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If A is the infinitesimal generator of a C0-semigroup T(t\ a
classical theorem of Hille and Phillips relates the point spectrum of A
and that of F(£) for £ > 0. Specifically, if μ is in the point spectrum of
Γ(£) and μ Φ 0, then there exists <x0 in the point spectrum of A with
exp(ξα0) = μ and the null space of μ — T(ξ) is the closed linear span of
the null spaces of an — A for an = a0 4- 2πinξ~] and n ranging over the
integers. In this note we shall extend the Hille-Phillips theorem by
proving that the null space of (μ — T(ξ))k is the closed linear span of the
null spaces of (an — A)k as n ranges over the integers. Such a result is
useful in relating the order of poles of the resolvent of A and the order of
poles of the resolvent of Γ(£), and as an example we shall give an
application to the theory of positive (in the sense of cone-preserving)
linear operators.

The generalization which we describe above has been known for many
years. Jack Hale states it in his book on functional differential equations
[3, Lemma 4.1, p. 180], where the generalization is left as an exercise to the
reader. This seems an unwarranted burden on the reader. In our proof of
the theorem for general k we shall encounter several nontrivial complica-
tions which are not present when k = 1. Partly because of these difficul-
ties and partly because the extension provides useful additional informa-
tion (Theorem 3 below gives an application to the theory of positivity-pre-
serving C0-semigroups), it seems worthwhile to provide a detailed proof.

Before stating our theorem formally, we establish some notation. If B
is a closed, densely defined linear operator on a Banach space X, N(B)
will denote the null space of 2?,

N(B) = {xEX:Bx = 0}.

If X is complex, σp(B) will denote the point spectrum of 2?, so σP(B) is the
collection of complex λ with Λ̂ (λ - B) φ {0}. If {Fy. j E /} is a collec-
tion of linear subspaces Fj of X, we shall denote F, the smallest closed
linear subspace of X such that Fjd F for ally E /, by

F= V Fj

433



434 ROGER D. NUSSBAUM

or by
00

F= V Fj
7 = - o o

if / is the set of integers.
The following result is a generalization of Theorem 16.7.2 in [4]

(although it should be noted that the Hille-Phillips theorem allows semi-
groups more general than C0-semigroups).

THEOREM 1. (Compare [4], Theorem 16.7.2, p. 467 and [3, p. 180].) Let
T(t), t > 0, be a C0-semigroup with infinitesimal generator A. Then for any
I > 0 one has

(1) σP(T(ξ)) - {0} = {exp(£α): a E σP(A)}.

If μE σP(T(ξ)) - {0}, μ = exp(£α0) for some a0 E σP(A), and if an =
α0 + 2πinξ~ι for n an integer, then for any integer k > 1 owe

(2) N{(μ-T(t))k)= V

As we have said, the novelty of Theorem 1 is that we allow k > 1.
The main tool in proving Theorem 1, as in the proof of the original

Hille-Phillips theorem, is the theory of Fourier series for Banach space
valued functions. Specifically, suppose g: R -* X (X a complex Banach
space) is a piecewise continuous, periodic function of period ξ. For each
integer n define the nth Fourier coefficient xn E Xof g(t) by

(3) xn=r

For any elements zn E X (n ranging over all integers) denote the Cesaro
sum of the zn by

if the Cesaro sum exists. The definition of the Cesaro sum is the same as
for zn E R, i.e., if
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then

(4) (C,l)ΣzH= lim UlTj)

if the limit on the right exists in the norm topology. Just as for real-valued
functions one has

(5) \ \

where g(t~) = lims^ts<tg(s) and the Cesaro sum on the right in (5)
converges.

We shall prove Theorem 1 in a series of technical lemmas. For
notational convenience we fix £ > 0 and μ E σP(T(ξ))9 μ φ 0. Select
α0 E C such that

(6) exp(£α0) = μ

and define an = α0 + 2πinξ~ι for integers «. Define a C0-semigroup 5(/)
by

(7) S(/) = rap(-αo/)Γ(O

and for each integer n we define (as in [4]) a bounded linear operator Jn\

(8) /Π(JC) -

If, for x E I , we define g(ί) = 5(/)x for 0 < ί < ξ, and then extend g
to be periodic of period £, then /M(x) is the nth Fourier coefficient of the
piecewise continuous function g(t). It will also be convenient to define Q:
X-+JTby

(9)

and closed linear subspaces Mk,k> 1, by

(10) M t ( *

LEMMA 1. Let T(t)9 t > 0, &e α CQ-semigroup and let notation be as
above. Then Jn maps X into the domain of A and

(11)
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Proof. If s > 0 and x E X, some simple manipulations give

(12) s~ι[T{s)(Jnx) -Jnx]

ι + a0))S(ήxdt

f exp{-2ττintξ~λ)S(t)xdt

ι + «0)*) ~ l]S{t)xdt.

Using the continuity of t -> S(t)x, one obtains from (12) that

(13) limίS-
][T(s)(Jnx) -Jnx] = A(Jnx) = anJnx - ΓlQx

which completes the proof. D

LEMMA 2. Let notation and assumptions be as in Lemma 1. Then one
has for x E X,

(14) χ = {c \
n

where the summation is over all integers.

Proof. Define g(t) = S(t)x for 0 < / < £ and extend g{t) to be
periodic of period £. Then Jnx is the nih Fourier coefficient of g(t) and as
already remarked

~

(15) ( g ( )

which completes the proof. D

LEMMA 3. Let notation and assumptions be as in Lemma 1. // z E Mk

one has

(16) * = Σ <
>=0
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Proof. Apply equation (14) to z, then to Qz, then to Q2z and so on
and use the fact that Qkz = 0 for z E Mk. D

Our next three lemmas provide the tools to prove Theorem 1.

LEMMA 4. Let notation and assumptions be as in Lemma 1. // u E Mk

and n is a fixed integer, there exists υ E Mk Π D(A) (D(A) denotes the
domain of A) such that

(17) (A-an)v-uEJn(Mk).

Proof. It suffices to prove that if w E Mk there exists v E Mk Π D(A)
such that

(18) {A - an)υ - (C, l ) Σ / » e Jn(Mk).
m

If we know (18) is true and u E Mk9 apply (18) to w = Qj{u) to obtain
v E Mk Π D(A) satisfying (18). Lemma 3 then implies that if

k-\

v = 2 2"^
7 = 0

one has

(A-an)v-uEJn(Mk).

Thus we assume w E Jn{Mk) and try to find D E M Λ Π ΰ ( i ) satisfy-
ing (18). Defines by

(19)
mΦn

First, we must show that the expression in (19) is Cesaro summable.
Define h(t) by

h(t) = Qxp(27rintξ'ι)ίt[Qxp(-2ττinsCl)S(s)w - Jnw] ds.

One can easily check that h(0) = h(ξ) — 0. For m Φ n, a simple integra-
tion by parts gives

(20)
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and of course for m — n one obtains

(21)

Since the Cesaro sums of the Fourier series for h{t) converge to h(t), by
using (20) and (21) and recalling that h(0) = 0 one obtains

1 (am-any
ιJm(w)

= -ζ ιJ \J ex

If v denotes the left-hand side of (22), it remains to show that
υ E D(A — an) Π Mk and that (18) is satisfied. Let vN be a Cesaro
approximating sum for v9 so

*>JV= Σ CmN(am- anYλjm(w)
\m\<N

where the cmN are the constants for Cesaro summability and vN -* v. One
has that

'v(23) {A-an)υN= 2 cmN(A - am + am- an)(am- anY
ιJr

\m\<N
mΦn

We have used Lemma 1 in obtaining (23). We know that

(24) lim 2 cmNJmw = (C, 1) 2 •>>.

Also one has that

are just the Cesaro approximating sums for

(2τr/)~1(C,l) 2 ( m - « ) ~ 1 β w
rnφn

It follows that

(25) lim (A-aN)vN=(C,\) 2
Λ r -* 0 0 mΦn
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Since A is closed, one concludes from (25) that v E D{A) and

(26) (A-an)v=(C,l) 2 •>>•
mΦn

Equation (26) immediately implies that (18) is satisfied.
To complete the proof it suffices to prove that v E Mk. However, it is

easy to see that Jm commutes with T(t) for all t > 0 and all integers m, so
one finds Jm(Mk) C Mk for all m. It follows that vN E Mk and since t;^
approaches v as N -> oo and MΛ is closed, v G Mk. D

We shall also need a slight refinement of Lemma 4.

L E M M A 5. // u E M Λ (A; > 1) <zwd 7 ^ 1 is an integer, there exists
v E Mk Π

Proof. We proceed by induction on k. First we claim the lemma is
true for k = 1. Select u E Mλ and (using Lemma 4) select Wj e M, Π
D(̂ 4 — απ) such that

(27) (A-an)wλ-ueJn(Mλ).

Using Lemma 4 select w2E: Mx Π D(A — an) such that

(28) {A-an)w2-wλtΞJn{Mλ).

Lemma 1 implies that Jn{Mλ) C D(A — an) and that A — <xn vanishes on
Jn{Mλ), so we find that

(29) (A - anfw2 -u = (A-an)wλ-uE Jn{Mx).

Continuing in this way we eventually find Wj E Mλ Π D((A — an)
J) such

that

(30) (A-a^Wj-uEJ^M,).

Thus the lemma is true for k — 1.
Now we assume the lemma is true for all integers less than or equal to

a fixed integer k\ we have to prove the lemma for k + 1.
First, we make a technical observation: If u E Mk+X Π D((A — an)

J)
and p is an integer such that 1 </? <y + 1, we claim that there exist
vectors wp E Mk+λ Π D((A - an)

p) and zp E Jn(Mk+2_p) such that

(31) (A-any-ιu = (A-anywp + zp.
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(Here we adopt the convention that Mk+1_p — {0} if k + 2 — p < 0.) If
p = 1, equation (31) follows directly from Lemma 4, so we assume that wp

and zp have been found for a fixed p <j + 1 and try to find wp+x and
zp+\. Lemma 1 insures that zpE. D(A — an) and that

(32) {A-an)zptΞMk+x-p.

Since p <j + 1 we also know that (A — an)
p~λu E D(A — an)9 so we

can apply (A — an) to (31) and obtain

(33) {A - an)
pu = {A- an)

p+\ + (A - an)zp.

However {A — an)zp E Mk+ι_p and k+\—p<k, so our induc-
tive hypothesis applies and there exist zp+ι EJn(Mk+ι_p) and vp E
D((A - any

+ι) Π Λ 4 + 1 _ , such that

(34) (A - <xn)zp = ( A - an)
p+{vp + zp+ι.

Thus if we define wp+ι — wp + vp we have

and

Continuing in this way we obtain equation (31) for 1 <p <y + 1.
We now return to the induction in k. If u E M ^ , we must show that

for everyy' >: 1 there exist

VjeD((A-an)
j)πMk+ι and f;.ε/B(Λ/i+1)

such that

(35) u = (A-aHyvj + ξj.

If 7 = 1, this is simply Lemma 4. Assuming Vj and fy in equation (34) have
been determined for a fixed jr > 1, the preceding technical observation
implies that there exist

and zJ+λ E

such that

(36)
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Substituting (36) in (35) and writing fy+1 = z y + 1 + ξJ9 one sees that
ζJ+ι EJn(Mk+x) and that

This shows that (35) can be satisfied for all j9 which completes the
induction in k. D

LEMMA 6. // x E Mk9 there exists w E Mk_x such that Jn{x) + w E
Z>((Λ-αn)*)α/κ/

(38) (A-aH)kMx) + w) = 0.

Proof. Lemma 1 implies that (A — <xn)(Jnx) E Mk_]9 so according to
Lemma 5 there exists wx E D((A — an)) Π Mk_x such that

(39) (A — a )(J X + } V ) G J (M _ ).

Equation (39) implies that

(40) (A - anf(Jnx + wx) E Mk_2

so Lemma 5 gives w2 E D((A — <xn)
2) Π ΛfΛ_2 such that

(41) (Λ - anf(Jnx + wλ + w2) E Jn(Mk_2).

Assume that we have found Wj E Mk_j for 1 <y < / ? < / : such that
/rtx + ΣJ = ! wy is an element of D(^4 — an)

p and

(42) ( Λ - α J ' U * + 2 ^ y EJn{Mk_p).
\ 7=1 /

Equation (42) implies that we can apply (A — an) again to obtain

(43) {A-an)
p+λ[jnx+iw\^Mk_(p+λ).

\ 7=1 /

It follows from Lemma 5 that there exists

wp+ieMk_(p+l)ΠD((A-an)
p+l)

such that

(44) (A - a,
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Continuing in this way we eventually obtain

(45) (A-aΛ)
k-χ^JΛx + k Σ ^

so that, defining w = Σ)= / wj9 gives

(A-an)
k(Jnx + w) = 0

which is the desired result. D

Proof of Theorem 1. We proceed by induction on k. The case k — 1 is
the previously mentioned theorem of Hille and Phillips (and also follows
directly from Lemmas 1 and 2). Assume that we have proved the theorem
for an integer k\ we need to prove the proposition for k + 1.

First, we shall prove the difficult part:

(46) Mk+ιC V
= - o o

Lemma 3 shows (if we recall that Qpz E Mk+λ whenever z E Mk+ι) that
it suffices to prove that if x E Mk+l9 then

/„(*)£ V N((aj-A)k+1).
7 = - o o

Lemma 6 shows that there exists w E Mk such that

(47) Jn(x) + wEN((an-A)k+

and the inductive hypothesis implies that

(48) -wEMkC V N((aj-A)k)c V
j — ~°o j=— o

We obtain (46) by combining (47) and (48).
To prove that

Mt+1D V N((aj-Ar
7 = - 0 0

it suffices to prove that

(49) Mk+ιDN((an-A)k+")

whenever an is in the point spectrum of A. This is rather easy, so we shall
only sketch the proof. Define a new Co-semigroup Tx(t) by

Tx(t) - e-*'T(t)
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where we have written a for an. It is easy to show that Tλ(t) has
infinitesimal generator B= —al + A. We have to show that if x E
N(Bk+ι\ then x e N((I - Tx(ξ))k+ι). Notice that if we define y(t)9 for
t >0by

y{t) =

then y(0 e C*+1[0,oo) (because x E Z ) ( 5 H 1 ) ) and y(t) satisfies the
ordinary differential equation

/ d *I
(50) ^

The equations (50) are also satisfied by

(51) *»=ϊ[
j=0

where the summation in (51) is actually fromy = 0 to k. Uniqueness for
solutions of the initial value problem (50) implies that

(52) y(t) = Tι(t)x= 1
7 = 0

Equation (52) implies that

(i-m))χ= f ( π
j=l

Assume for p > 1 that there are constants cjp, j >: /?, such that

(53) (/ - Tx(ξ)γX = 2 CjJ'BJx.
j=p

Substituting Bpx for x in (52) gives

(54) Tx(ζ)B'x= 1 ( I
7 = 0

and using (53) and (54) one finds for constants cJp+ι that

(55) (l-Tι(ξ)Y+ιx =
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Taking p = k in (55) shows that

since Bjx — 0 fory > k + 1, and this completes the proof. D

We wish now to obtain some consequences of Theorem 1. Recall that
if A is a closed, densely defined linear operator and α0 is an isolated point
of the spectrum σ(A) of A9 then (λ — A)~x has a convergent Laurent
series expansion for | λ — α01 small:

y=-oo

where the Bj are bounded linear operators. If there exists —m<0 such
that Bj — 0 for y < — m and B_m φ 0, then α0 is called a pole of the
resolvent (λ — L)~x of order m. Standard results (see, for example, [5],
pp. 178-181 or [11]) imply that if α0 is a pole of A, then α0 is in σP(A), the
point spectrum of A\ and m, the order of the pole, is the first integery
such that

(57) N((ao-AY)=N((ao-A)j+1).

In particular, there must be such ay if α0 is a pole of the resolvent. If α0 is
a pole of the resolvent of A and the dimension of the range of the spectral
projection associated to α0 is a finite number d, a0 is called a pole of finite
rank d; d is also called the algebraic multiplicity of the eigenvalue α0.

We shall also need the idea of the essential spectrum of A, ess(^4).
There are several inequivalent definitions of the essential spectrum; we
shall use a definition given by F. E. Browder in [1]. A complex number a
is defined to be in ess(^l) if at least one of the following conditions holds:
(1) the range of a — A is not closed, (2) a is a limit point of o(A) or (3)
^k>\N((a — A)k) is not finite dimensional. Browder proves that β $
ess(^4) if and only if β £ o(A) or β is a pole of finite rank of the resolvent
of A. Other useful characterizations have been given by D. C. Lay [6] and
A. E. Taylor [11, §9].

If B is a bounded linear operator on a complex Banach space X, the
radius of the essential spectrum of J9, re(B), is defined by

(58) re(B) = sup{|λ| : λ E ess(B)}.

If, for any bounded linear operator 2?, a seminorm/?(/?) is defined by

(59) p(B) = inf(||2? + C\\: C a compact linear operator}
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it is proved in [7] that

(60) r,(B) = \im (p(B")f/n\

The formula (60) is valid for all the definitions of the essential spectrum.
As usual, the radius of the spectrum of B, r(B) is given by

(61) r(B) = sup{|λ| : λ E σ(B)} = Urn \\Bnf/n).

If L is a closed, densely defined linear operator, it will also be useful
to define t(L) by

(62) t(L) = inf{Re(α): a E σ(L)}.

With these preliminaries we have

THEOREM 2. Assume that —L is the generator of a C0-seminorm T(s)9

s > 0, and that for some ξ > 0

(63)

Then t(L) satisfies

(64)

// F{ = {λ € σ(Γ(|)): | λ | = r(7χ{))}, ίΛen F, is α /f/iite «tf am/ eυery
element ofFx is a pole of finite rank of the resolvent of Γ(£). If F2 is defined
by

then F2 is also a finite, nonempty set consisting of isolated points ofσ(A) and
for every element a of F2 one has that

(65) U N(a ~ L)k

k=\

is finite dimensional. If, for every λ E Fl9 d(λ) is defined to be the
dimension of the null space ofλ—T(ζ)9 then the cardinality of F2 satisfies

(66) card(i^2)< 2 ̂ (λ)
λeF,

Ifmx is the maximum of the orders of the poles of(λ— T(ξ))~{ for λ E F{

and m2 the maximum of the order of the poles of {a — L)~λ for a E F2 and
a a pole of the resolvent ofL, then

(67) m2<mx.
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Proof. The statements about Fλ follow from the properties of the
essential spectrum and equation (63). Since it is known (see Corollary 2, p.
457 in [4]) that

(68) exp(-£σ(L))Cσ(Γ(£))

it follows that a E σ(L) implies

- ί R e ( α ) < l o g ( r ( Γ ( { ) ) ) = τ

and that there exists ε > 0 such that — £Re(α) is not in the interval
(T — ε, T) for a E σ(L). Theorem 1 states that if λ G F l 9 there exists
α0 E F2 such that exp( — ξa0) = λ and if am = a0 + (2πim)ξ and k > 1,

00

(69) N{(λ-T(ξ))k)= V N((am-L)k).
m= — oo

This immediately gives (65). If one takes k — 1 in (69) and uses the fact
that the linear subspaces N(am — L) are linearly independent for different
m's, one also obtains (66). Equation (68) and the fact that F, consists of
isolated points of σ(T(ξ)) implies that F2 consists of isolated points of
σ(L).

It remains to prove that m2<mx. Equation (69) shows that it suffices
to prove that if λ E Fx and

N{(λ-T(ϊ))k+])=N{(λ-T(ξ))k)

then

N((am-L)k+l)=N((am-L)k)

for all integers m. By way of contradiction, suppose not, so assume

(70) w<Ξ

for some j . Define Wm — N((am — L)k); since Wm is finite dimensional
and only finitely many Wm are nonzero, equation (69) implies that

(71) vv = Σwm

m

where wm E Wm, wn ̂  0 for some nφj and the sum is finite. It is easy to
see that L is defined on all of Wm and that o(L\W) = am\ thus
(L — am)kΛ~λ is a one-one map of Wn onto Wn for m Φ n. It follows that if
we apply (L - ctj)k+ι to (71) and then (L - am)k+λ for all m φ n such
that wm φ 0 we obtain a contradiction: a nonzero element of Wn will be
zero. •
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REMARK 1. If, for a given a E Fl9 we know that the range of a — L is

closed, it follows that a is a pole of finite rank for the resolvent of A (see

[11]).
Finally, we wish to give an application of Theorems 1 and 2 to the

theory of positive linear operators. Recall that if A" is a real Banach space

and K a closed, convex subset of X, K is called a cone if x E: K — {0}

implies —x & K and x E K and / > 0 implies tx E K. The cone K is

called total if X is the norm closure of {u — v: u, v £ K}. A bounded

linear operator B on X is called positive (with respect to K) if 5(K) C K.

By the spectrum of B we shall mean the spectrum of the natural extension

of B to the complexification of X.

We need to recall an extension of the Krein-Rutman theorem which is

proved in the appendix of [10]; a different proof of a closely-related result

(which would be adequate for the application below) is given in [9].

THEOREM (See appendix of [10]). Let X be an ordered real Banach

space with total positive cone K and assume that B is a continuous', positive

linear map of X to X whose resolvent has a pole on the spectral circle

| λ | = r(B). Then r(B) is in the spectrum of B, and if r(B) is a pole of the

resolvent, its order is greater than or equal to the order of any other pole on

\λ\=r(B).

Our next theorem is very close to a theorem of Greiner, Vogt and

Wolff [2]; our assumptions on the cone K are weaker, but we must assume

that re(T(ξ)) < r(T(ξ)) for some { > 0.

THEOREM 3 (Compare [2]). Assume that K is a total cone in a real

Banach space X. Let T(t), t > 0, be a CQ-semigroup in X with infinitesimal

generator — L, and suppose T(t) and L are extended naturally to the

complexification of X. Assume that T(t) is positive for each t > 0 and that

for some ξ> 0 the essential spectral radius of T(ξ) is strictly less than the

spectral radius ofT(ξ). Then ift(L) is given by (62)

t(L)EσP(L).

If t(L) is a pole of the resolvent of L (see Remark 1), its order is greater

than or equal to the order of any other pole of the resolvent on the line {a:

Re(α) =

Proof. Let notation be as in Theorem 2. Since F2 is finite, select d such

that d >\ a \ for all a in F2. Select a positive integer k such that

(72) 2πkΓι >2d
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and define rj = ξk~ι. The spectral mapping theorem and the spectral
mapping theorem for Browder's essential spectrum imply that

(73) [re(T(r,))]k = re(T(ξ))

[r(T(η))]k = r(T(ξ))

SO

(74) re(T(η))<r(T(V)).

The definition of the essential spectrum and the Krein-Rutman theorem
imply that r(T(η)) is a pole of finite rank for the resolvent of T(η).
Theorem 1 implies that there exists a E F2 such that

(75) exp(-ηα) = r(Γ(i,)).

However η has been chosen so that the only possible solution a E F2 of
(75) is real, and using (64) (for η instead of £) we conclude that

(76) r(L)ef,

Finally, suppose that a = t(L) is a pole of the resolvent of A and that
β E F2 is another pole. We have chosen η so that the map JC -» exp(—IJJC)
is one-one for x G F2, so Theorem 1 gives (writing λ, = r(T(η)) and
λ 2 = exp(—ηβ))

(77) N{(β-A)k)=N((λ2-T(η))k)

Equation (77) implies that the order of the pole β of the resolvent of A is
the same as the order of the pole λ2 of the resolvent of T(η), and similarly
for a and λ,. However, the Krein-Rutman theorem implies that the order
of the pole λ2 is less than or equal to that of λ^ D
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