takuo Miwa , Complexes are spaces with a σ -almost locally finite base 407
Ho Kuen Ng, Finitely presented dimension of commutative rings and
modules
Roger David Nussbaum, A folk theorem in the spectral theory of
<i>C</i> ₀ -semigroups
J. S. Okon, Prime divisors, analytic spread and filtrations
Harold Raymond Parks, Regularity of solutions to elliptic isoperimetric
problems
R. Sitaramachandra Rao and M. V. Subba Rao, Transformation formulae
for multiple series
Daniel Ruberman, Imbedding punctured lens spaces and connected
sums
Uri Srebro, Deficiencies of immersions