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In this paper we prove a general transformation formula for a triple
series of complex terms. We deduce a transformation formula for double
series and discuss some applications. Furthermore, some reciprocity
relations of the following type are obtained: Let a, by c be reals greater
than 1 and

P(a,b,c) = 2 r~a 2 k~b Σ ι~c-
r=\ k=\ l=\

Then

P(a, b, c) + P(a, c, b) + P(b, c, a) + P(b, a, c)

+ ζ(b)ζ(c + a) + ζ(c)S(a + b) + 2{(β + * + c),

where f denotes the Riemann zeta function. In particular, P(2,2,2) =
31ττ6/15,12O.

1. Introduction. Since the time of Euler, the evaluation of certain
infinite series, in closed form, in terms of the Riemann zeta function and
allied functions is familiar. The processes involved, at times, yield recur-
rence relations among these functions. Results of this kind, dating back to
1743 and due to Euler, can be found in N. Nielsen's book (cf. [6], Erster
Teil, Kapitel III). It appears that some recent authors are not aware of
these results. For example, in 1953, G. T. Williams (cf. [9], Theorems III
and I) proved the following results:

(l l) 2 1 -L 2 T = (« + 2)f(« + 1) - "ϊζ{a - i)ξ(i + 1),
r=\ r

 k=\ κ /=i

(1.2) f(2)f(2α - 2) + f(4)?(2α - 4) + +ζ{2a - 2)£(2)

= (β + i)f(2β),

where a is an integer > 2 and ξ denotes the Riemann zeta function
defined by ξ(s) = Σ*= 1 n's for ,y > 1. Williams claims that (1.1) is "ap-
parently entirely new" and that the convolution considered in (1.2)
"seems never to have been explicitly formulated before" (see also [3], [4],
[2], and [7]). But we note that (1.1) and (1.2) are already deduced in
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Nielsen (cf. [6], p. 47, Eqs. (3) and (4)) in a very elegant way and
apparently go back to Euler (see footnotes on p. 47 of Nielsen [6]).
Probably Nielsen's techniques were essentially those of Euler!. Nielsen (cf.
[6], p. 47) makes use of some reciprocity relations to evaluate certain
infinite series and further to deduce various recurrence relations involving
the Riemann zera function and allied functions ((1.1) and (1.2) are just
typical of these results). A careful examination of Nielsen's proofs shows
that they hinge on a certain transformation formula for double series
which, however, is not explicitly stated in the book. In §2 we prove a
transformation formula of a very general nature for triple series, which is
believed to be new. In §3 we deduce a transformation formula for double
series, which in turn yields as special cases all the basic reciprocity
relations on p. 47 of Nielsen's book [6]. In §4 we further illustrate our
transformation formula for triple series by deducing various reciprocity
relations and also evaluate some infinite series as special cases. Typical of
our results is the following:

1 ^ 1 £ 1 31

Γ=i r1

 k% k2 £x I1 15,120 '

2. Transformation formula for triple series. Let Σ^/=i/(r, k, I) be
an absolutely convergent triple series with complex terms. Then the
following transformation formula holds.

THEOREM 2.1. We have

00

r,k,l=\

= Σ Σ 2{f(r,k9l)+f(r9l9k)+f(k,I9r)
r=\ k=\ /=1

+f{k9r9l)+f(l9r9k)=f(I9k9r)}

- Σ Σ {f(r9k9k)+f{r,k9r)+f(k9r9k)+f(k9r9r)}
r=\ k=\

00 00

r=\ k=\

Proof. The absolute convergence of the triple series Σ~fef/==ι/(r, k, I)
justifies the rearrangements that we perform in the sequel. We write

(2.1) 1 /(/%*,/)= f Σ Σf(r,kJ)+Σ Σ Σf(r,k,l)
r,k,l=\ r=\ k<r 1=1 r=\ k>r l=\
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and

(2.2) 21= Σ Σ Σ/('>M)+Σ Σ Σf(r,kJ)
r=\ k<r l<k r-\ &<r l>k

Σ (l) , y (2)

We have

Σ(,2) = Σ Σ Σ /(',*,/)
r=l /=2 k<r,k<l

= Σ Σ Σ /(#•,*,/)+ Σ Σ Σ /(r,*,/)
r=l 2</<r k<r,k<l r=\ l>r k<r,k<l

= 1 Σ ( Σ f(r, k,l) -f{rj, /)) + 1 2 Σ/( ' ,* . ' )

= Σ l(2f(r,k,l)-f(r,U))
r=\ l<r V k<l '

Σ ( Σ Σ / ( ^ . * . O -

= Σ Σ 2f(r,k,l)- Σ 2f(r,l,l)
r=\ /<r k^l r= 1 l^r

+ 5 Π fir, k, /) - Σ Σ /(Λ k, /).

Thus from (2.1) and (2.2), we obtain

(2.3) Σ , : = Σ Σ Σ/O .*.')
r= 1 /c^r /= 1

= Σ Σ r / Σ / ( ' • . * . / ) + Σ Σ 2f(r,k,

- 2 Σf(r,u)+ 2 Σ 2 fir,k,i)

- Σ 2f(ι,k,ι)
l=\ k<l

oo
7 7 i τ l i * L r l \ -\~ tit' I If l -

/ 1 / 1 γ j y ΐ ) / v , i j i ^ y v ? ' ? ^ )

00

— V y lf(r k kλ + f(r k r)\
r=\ k<r
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Now we consider Σ 2. We also have

Σ 2 = Σ Σ Σ f(r9k,i)= f Σ Σ / ί ' . M )
r=\ k>r /=loo k = 2 r<k /= 1

= 1 ( Σ ΣA/ ,*./)-Σ/**.*./)

= 1 Σ 2f(r,k,ι)-
k=\ r<kk 1=1 k=\ 1=1

We observe that the first sum on the right of above is similar to that
considered in Σi Hence by (2.3) and the above, we obtain

(2-4) Σ 2 = Σ Σ Σ{(k,r9l)+f(l9r9k)+f(l9k9r)}
r=l k<r l<k

- Σ Σ{f(k,r,k)+f(k,r,r)}-Σ Σf(r,r,k).
r=l k<r r~\ k=l

Finally, on combining (2.1), (2.3) and (2.4), we arrive at

1 f(r,k,l)
r,k,l=\

= 2 1 Σ{f(r,k,l)+f(r,l,k)+f(k,l,r)

- Σ 1 {f(r,k,k)+f(r,k,r)+f(k,r,k)+f(k,r,r)}
r=\ k<r

- ϊ ϊf(r,r,k).
r=\ k=\

This completes the proof of Theorem 2.1.

3. A transformation formula for double series. Let Σ£*= {g(r, k) be
an absolutely convergent double series with complex terms. Then the
following transformation formula holds.

THEOREM 3.1. We have
00 00 00 00

r=\ k<r r=\ k<r r=\
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Proof. On taking

g(r,k) if/- 1,

0 otherwise,

in Theorem 2.1, we obtain the assertion.

REMARK 3.1. A direct and simple proof of Theorem 3.1 could be given
as follows:

1 g(r,k)= Σ Σg(r,k)+ Σ Σg(r,k)
r,k—\ r=\ /c<r r= 1 k>r

= Σ Σg(r,k)+ Σ Σg(r,k)
r=\ k<r k = 2 r<k

00 00

= Σ Σg(r,k)+ Σ {Σg(r,k)-g(k,k)\
r=\ k<r k=\ V r<k }

{
r=\ k<r k=\

 V
 r<k

= 1 Σg(r,k)+ Σ
r=\ k<r r=\ k<r r-1

The following special case of Theorem 2.1 will be particularly useful
in the applications we had in mind.

THEOREM 3.2. Let 1%,/(r) and 2f= }g(k)be two absolutely convergent
series of complex terms. Then

(3-1) (Σ fir)) (!*(*))= Σf(r)Σg(k)
\ r=l I \ k=l I r=\ k<r

+ Σ g(r) Σ f(k) - Σ f(r)g(r).
r=\ k<r r=\

In particular,

(3.2) 2 1 /(r) Σ M = ί Σ f(r))
2
 + 1 f

2
(r).

r=\ k<r \r=\ I r=\

)
r=\ k<r \r=\ I r=\

The following reciprocity theorem is an easy consequence of (3.1).

THEOREM 3.3. For i E (0,1}, define the function xt by setting

xi(n) — (""" 1) ( n } for positive integral n
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and write, for s > 1, f((s) = Σ™=\Xi(n)n~s. For reals a, b greater than 1
andiJE {0,1}Jet

p (ab)-y φ ) y Xj{k)

Then

PltJ(a, b) + Pu{b, a) =fi(a)fj(b) + fι+J(a + b).

REMARK 3.2. We note that for / G {0,1},

and, furthermore, Theorem 3.3 contains as special cases all the basic
reciprocity relations, in a slightly different notation, on p. 47 of Nielsen
[6]. As alluded to in the introduction, Nielsen made use of these relations
to evaluate some infinite series and prove several recurrence relations and
(1.1) and (1.2) are representatives of these. It may be of interest to note
that M. S. Klamkin [3] posed the special case a = 3 of (1.1) as a problem,
and while submitting his solution [4] attributed (1.1) to G. T. Williams.
Unaware of Nielsen's and William's work, W. E. Griggs, S. Chowla, A. J.
Kempner and W. E. Mientka [2], proved (1.1) in the case a = 2 and also
that

(3.3)

But interestingly (1.1) in the case a = 2 and (3.3) are in fact equivalent in
view of the following: For any a > 1 we have

r—\ k<r k=\ k>r

This follows from

0 0 1 1 °° 1 1 °° 1 / 1 1

T Z ~Γa ~~ Z ~ΰa Z ~Z ~~ Z Ί7a I Z T T
r U ua LJ ua LJ r iJ u

r=\r k>rK k = 2 K r<k ' k=2K

k=\

Alternative proofs of (1.1) and (1.2) could be found, respectively, in
R. Sita Ramachandra Rao and A. Siva Rama Sarma [7] and A. Siva Rama
Sarma [8]. Their arguments are based on a certain generalization of a
transformation formula due to J. Lehner and M. Newman [5],
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4. Further applications of Theorem 2.1. Let u, v, w E {0,1} and a,
b, c be reals greater than 1. We write

* ( r ) (τ> ( u \- V * * (
u,v,w\a>D> C) — L r

r=\ rr
a Δ I b Δ jc

r=\ r k<r * l<k l

where the function xt is as defined in §3. Then the following reciprocity
relation holds.

THEOREM 4.1. We have

Pu,v,w(a> b> C ) + Pu,w,v(a> C> b) + Pv,w,u(b> C> a) + Pv,u,w(b> a> C )

+fw(c)fu+v(<* + b)+

where f^s) is as given in Theorem 3.3.

Proof. On taking f(r, k, I) = xu(r)r-axv(k)k~bxw(l)Γc in Theorem
2.1, we obtain

(4-1) fu(a)fv(b)fw(c)

= Pu,υ,w(a> b' C ) + Pu,w,v(a> C> b) + Pv,w,u(b> C ' β )

+ Pv,u,w(b> °> C) + P

W,u,v(C> β> b) + Pw,v,u(C> b> °)

~ {p«,v+Λ<*> b + c) + Pυ+wJb + c, a)

+Puw,υ(a + c,b) + Pυ>u+W(b, a + c)}

-fu+v(a + b)fw(c).

But, by Theorem 3.3, we have

pu.v+w(o, b + c)+ Pυ+wJb + c, a)

= fu(a)fv+Λt> + c) +fu+o+w(<> + b + c),

a + c)fo(b) +fu+Ό+w{a + b + c).

On substituting these on the right of (4.1), we arrive at the assertion of the
Theorem.

REMARK 4.1. It may be noted that on choosing u, v, w from among 0
and 1, the above reciprocity theorem yields eight distinct reciprocity
relations. For example, writing

P(a,b,c) = Pooo(a,b,c) and P,(α, b, c) = P,, ,(α, b, c),
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we have

(4.2) P(a, b, c) + P(a, c, b) + P(b, c, a)j + P(b, a, c)

+ P{c,a,b)+P{c,b,a)

+ Mftb + c) + ζ(b)ζ(c + a)
b) + 2ζ(a + b + c),

(4.3) P,( β , b, c) + Px{a, c, b) + Px(b, c, a) + Pλ{b, a, c)

+ P,(c, a, b) + P,(c, b, a)

+ (1 - 2ι'a)ξ(a)ζ(b + c) + (1 - 2ι~b)ξ(b)ξ(c + a)

+ (1 - 2ι'c)ξ(c)ξ(a + b) + 2(1 - 2]-(a+b+c))ζ(a + b + c).

Specializing (4.2) and (4.3) with a = b — c, we obtain

(4.4) P(a,a,a):= | r~« 2 ^ a Σ Γ f l

(4.5) P,(β,α,α):= 1 (-1)'"^-' Σ (-1)*"1*"- Σ (-l)r 'r-

Since it is well known that for positive integral «, ξ(2n) is a rational
multiple of π2n (cf. [1], §12.12), from (4.4) and (4.5), we conclude that if a
is an even integer > 2, then each of P(a, a, a) and Pλ(a> a, a) is a rational
multiple of π3a. Further, since f(2) = τr2/6, f(4) = ττ4/90 and f(6) =
τr6/945 (cf. [1], §12.12), we have, in particular,

00 3 1
2 r 2 £ 2 ' — i

r=l A:<r / < * 1

r = l
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