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In an earlier paper by the author, the existence theory for solutions
of elliptic isoperimetric problems was developed in the context of rectifi-
able and integral currents. The regularity problem for solutions of those
isoperimetric problems was essentially left open. Examples were given to
show that, in certain cases, regularity may be totally absent. In this note
we derive positive regularity results for solutions of elliptic isoperimetric
problems.

1. Introduction. Let Φ and Ψ be class 2 elliptic integrands. The
problem studied in [PH] was that of finding a surface, S, minimizing the
integral of the integrand Φ over S subject to the requirements that S have
a given boundary and that the integral of the integrand Ψ over S equal a
specified value, ψ. In [PH] it was shown that two parameters, ψ0 and ψ1?

were crucial to understanding the problem:

ψ0 is the absolute minimum for the Ψ integral among
surfaces which satisfy the boundary condition, ψj is the
minimum for the Ψ integral among surfaces which satisfy
the boundary condition and for which the first variation of
the Φ integral vanishes.

In this paper, also, ψ0 and \pι are crucial. Using the first variation to
estimate the integrals over deformed surfaces, we are able to show that the
regularity results of F. J. Almgren, Jr., [AF], in the form recently derived
by E. Bombieri, [BE], yield the following (see 6):

THEOREM. 7/ψ0 < ψ < ψx and T is a rectifiable current which minimizes

the Φ integral among rectifiable currents which satisfy the boundary condition

and have Ψ integral equal to ψ, then the regular points are dense in

s p t Γ - spt9Γ.

2. Preliminaries. We will use the notation and terminology of
[PH]. Additionally, we

(1) assume Φ and Ψ are class 2 elliptic integrands of degree m on Z,
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(2) choose λ with 1 < λ < oo such that

λ ~ ' < Φ ( z , α ) < λ and

hold for z E. A andα e ΛmR"with|α|= 1,
(3) fix ψ with ψ0 < ψ < ψ,,
(4) fix T e &mtΛ(Z) which satisfies spt(i? - ΘΓ) c ί , ( Ϋ , Γ ) = ψ,

(5) denote by G the set of

x e (Int A (Ί spt T)~(BU spt 3Γ)

such that there exist r > 0 and a class 3 isotopic deformation

h:IX W-*Z,

of an open subset, W, of Z in Z, for / an open interval with 0 G /,
satisfying

(i) A C W,
(ϋ)A(/X sptΓ) CA,

(iii)Λ[/X(5Π sptθΓ)] Cϋ,
(iv) Λ(/, z) = z for / e / and z e B"(x, /•) U (spt 3Γ ~ 5),
(v) h(t, z) € U"(x, r) for ί e / and z £ U"(x, r),

(vi) U"(JC, r) C Int A ~ (5 U spt 9Γ),

(vϋ) δ(1)(Γ, Φ, Λ) φ 0.

3. LEMMA. ΓΛere is at most one point in

[(Int A Π spt Γ) ~ (B U spt 9Γ)] ~ G.

Proof. Fix

x, e[(Int A Π spt Γ)~(fiU spt
x2 e (Int A Π spt T) ~ (5 U spt 9Γ)

with x, =7̂ X2- We will show

x 2 e G.

Since ψ < ψt, Γis not Φ stationary with respect to {A, B) and, hence,
there is a class 3 isotopic deformation

k:JX V^Z
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of an open subset, V, of Z in Z, for / an open interval with OG/,
satisfying

ACV,

k(JX sptΓ) CA,

k[jX (B Π sptθΓ)] Cί,

k(t,z) = z fortEJ and zEsptdT~B,

Choose r > 0 such that

Vn(xl95r) Clnt,4~({jc 2} U δ U sptθΓ).

Choose an open interval /, with 0 E / C /, and an open W, with^ί C W
C V, such that

\k(t, z) -z\<r holds for/ El and z G B"(x,,3r),

k[lX{W~V"(xu2r))] ΠBn(xur)= 0.

Choose φ: R" -> R of class oo such that

φ(z) = 0 i f | z | < 2 ,

φ ( z ) = l i f | z | > 3 ,

0 < φ ( z ) < 1 for all z ER".

Define

/:/X P Γ ^ Z

by setting

/(ί, z) = φ(r\z - *,))*(*, z) + {\- φ{r~\z - x,)))z

for {t, z) e / X W. We note that r and / satisfy the conditions 2(5i-vi)
with x replaced by x,. Thus we have

δ ( 1 )(7\Φ,/) = 0.

Define

h:IX W^Z

by setting

h(t, z) = (l - φ(r-ι(z - *,)))*(/, z) + φ{r~\z - x,))z

for (/, z) E / X ίF. We have

0 φ δ ( I )(Γ, Φ, k)

, Φ, /) + δ (1)(Γ, Φ, Λ) = δW(T, Φ, h).
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Since r and h satisfy the conditions 2(5i-vi) with x replaced by x29 we have
x2 E G.

4.1. Preliminaries. In 4.2 we will use the following notation:
(1) Fix x0 E G and let r0 > 0 and h: IX W"-» Z satisfy the condi-

tions of 2(5).
(2) Set

By hypothesis we have a φ 0, and without loss of generality we may
assume a > 0.

(3) Define the elliptic integrand

Ξ : Z X Λ m R " ^ R

by setting

Ξ(z,μ) = (H

for(z, μ) E Z X ΛmR".

4.2. THEOREM. ΓΛere exist rx,cλ, with 0 < /*,, c, < oo, 5«cΛ that for each
r, with 0 </-</-,,

x 0 , Ό

w (Ξ, ω, 2r) minimal in Un(x0, r) (see [BE; Definition 1]),

ω(/) = c, sup{||Γ||B"(x9 /): x E U"(x 0 ?

/. We will assume

the proof in case δ(1)(Γ,Ψ, Λ) = 0 is similar. By [PH; 1.4] and the
argument used in the proof of [PH; 1.3], we see that, in fact,

must hold.
We can find 8, c, positive real numbers, and

/ , g : R Π {/: | / | < δ ) -> R Π {/:
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of class 2, such that for t with 111< δ the following hold:

(\+c)tEl,

\(Φ, ht#T)- (Φ, T)~ tδW(T, Φ, Λ)| < cί2,

467

{Φ,hf(ί)#T)=(Φ,T)+t,

{*,hgω#T)=(Ψ,T)+t,

\f(t)-t[δ^(T,Φ,h)]-l<:cti

Let /•, be such that

0 < r 1 < 3 - ' r 0 , | |7i |U«(x o,3r,)<λ- 3δ.

Set

c, = 5λ4(l + « δ)2(l + c)3.

Fix r with 0 < r < rv Let K be compact with K C \Jn(xQ, r). Suppose
X E <&m(Rn) satisfies 3 * = 0, spt X C K. Set d = diam(spt X) and fix
x, E spt X. By [PH; 1.4] and the argument used in the proof of [PH; 1.3],
we may suppose either

(*) (Ψ,T)<(Ψ,T+X)9 (Φ,T)>(Φ,T+X)

or

(**) (*9T)>(Ψ9T+X), <Φ,Γ)<(Φ,Γ+X)

Case I. Assume (*) holds. We have

< λ 2 (Φ, "(x,, d) < δ.

Set

Then, by 2(5iv, v),

t=(Ψ,T)-(Ψ,T+X).

(ψ,hg{ι)#(T+X))=(Ψ,T)
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holds, so we have

(φfhg(t)#(T+X))>(Φ,T).

But also we have, again using 2(5iv, v)

(Φ,hg(t)#(T+X))

<(Φ,T + X)+ β< )(r, Φ, h)g(t) + c[g(ή]2

< (Φ, T+ X)+ a{β~xt + ct2) + c(β~ιt+ cί2f.

It follows that

\β\(Φ, T)<\β\(Φ, T + X)+a((Ψ, T+X)- (Ψ, T))

+ \β\{(%T+X)-(%X)\t\)

• (ac + β'2c + 2c2\βf l\t\+c3t2).

Consequently, we have

(Ξ, Γ)< (Z,T+X) + \β\{a +\β\)~\(Ψ,T+X)- (Ψ, T))

•\t\ 5(\+a)(\+c)3(\+δ)2(\+\β\-y.

We note that

(Ψ, T + X)- (Ψ, T)<(Ψ, TLK+ X)<λM[TLK+ X]

and

|ί |< λ3sup{||7i|B"(x, d): x e U"(x0, >",)}•

So we have

< (Ξ, TLK + X)+ ω(d)M[TLK+ X].

Case II. Assume (**) holds. The argument used in this case is similar
to that used in Case I. The difference is that we set

t=(Φ,T)-(Φ,T+X)

and consider

hm#{T+X).

5. LEMMA. There exists μ > 0, which depends only on m and λ, with the
following property: For each r2 > 0 there exists c2 = c2(r2, Γ, m, λ) > 0

if 0 < p < r2 and x €Ξ spt Γ satisfies dist(x, 5 U spt ΘΓ) >: r2,
π(x, p) <



ELLIPTIC ISOPERIMETRIC PROBLEMS 469

Proof. Set μ = λ'2m. Let r2 > 0 be given. Set c2 = M.(T)(r2y
μ. Fix

x G spt T which satisfies dist(x, B U spt 3Γ) > r2.
Define «: R" -> R by setting

«(*) = | z - J C | .

Define t?: {p: 0 < p < r2} -* R by setting

t)(p)=| |7 | |U-(x,p).

Define H : R X R " - ^ R " by setting

H(t,z) = x + t(z - x).

ForO < p<r2, set

Sp = ΓLU"(x, p) + H#[{E'L{t: 0 < ί < 1})(Γ, «, p + ) ] .

By [PH; 1.4], for each 0 < p < r2 we have either

or <Φ,Γ)

For β1 almost every 0 < p < r2 we have

M[H#[(Eιl{t: 0 < ί < 1}) X (Γ, «, p +>]]

We conclude that for t ι almost every 0 < p < r2

and, hence,

holds. The conclusion of 5 is now easily obtained by integrating (*).

6. THEOREM. Suppose Φ and Ψ are class 2 elliptic integrands and
ψ0 < ψ < ψ,. IfT e ^ m > y ,(Z) jβto^es

spt(i? - 97) C 5,

the set of regular points is dense in

(Int A Π spt T)~(BU spt 9Γ).

. The theorem follows from 3, 4.2, 5 and the main result of [BE].
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