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IMBEDDING PUNCTURED LENS SPACES AND
CONNECTED SUMS

DANIEL RUBERMAN

We investigate codimension-one imbeddings of punctured lens spaces
and connected sums of lens spaces. For |7,(L)| a prime power we show
that L — B**~! imbeds in S** if and only if L is of a certain special
form. If L # L’ imbeds in S**, then L ~ L’ and L is homology cobor-
dant to L'. For |=,(L)| a prime power, this implies (via Smith-theory)
that L= L',

Introduction. When does a manifold imbed with codimension one in
Euclidean space? We investigate this question for lens spaces and mani-
folds made from lens spaces. It is not hard to show that L**~! never
imbeds in S2% — see the remark after Theorem 6. However, the following
two questions are more subtle and are the focus of this paper.

Problem A. Which punctured lens spaces L, (= L — B*™") imbed in
742

Problem B. If L, and L both imbed in S**, does L # L"?

Problem A is settled in the classical three-dimensional case: by
Zeeman’s twist-spinning construction and the work of Epstein [5] a
punctured lens space Ly(m; ¢, 1) imbeds in S* if and only if m is odd.
Problem B was treated in the classical case by Livingston and Gilmer [8]
so the discussion below is limited to k > 2.

The first obstruction to codimension-one imbedding that one might
look for is the tangent bundle. For if L, imbeds in $*, 7(L) is stably
trivial. Ewing et al. [6] examine the question of when a lens space with
|m(L)| a prime is stably parallelizable and give one simple class of lens
spaces that are (Proposition 2.1 of [6]). These all actually imbed punc-
tured; in fact a considerably larger class (which we refer to as the class 9)
of lens spaces all imbed — see Theorem 5. For |m,(L)|= a prime power,
we show in Theorem 9 that L, imbeds in $?* if and only if L € 9, and
conjecture that this holds in general, i.e.:

Conjecture A. L, imbeds in S$** if and only if L € 4.

481
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As for problem B, note the following elementary fact. If L, imbeds in
S2¥, then it has trivial normal bundle so L # — L = 9(L, X I) imbeds in
S?%. We will see that if L # — L’ imbeds in S$%*, then L ~ L’ (preserving
orientation). The most optimistic guess as to the answer to problem B is:

Conjecture B. If L # — L’ imbeds in S** then L = L’.

Again this conjecture holds if |7, | is a prime power. When it is not a
prime power, life becomes more interesting. We do not show that L = L’
but find a relationship between various a-invariants of the lens spaces.
This relationship is most conveniently stated in terms of the invariants
defined by Casson and Gordon [2] to study knot concordance. We will use
the invariants o( M, ¢) as defined in §1 of [7] and refer the reader to that
paper for notation and definitions.

The material in this paper is part of my thesis. I would like to thank
my advisor, Rob Kirby, for his help and direction. Conversations with Pat
Gilmer and David Schorow were very helpful; I would like to thank them
for their encouragement.

Lens spaces. Let m be an integer and g, - - - g, integers with (m, g;,) =
1. The cyclic group Z,, acts on C*: if T€ Z_ is the generator and
w=e>"/™ then T(z, - --z;) = (w%zy,...,w0%z,). This restricts to a free

action on S**7!; the quotient is denoted L(m; gq, ---q,). There is a
preferred orientation of L (coming from S**7') which we fix, and a
preferred generator, denoted g, of #(L)=1Z, corresponding to the
covering translation 7. For each g;, choose an integer r; with 7,g; = 1
(mod m).

As is well known the classifying space BZ,, ~ K(Z,,1) can be
considered as an infinite lens space L(m; 1,1,1,...) and we will always
think of it this way. As such, it too has a canonical generator g for 7,. The
following is known [4] and summarizes the homology and cohomology
structure of the lens spaces. For p an integer, let

v:H/(,2,) > H/"'(,Z,)

be the Bockstein coboundary corresponding to the coefficient sequence
0-2,-2,-2Z,-0.

PROPOSITION 1. Let L = L(m; q, - - - q,.). Then

Z j=0,2k—1,
H(L)=1{Z, jodd<2k—1,

m

0 j even.
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If p is a prime dividing m, then H'(L; Z,) =Z, (all j < 2k — 1). Further,
any generator a of H'(L; Z,) has the property that (va)’ generates
H*/(L; Z,), and o - (va)’ generates H*/*'(L; Z,). The corresponding
statements are true for BZ, if k = .

Cohen [3] constructs an explicit cell decomposition for any L(m;
q, - - * 4,) which works for BZ,, as well. Call the generator of H,; (L)
arising from this cell-decomposition e,;_,; likewise €,,_, is the generator
of H,,_, (BZ,,). Note that with these conventions g = g,e; and g = ¢,
where g and g are the generators mentioned above. Since Hom(H(L);
Z,)=I[L,BZ,), ¢,: H (L) - H,(BZ,) depends only on ¢: H|(L) -
H\(BZ,) =Z,. Cohen ([3] §29) constructs explicit maps realising any
homomorphism ¢: H(L) - Z,,; a similar construction works for any «
dividing m. It is an easy matter to calculate ¢,.: H,(L) - H,(BZ,) using
these representatives. (Compare (3] theorem 29.4.)

PROPOSITION 2. Suppose the character ¢: H, (L) > Z,(m =d - n) is
given by ¢(g) = r. Then Pu(ey;1) = (nr)lr --- ri€yj—1-

Similarly, one can calculate the effect on homology of a map f:
L L.

PROPOSITION 3. If f: L —> L is a map with f,(g) = rg, then f,(e,,;_,)
= r/e,;_,, and the degree of f is r* (mod m).

Some of the examples presented below involve (4k — 1) dimensional
lens spaces L(m; q,,...,q,,); for these we need to compute the linking
form A: H,, (L) X H,,_(L) » Q/Z. This computation dates back to
deRham [10]. In terms of the generator e, the answer is given by:

PROPOSITION 4. A(e, €) = g * -~ qylyyy - o/ M (q;r; = 1 (m)). It is
convenient to set f=q,., - qye; then N(f, f)=¢q, " qy,/m = q/m
(g = q, - - - q54), which is what one might expect by analogy with classical
lens spaces.

Imbedding punctured lens spaces. We now present the class § of lens
spaces which imbed punctured with codimension one in the sphere.

Let ( *,) be the condition: c*¥ = 1 (m) but ¢/ — 1 is a unit mod m for
j<k.
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THEOREM 5. (a) Suppose c¢ satisfies the condition ( * ). Then
L(m; 1,c,...,c*" ') imbeds punctured in S** (k = 2). (b) If b is any unit
mod m, and c satisfies ( * ,,) then Ly(m; 1,¢,...,c*" ', b, be,...,bc*7)
imbeds in S* (k > 1).

Proof. (a) Cohen ([3], §31) constructs a diffeomorphism f: L — L with
f«(g) = cg. (The point is that c¢- {l,c,...,c*" '} ={1,¢,...,c*7"})
Consider the mapping torus S' X 7 Lo; by construction f has degree 1 we

can assume it to be the identity on the top cell, so 3(S' X, L;) = §' X
SZk—Z.

Claim. §' X, Ly U, D* X §272 = g2k,

Proof of Claim. m(S' X, L,) is a standard HNN construction and is
given by (1, gltgt™' =g°, g"=1). Adding on the D? kills ¢, so =,
becomes ( g|g™' =1, g™ = 1). Since ¢ — 1 is a unit mod m, =, is trivial.
The Wang sequence for S' X, L is

-1

Hyoo(8' %, Lo) ~ H(Lo) "> H(Lq) » H,(S' X, Ly) > -+
but f,: H;L, - H,L, is multiplication by ¢’ so the assumption on ¢ says
that f, — 1 is an isomorphism. This together with the computation that =,
is trivial proves the claim.

Now L, is imbedded in a smooth homotopy sphere which is therefore
homeomorphic to S**. Connect summing with another (possibly fake)
homotopy sphere away from a copy of L, gives an imbedding of L, in the
real S2*,

The proof of (b) is the same once one notes that ¢ satisfies ( * ,;) = c*
= —1(mod m). For (c*+ 1) (c*— 1) =c*—1=0(m)and c*— lisa
unit by assumption. Thus

c-{l,c,...,c* 1, b, be,...,bc* 1}
={-1,—c,...,—c*"', =b, —bc,...,—bc*"'}.

Since there are an even number of minus signs, there is indeed an
orientation preserving diffeomorphism of L inducing g — cg on .

In either case (a) or (b), we say that L € 9. As we remarked earlier,
the theorem is true for classical lens spaces as well. In fact, the imbedding
provided by part (b) (choose ¢ = —1) which a priori lies in a homotopy
4-sphere is the same as the imbedding in the real sphere given by
twist-spinning a rational knot. Note that — 1 satisfies ( * ;) if and only if
m is odd.
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There are many stably parallelizable lens spaces other than those in 9;
see [6]. It is tempting to believe that none of these others imbed, i.e. that
conjecture A holds. This conjecture is true whenever m is a prime power as
will be shown below in Theorem 9.

Obstructions to imbedding. The same theorem underlies our attack on
both problems A and B. Let M = L(m; q,,...,q9,) # — L'(m’; q{,...,4;)-
For p a prime write H;( X),, for those elements of H (X) annihilated by
a power of p (i.e. the p-torsion of H,( X)).

THEOREM 6. Suppose M imbeds in S** with S** — M = WU W'
Then W (and W") is a homology cobordism between L, and L.

Proof. We establish a series of assertions. Note first that H,(W) and
H . (W) are both torsion as are H*(W') and H*(W").

Claim 1. For all primes p dividing m,

HW;Z,) #0 and H'(W';Z,)+#0.

Proof. 1f, say, H'(W’; Z,) =0, then H(W’), = 0. But then i,:
H(M), =>H(W), » by the Mayer-Vietoris sequence. So any character
on M of order a power of p is null-bordant, since such a character extends
over W. Write m = p”s where (s, p) = 1, and consider the character on M
given by Y(g) = 1, Y(g’) = 0 where g, g’ generate H,(L,) and H,(Lj}).

Now (M, y) = (L,¢) — (L, ¥") in the bordism group 2,;_(Z,).
By assumption L’ — int B**~! is imbedded in S?; its boundary is a slice
knot, so L’ imbeds in B?**' and hence in S?**!. By a standard transver-
sality argument, L’ bounds some oriented 2k-manifold V. Since the map
Y’ is trivial it extends over ¥V and so (L, ¢") = 0 in Q,,_,(Z,). It follows
that (L,y) =0 as well and hence that y,(e,,_,) =0 in H,,_(BZ,).
But by Proposition 2, y,(e,,_,) = s*r, -+ r,&,,_, which is non-trivial
since (s, p) = (r, p) = L.

Claim 2. 1f p divides m or m’, then H'(W; Z,) = Z,, and
i*: H(W;Z,) > H(M; Z,)

is an injection. The same is true for W’.
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Proof. Suppose p divides m. H(M) is a direct sum of two cyclic
groups, so H'( M, Z,)=1Z,0rZ,+ Z,. The Z, Mayer-Vietoris sequence
reads:

H‘(V:/_; Z,) oy

0- > H'(M;Z,) -0

H'(W'; Z,)
so that i* and i’* are both injections. Since neither H'(W; Z,) nor
H\(W’; Z,) is zero, they must both be Z,.

Claim 3. At least one of the maps H'(W; Z,) - H'(L,; Z,) or
- H'(Lg; Z,) is an isomorphism, and likewise for .

Proof. All of the groups in question are Z,, and a homomor-
phism Z, > Z, is either zero or an isomorphism. If both are zero then
i*: H\(W; Z,)- H\(M; Z,) is zero, contradicting claim 2.

Claim 4. If i*: H(W; Z,) - HY(Ly; Z,) is an isomorphism, then i*:
H/(W; Z,) » H/(Ly; Z,) is onto for all j.

Proof. Choose a € H'(W; Z,) such that i*(a) generates H'(L; Z,).
Then i*((va)’) generates H?/(L,; Z,) and i*(a(va)’) generates
H?**\(L,; Z,) by Proposition 1 and the naturality of the cup-product
and Bockstein.

Claim 4 finishes the theorem, for it shows that | H/(W; Z,)|=p and
similarly that | H/(W’; Z,) |= p. Now the Mayer-Vietoris sequence

H/(W;Z,) ,

0> +  -—H(MZ,)=27,+Z,-0

H(W'; L,)
shows that H/(W; Z,) = Z,. Therefore i*: H/(W; Z,) > H/(Ly; Z,) is
an isomorphism for all j, and so H*(W, Ly: Z,) = 0, or equivalently,
H (W, L),y = 0. By duality (see [9]) HAW, Ly),,, = Hy— (W, Ly),,
= 0 and hence H, (W, Ly),,) = 0. Repeating this argument for each p
dividing m, and possibly interchanging the roles of L, and L; shows that
for all primes, H (W, L,),, = 0. Since H (W, L,) is torsion, H,(W, L)
is zero. Hence (W, L, L) is a homology bordism; the same argument
shows that (W', L,, Lg) is also a homology bordism.

REMARK. One can “cap off” W (or W) by adding a (2k — 1)-handle
to W along the separating (2k — 2)-sphere in L # — L’ to obtain homol-
ogy bordisms between L and L’. This justifies the statement made in the
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introduction that L never imbeds in S?%. For L = L # S**~ ', if L C S%*,
we have the absurdity that L is homology bordant to $**~!. This can also
be shown directly using the method of Theorem 6.

COROLLARY 7. If L # — L' imbeds in S** then L ~ L' ( preserving
orientation).

Proof. We have a homology bordism (¥, L, L’) by the preceding
remark. By obstruction theory there is a retraction r: V - L', set f = r|L.
Then f is orientation preserving and is an isomorphism on homology and
hence is a homotopy equivalence.

LEMMA 8. A4 Z -cover of a homology bordism (V, N, N') is a rational
homology bordism.

Proof. If X - X is a Z,~cover of the finite complex X, then Gilmer
proves (1.3 of [7]) that B,(X) — B(X) = (p"— DB(X; Z,) using Smith
theory. The entire discussion goes through for pairs (X, Y) such that the
induced cover of the subcomplex Y is connected, and one obtains
B(X Y) — B(X,Y)=(p"— DB(X,Y; Z,). In our case, B(V,N) =
B(V N;Z,) =0, so we obtamB(V N) = O In other words, (V N, N')
is a Q- homology bordism.

Lemma 8 implies that for characters of prime-power order extending
over a homology bordism the Casson-Gordon invariants of the ends are
equal. Equivalently, the corresponding a-invariants of the covers are
equal. This principle is the key to our best result on problem A.

THEOREM 9. Suppose Ly( p”; q, - - - q,) imbeds in S*¥.

(a) If k is odd then for some c satisfying (* ,) L=L(p"; 1,¢,...,c* ).

(b) If k is even, say k = 2n, then for some unit b and some c satisfying
(*x4), L=L(p" Lc,...,c" ", b, be,...,bc" ).

Proof. 1t 1s not hard to see that the theorem will follow in both cases
if we find c such thatc - {q, ---q,} = {*q,--- £q,},and (¢/ — 1, p) =
1(j<k).

Set W= S?¢— L, X (0,1) = one component of S** — (L # — L).
By Theorem 6 W is a homology bordism between L, and L,; “cap it off”
as in Corollary 7 to obtain a bordism V between L and L. As noted in
Corollary 7, there is a homotopy equivalence f: L — L obtained by
retracting V" onto one end. Determine ¢ by f,(g) = ¢ - g.
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Now 9L, is a knot in §?* and its exterior is a homology circle which is
made up of Wand L, X I.

The Mayer-Vietoris sequence for the complement as the union of these
two pieces reduces to

-1
0> H(Ly) > H/(Ly) >0 forj>0,

exactly as in the Wang sequence for a fibered knot. Since f, is multiplica-
tion by ¢/ in dimensions 2j — 1, we obtain (¢/ — 1, p) = 1.

By Lemma 8, the Z ,-cover of V'is a rational homology bordism from
S~ to itself. Hence V¢ € Z,, the t-signatures of S**, given by the
restriction of the action of Z . on V to either end must agree. In other
words sign(z, S**7") = sign(z¢, S**~') V¢ € Z . The argument of Atiyah
and Bott ([1] Theorem 7.27) now shows that {cq, ---cq,} = {=*q,

“Eq, )

REMARKS. (1) The same argument will apply even if m is not a prime
power if L, is assumed to be the fiber of a fibered knot. For then V is
actually an A-cobordism and one obtains the equality between the a-in-
variants without the Smith-Theory argument.

(2) An example of a stably-parallelizable lens space that does not
imbed punctured is L( p; 1,...,1) (p 1’s) for p prime.

If k is even then Ly(m; g, - - - q,) C S** implies that the linking form
on L # — L is hyperbolic (see Theorem 10) and so by the argument in [8],
p- 8 m must be odd. A nice corollary of the method in Theorem 9 is that
m must be odd, even when k is odd. For in the proof of Theorem 9 we
noted that there is an integer ¢ with (¢/ — I, m)=1for 0<j<k — 1.
Suppose m is even; then since f is invertible ¢ must be odd. But then ¢ — 1
iseven so (¢ — 1, m) # 1.

Imbedding connected sums. Theorem 6 and Lemma 8 combine in a
similar way to solve Problem B in the case that m is a prime power. For if
L # — L’ imbeds in S**, then we have a homology bordism between L
and L’ and so all the a-invariants associated to prime-power covers are the
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same. If m = p”, these are all the a-invariants, and so the Atiyah-Bott
result shows that L = L’. If m is not a prime-power, then we cannot
conclude that L = L’ because the prime-power a-invariants alone do not
determine L — compare [8].

In general there is an ambiguity in exactly which a-invariants are
equal. However for 4k — 1 dimensional lens spaces there is an interaction
with the linking form that narrows the possibilities considerably. As usual
we write M = L(m; q,,...,9,,)% — L(m; qi,...,q3,). It is more con-
venient to state the result in terms of the Casson-Gordon invariants of L
rather than the ¢-signatures of L; it can be translated if one desires. If d|m
let Y be the homomorphism from H (L) to Z, that gives 1 on g and define
¢’ similarly on H,(L’).

THEOREM 10. Suppose M imbeds in S**. Let p be a prime such that
p’Im, p™" 'Y m. Then for all s, there exist numbers o and t such that:
(i) aq = ¢’ (mod p")
(i) as*q) -+ GGrsr * Gox T 1590 - Gedirr -+ @21 = 0 (mod p')
(iii) o(L, sy) = o( L', ty").

Proof. Let W and W’ be the components of S*% — M, and set
G =keri,: H,, (M) - H,,_ (W) and define G’ likewise. Since W and
W’ are homology bordisms, G = G’ = Z,,, and we can write H,, (M) =
G + G'. Further, the linking form A must vanish on G and G’, by a
standard argument. With respect to the basis f, f' for H,,_ (M), A is
given by the matrix

( ap 0 )

0 —q'/p)

Let x and y generate the summands G and G’, and write x = af + Bf’
and y = yf + &f’ with aé — By = unit (mod m).

We have 0 = A(x, x) = (1/m)(ga® — ¢’8?) (modZ) and 0 =
(1/m)(qy? — q'8?), or ga® = q’B* (mod m) and gy? = ¢’6* (mod m).
Since ad — By is a unit mod m, a, B, vy, and & can be assumed to be units
as well. For ga? = ¢’B? + jm so if, say, B and m have a common factor,
and m have the same common factor. But this would contradict (aé —
By, m) = 1. So we may as well assume 8 = § = 1; then x = af + f’ and
y = yf + f’ where a and v are roots of gz> — ¢’ = 0 (mod m).

Because W is a homology cobordism, for each s there is a ¢ such that
the homomorphism ¥: H(M) - Z, given by ¥ = sy + ¢y’ extends over
H(W). For such a homomorphism, the induced map ¥,: H (M) -
H,(BZ,) has ¥,(G) = 0. Moreover, one can use W to calculate o( M, ¥)
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and it follows from Lemma 8 that (M, ¥) = 0. Proposition 2 calculates
V. = (5¢)s t (2¢')4; evaluating on x = af + f’ gives (ii) after simplifi-
cation. Finally, o( M, ¥) = o(L, sy) — o(L’, ty') soa(L, ¢) = o(L’, ty’).

The conclusion of Theorem 10 looks pretty messy but it simplifies
somewhat for the class  of lens spaces which we know imbed punctured.
For these, Theorem 10 yields:

COROLLARY 11. Suppose a and c satisfy ( * ;). If
L(m;1,a,...,a*" ', b, ba,...,ba*" ") #
—L(m; 1,¢,...,c*7', d, dc,...,dc* ")

"1t m, we have: For all s,

imbeds in S**, then for a prime p with p"|m but p
there exist numbers a and t such that
(i) o2b* = d* (mod p")
(i) s* + at* =0 (mod p")
(i) o( L, s¢) = o(L’, 1)

Proof. Just write everything in terms of a, b, ¢ and d: The condition
ons, t, and a is a?a*? ™D . pk = ckCk=Dgk and

0 = askckk=D/2pkgk(k=1/2 L thak(k=1)/2 . gk k(k=1)/2

Since a and ¢ both satisfy ( * ,;), 0 = a** — 1 = (a* — 1)(a* + 1) implies
that a* = —1 and likewise that ¢ = — 1. Substituting this into the first
equality gives (i). The second simplifies as well once we note that @ and ¢
are both units, and so the result follows.

To see how this works in a particular case, here is an example,
calculated by computer.

EXAMPLE. Let m = 222 = 13 - 17,d = 13 and k = 2. Then
L(221; 1,21,1,21) # — L(221; 1,47,1,47)

does not imbed in S although each summand imbeds punctured.

Proof. a = 21 and ¢ = 47 clearly satisfy the condition ( * ,), so both
summand imbed punctured. The solutions of z2 = 1 (mod 13) are « = =1,
and the solutions of z2 = —1 (mod 13) are t = =5, so the corollary says
(for s = 1) that o(L, ) = o(L’, =¢y') or o(L’, £5¢"). But by computer
calculation, o( L, ¢) = 212,245 /221 whereas o( L', =5¢’) = o(L, =y’) =
63,733/221. Hence M does not imbed in S&.
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The original motivation for this investigation was its relation to

double null-concordance of even-dimensional knots. There are two knots
K and K’ arising from 0L, and 9L as sitting in S®. The methods of [11]
can be used to show that K # — K’ is a knot which is algebraically but
not geometrically doubly slice.

Note added in proof. The author and S. Cappell (to appear) have

investigated the questions raised in this paper more fully for | L|
divisible by more than one prime. We have necessary and sufficient
conditions for punctured imbeddings and imbeddings of connected sums.
Our results extend as well to non-linear lens spaces.

(1]
(2]
(3]
(4]
(5]
(6]
(71

(8]
19

(10]

(11]
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