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In this paper, we introduce the notion of D-complexes which are
defined by replacing metric spaces with Nagami’s D-spaces in the
definition of Hyman’s M-spaces, and prove a main theorem that every
D-complex is a space with a o-almost locally finite base (this notion was
introduced by Ito and Tamano). This theorem sharpens a theorem of
Nagata. Furthermore, we deal with the adjunction spaces of two spaces
with a c-almost locally finite base.

1. Introduction. In [8], M. It6 and K. Tamano introduced the
notion of almost local finiteness and the class of all spaces with a
g-almost locally finite base. This class is countably productive, hereditary
and the closed image of a space in the class is M, (see [8]). Furthermore,
this class is an intermediate class between that of free L-spaces and that of
M, -spaces. Indeed, there exists a space with a o-almost locally finite base
which is not a free L-space (see [8]). But it is not known whether there
exists an M,-space which is not a space with a o-almost locally finite base.
If M,-spaces are spaces with a o¢-almost locally finite base, Ceder’s
long-standing unsolved question will be affirmatively answered; that is,
every stratifiable space is M.

In §2, we introduce the notion of D-complexes which generalizes that
of Hyman’s M-spaces ([6]). Note that, in [1], C. J. R. Borges used the
words paracomplex or n-paracomplex instead of Hyman’s M-space or his
M, -space, respectively. Furthermore, we give some results for D-com-
plexes which obtained in [10]. In §3, we give some preliminary lemmas. In
§4, we prove main results.

Throughout this paper, all spaces are assumed to be regular 7; and all
maps to be continuous. N denotes the set of all natural numbers. For the
definitions of uniformly approaching anti-cover and D-space, see K.
Nagami [12]. For M,-spaces and free L-space, see J. G. Ceder [2] and K.
Nagami [13], respectively. In each monotonically normal space X, we
assume that X has a monotone normality operator G satisfying the
properties [S, Lemma 2.2].

2. D-complexes and some results. 1In this section, we define D-com-
plexes, and study some properties of D-complexes.
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DEFINITION 2.1. A D(0)-complex is a D-space. Assume that D(n — 1)-
complexes have been defined for an » € N. Then a space Z is a D(n)-
complex if it is homeomorphic to the adjunction space X U, Y, where X is
a D-space, A a closed set of X, Y a D(n — 1)-complex and f a map from A
into Y. Let X = U{X;: i € N}, where {X;: i € N} is a closed cover of
the space X such that X; C X, ., and each X, is a D(n,)-complex for some
n; € N U {0}. If X is dominated by { X;: i € N} (namely, F C X is closed
in X if and only if F N X; is closed in X, for every i € N), then X is said
to be a D-complex.

REMARK 2.2. Since a metric space is a D-space and the closed image
of a D-space is a D-space by [12, Remark 4.5], each Lasnev space is a
D-space. Furthermore there exist a D-space which is not a La$nev space
(see [12, Example 2.1]), and a LaSnev space which is not a paracomplex
(see [3, Example 2]). Therefore the class of all D-complexes properly
contains those of all La$nev spaces and all paracomplexes.

The following two theorems was established in [10] and those are
generalizations of Theorems 1 and 2 in [16].

THEOREM 2.3. Every D-complex is an M,-space.

THEOREM 2.4. Let X be a D-complex. Then dim X < n if and only if X
has a o-closure preserving base U such that dim B(U) <n — 1 for every
U € A, where dim X is the covering dimension of X and B(U) is the
boundary of U.

Outline of proofs of Theorems 2.3 and 2.4. The property ECP was
defined in [16]. We consider ECP in monotonically normal spaces. Then,
first, we prove that every D-space X has ECP. Outline of this proof is the
following: Let X’ be a monotonically normal space and X’ = F U X,
where F and X are closed in X’, and G a monotone normality operator in
X'. Suppose U = {U,: a € A} is a closure preserving open family in F,
and V= {V,: A € A} a uniformly approaching anti-cover of X N Fin X
such that V is locally finite in X — F. For each U, € AU, let U, =
U{G(x, F— U,): x € U,}. Then U is open in X". For the fixed element
a €4, let B, = {y(a) C A: Uy, is open in U,}, where U, = U, U
(U{V: A €v(a)}). Let B= U(B,: a € 4}, U’ = (U;: B € B}. Then
Q' satisfies the conditions (1), (2), (3) of Definition 2 in [16]. Next, by the
methods of the above proof and [16, Lemma 2] we can prove that every
D(n)-complex has ECP. Last, Theorem 2.3 is proved by the same way as
proof of [16, Theorem 1]. If we use the results of K. Nagami [12], [13], [14]
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and the method of the above proof, Theorem 2.4 can be shown by the
same way as proof of [16, Theorem 2].

For adjunction spaces, we proved the following theorem in [10]. Since
a D-space is a free L-space, the subsequent corollary is a direct conse-
quence.

THEOREM 2.5. Let X and Y be free L-spaces, A a closed set of X which
has a uniformly approaching anti-cover, and f a map from A into Y. Then
the adjunction space X U, Y is a free L-space.

Proof. In [7], M. Ito proved that weak L-spaces are free L-spaces.
Therefore this theorem can be proved by some slight modifications of the
proof in [9, Theorem 3.1].

COROLLARY 2.6 (c¢f. Theorem 2.3). Every D(n)-complex is a free
L-space.

3. Preliminary lemmas. In this section, we define a property EP-
ALF — this is an abbreviation of “extension property of an almost locally
finite family” —, and give some preliminary lemmas. We begin with the
definition of almost local finiteness.

DEFINITION 3.1 ([8]). Let X be a space, x a point of X and QU a family
of subsets of X. QL is said to be almost locally finite at x if there exists a
neighborhood V of x and a finite subset { K,,...,K,} of X such that

WYy={UNV:U€eU}
C{K,N W:i=1,...,nand Wis a neighborhood of x}.

U is said to be almost locally finite in X if @ is almost locally finite at
every point of X.

DErFINITION 3.2. By EP-ALF we mean the following property of a
monotonically normal space X: If X is a closed set of a monotonically
normal space X’ such that X’ = FU X, F and X closed in X’, and if
U = {U,: a € A} is an almost locally finite open family in F, then for
each a € A there is a family {U;: B € B,} of open sets in X’ satisfying

ChHa = {Us: B € B,, a € A} is almost locally finite in X,

(C2) for each B € B,, Us N F = U,, and for every open set V in X’
with V' N F = U, there is B € B, such that U, C U; C V, and

(C3) for every open set W in F, there is an open set W’ of X’ such
that W' N F= W and such that W' N U; = & whenever B € B, and
wnu, = 2.
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LeMMA 3.3. Every D-space has EP-ALF.

Proof. Let X be a D-space, X’ a monotonically normal space and
X' = FU X, where F and X are closed in X’. Furthermore let G be a
monotone normality operator of X’. Suppose U = (U,: a € A} is an
almost locally finite open family of F. Let V= (V,: A€ A} be a
uniformly approaching anti-cover of X N F in X. In particular, since X is
hereditarily paracompact, we may assume that Vis locally finite in X — F.
For each U, €U, let U, = U{G(x, F— U,): x € Uy}. Then U, is
obviously open in X’. For the fixed element a € 4, let B, = {y(a) C A:
U 18 open in U}, where Uy, = U, U (U{¥,: A € y(a)}). Let B =
U({B,: @ € 4}, U’ = {U;: B € B}. Then condition (C2) of Definition 3.2
is obviously satisfied by ', because for each open set ¥ with ¥ N F = U,
there is a set U = U, U (U{V, €V: ¥V, C V' N U;}) for some B € B,
such that U, C U; C V. To prove (C3), let W be open in F. Then it is easy
to see that W’ = U{G(x, F— W): x € W} is an open set in X’ satisfy-
ing (C3).

Finally to prove (Cl1), first we consider the case x € F. There exist an
open neighborhood V of x in F and open finite subsets { H,,...,H,} of F
such that

QV C {H,N W:i=1,...,nand W is a neighborhood of x in F}.
Without loss of generality, we assume that
H,> U {U,euU: U,N V= H N W for some neighborhood W of x}.

Let V"= U{G(y, F-V):y€V}and H = U{(G(y, F— H)):y € H}
for eachi € {1,...,n}. Then it is easy to see that

|V’ C {H, N W:i=1,...,nand W is a neighborhood of x in X},

and V" is a neighborhood of x in X’. Thus @’ is almost locally finite at x.
Next, we consider the case x € X — F. Since Vis locally finite in X — F,
there is a neighborhood ¥ of x such that

ANEANVNIV#B,xEV,,VR,EV}={A,....A,}.
Let
{ U {¥,: A, € v}: vis a non-empty subset of {Al,...,An}}
=(K,,...,K,}.
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Then it is clear that
|V C{K,NW:i=1,...,mand Wis a neighborhood of x in X"}.
Thus Q. is almost locally finite at x. This completes the proof.

LemMMA 3.4. Every D(n)-complex has EP-ALF.

Proof. We use induction on n. Since by Lemma 3.3 the present
assertion is true for n = 0, we assume that every D(n — 1)-complex has
EP-ALF. Let X, be a D-space, Y, a D(n — 1)-complex and f a map from a
closed set E of X, into Y. Then it suffices to prove that the adjunction
space Z = X, U, Y, has EP-ALF. Let p be the projection from the free
union X, U Y, onto Z. Note that p is a topological map from Y|, onto a
closed subset Y of Z. Now, let Z' = F U Z, where Z’ is monotonically
normal and F and Z are closed in Z’. Suppose U = {U,: a € A} is an
almost locally finite open family in F. Let Y’ = Y U F. Then F and Y are
obviously closed in the monotonically normal space Y’. Since by the
induction hypothesis Y has EP-ALF, each U, can be extended to open sets
{Us: B € B,} in Y’ satisfying (Cl1), (C2), (C3). Let us denote by ¢ the
restriction of p to X,. Define a closed set K of X, by K = ¢~ '(Y”). Since
X, is a D-space, X, has a monotone normality operator G. Let V= (¥;:
A € A} be a uniformly approaching anti-cover of K in X, and locally
finite in X, — K. Foreach 8 € B, (a € 4) and each y C A, let

= U {G(x, K= ¢ (1g)): x € (L)},
V=4 () U (U (neT:aey)).
For the fixed element« € 4 and B € B,, let
CB) = {y C A: ¥, isopenin V3}, C, = U (C(B): B € B,).

Let Uy = p(V3,) U Us and U, = (U,: y € C,}. Then U/ are extensions
of U, into Z’ satisfying (C1), (C2), (C3).

First, we can easily show that each U’ € QU is open in Z’. (C2) is
obviously satisfied by AU, (a € 4), because {U;: B € B,} satisfies (C2).
Next, to prove (C3), let W be an open set in F. Since {U;: 8 € B,, a € 4)
satisfies (C3), there exists an open set W’ in Y’ such that W N F=W
and such that U, N W = & implies W’ N U; = @ for all B € B,. Since
g~ '(W") is open in K, let

w'=w Up( U {G(x,k—q'(W")):x € q—‘(W’)}).
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Then W is obviously open in Z’. Furthermore, W N U, = & implies
that W' N Us = @ for every B € B,, so that W” N U’ = & for every
y € C(B). This proves (C3).

Finally, we shall prove that A" = U {U: a € 4} is almost locally
finite in Z’. Let x € Y. Since AU’ = {U;: B € B,, a € A} is almost locally
finite in Y”, there exist an open neighborhood ¥ of x in Y’ and open finite
subsets { H,,...,H,,} of Y’ such that

I\V C{H NW:i=1,...,nand W is a neighborhood of x in Y'}.
Without loss of generality, we assume that for each i

H,> U {U; €: Y N V= H, N W for some neighborhood

Wof xin Y'}.
Let V' =V U p(U{G(y, K— g (V)):y € g (V)}) and for each i
H =HUp(U (6(y. K~ ¢ '(H)):y €q(H)}).

Then it is easy to see that

W’V C{H NW:.i=1,...,mand W is a neighborhood of x in Z’},

and V7 is a neighborhood of x in Z’. Thus Q" is almost locally finite at x.
Let x € Z’ — Y'. Then by the same method as last part in the proof of
Lemma 3.3, it is easily seen that Q" is almost locally finite at x. This
completes the proof.

4. Main theorems. We begin with the proof of the following main
theorem which sharpens Theorem 2.3 in this paper (therefore Nagata’s
Theorem [16, Theorem 1]).

THEOREM 4.1. Every D-complex is a space with a o-almost locally finite
base.

Proof. Suppose that X = U {X;:i € N}, X, C X, ,, where each X, is
a D(n,)-complex and closed in X, and X is dominated by { X;: i € N}. By
Corollary 2.6 and [8, Theorem 3.3}, each X, has a o-almost locally finite
base {U,:j € N}. Foreachj € N, let AU, = (U(a,): @) € A}. Since X,
is a D(n,)-complex, X; C X, and X, is closed in X (therefore in X)), by
Lemma 3.4 X, has EP-ALF. Therefore every U(a,) can be extended to
open sets {U(ay, a,): a, € A(a))} in X, in such a way that the family
(Ula,, a,): a, € 4, a, € A(a,))} satisfies (C1), (C2), (C3). (In particular,
we assume that the method of extensions is the same one of Lemma 3.4.)
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Repeating this process we get for each k an almost locally finite open
family

(U(ays...,0): 0 EA, @, € A(@y),...,0, € A(ay,..., 0, )}
in X,. Let
S={(a,a,,a3...):a, EA,a, € A(ay), a3 € A(a;, a,),...}.

For each (a,, a,,...) € 2, let

Ula,, ay,...) = U {Ulay,...,): k € N},
Then U(ay, a,...) is an open set of X, because for each kK €N,
Uley, ay,...) N X, = U(ay,...,a) is open in X,. Let

U= {Ulay, ay,...): (@, @5,...) € Z}.

Now we claim that {2} ,: j € N} is a o-almost locally finite local base at
each point x € X,. First, it is easily seen by (C2) that {U] F+JEN}isa
local base at x. Next, to prove that each @} is almost locally finite, let
y € X,. Since U is almost locally finite at y in X, there exist an open
neighborhood V(1) of y in X, and finite open subsets { H,(1),...,H,(1)} of
X, such that

GlLU| V(1) c {H,(1) N W:i=1,...,nand Wis a neighborhood
of yin X, }.
Since the extension {U(a;, @,): a; € 4, a, € A(a;)} of U, is the same
one of Lemma 3.4, there exist an open neighborhood ¥(1,2) of y in X,
and finite open subsets { H,(1,2),...,H,(1,2)} of X, such that
{(U(ay, y): 0, EA, a, € A(a))}|V(1,2)
C {H(1,2) N W:i=1,...,nand W is a neighborhood of y in X, },

and ¥(1,2) N X, = V(1), H(1,2) N X, = H,(1) for each i. Repeating this
process we get for each k € N an open neighborhood ¥(1,...,k) of y in
X, and finite open subsets { H\(1,...,k),...,H,(1,...,k)} of X, such that
{U(ay,...,q0): 0, €A,... 0, € A(ay,..., 0, ) }|V(1,... k)

C {H,1,...,k) N W:i=1,...,nand W is a neighborhood of y in X, },
and V(1,...,k) N X,_, = V(1,...,k — 1), for each i, H/(1,...,k) N X,_,

=H({,...,k—1). Let V=U{¥(1,...,k): k€ N} and H, =
U{H,(1,...,k): kK € N} for each i. Then it is easily verified that ¥ is an
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open neighborhood of y in X and, for each i, H, is open in X such that
Uy

Thus U ;18 almost locally finite at y in X. Furthermore, we can prove the
same results even if y € X, for k # 1. Therefore AU/, is almost locally
finite in X.

Finally, we can prove the same results even if i # 1, namely for AU, y
(i # 1) we can construct AU;; such that U{9U/;: j € N} is a o-almost
locally finite local base at each point x € X,. Thus U{U/:i, j E N} isa
g-almost locally finite base of X. This completes the proof.

VC{H NW:i=1,...,nand Wis a neighborhood of y in X}.

ExaMpPLE 4.2. By this theorem, we can give a space with a o-almost
locally finite base which is not a free L-space. In [15], K. Nagami and K.
Tsuda proved that an infinite dimensional full complex with weak topol-
ogy of Whitehead is not free L. This example is a different one from [8,
Example 3.9].

COROLLARY 4.3. Every paracomplex has a o-almost locally finite base.
COROLLARY 4.4. Every CW-complex has a o-almost locally finite base.

In {16, Problem 1], J. Nagata proposed whether every closed image of
a paracomplex is an M,-space or not. This problem was affirmatively
solved by G. Gruenhage [4] and T. Mizokami [11], independently. Now
we can this problem as a corollary of Theorem 4.1 in a slightly generalized
form.

COROLLARY 4.5. Every closed image of a D-complex is M.
Proof. This follows immediately by Theorem 4.1 and [8, Theorem 3.6].

Finally, we consider the adjunction space of two spaces with a
o-almost locally finite base. We begin with the following theorem.

THEOREM 4.6. Every D-complex has EP-ALF.

Proof. Let X be a D-complex. Suppose that X = U{X;: i € N},
X; C X,,,, where each X is a D(n;)-complex and closed in X, and X is
dominated by {X;: i € N}. Let X' = F U X be a monotonically normal
space, where F and X are closed sets of X’. Suppose U = {U(ay):
a, € A} is an almost locally finite open family in F. Let X] = FU X,.
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Since X| is monotonically normal, F and X, closed in X{ and X, a
D(n,)-complex, by Lemma 3.4 every U(a,) can be extend to open sets
{U(ay, @)): ) € A(ap)} in F U X, satisfying (C1), (C2), (C3). (In particu-
lar, we assume that the method of extensions is the same one of Lemma
3.4.) Repeating this process we get for each k an almost locally finite open
family

(U(ag, ay,...,0): a9 EA, a) € A(ay),...,0, € Ay, ..., 04 ,)}
in FU X,. Let
2= {(ag, a,a5,...): a0 EA,a; € A(ay), a, € Ay, @),...}.
For each (e, a;, ay,...) € Z, let
Ulag, a;, ay,...) = U {U(ag, a;,...,a;): k € N}.
Then it is easily verified by the same method of Theorem 4.1 that

A = {Ulay, o, a3,...): (@, oy, @5,...) € Z}

is an almost locally finite open family satisfying (C1), (C2), (C3). Thus X
has EP-ALF.

THEOREM 4.7. Let X be a D-complex, Y a space with a a-almost locally
finite base, F a closed set of X and f a map from F into Y. Then the
adjunction space X U, Y has a o-almost locally finite base.

Proof. Let Z = X U, Y, p the projection from the free union X U ¥
onto Z and g the restriction of p to X. Suppose {U,: i € N} is a ¢-almost
locally finite base of p(Y). Now, for the fixed elementi € N, let U, = {U,:
a € A}. Since ¢~ '(U,;) = {¢”'(U): U€,} is obviously an almost
locally finite open family in F, by Theorem 4.6 there exists an almost
locally finite open family V; = (V;: 8 € B= U{B,: a € 4}} in X satis-
fying (C1), (C2), (C3). For B € B,, let Us = U, U p(¥},) and U] = {Us:
B € B}. Then it can be easily verified that U/ is an almost locally finite
open family in Z and U {Q]: i € N} is a o-almost locally finite local base
at each point z € p(Y). Let {?W;: i € N} be a o-almost locally finite base
in X — F and U, = {p(W): W € U,}. Then {U,, UW/: i € N} is obvi-
ously a o-almost locally finite base of Z. This completes the proof.

COROLLARY 4.8. The adjunction space of two D-complexes has a
o-almost locally finite base.
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