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Let X and 7 be manifolds of the same dimension n>2 and let / :
X-+ 7 be an immersion with p = sup{n(y): y € 7} < oo where n(y)
— cardinality f~\y). If 7 is compact and X is not, then n(y) <p for
some y e 7, see §2. If 7 is compact and simply connected and p > 2,
then 7 contains a compact set E such that 7 — E is not simply
connected and n(y) ^p — 2 for all y E £ , see §5.

1. THEOREM. Lei X be a non-compact n-manifold, Y a compact n-mani-
fold andf: X -* Yan immersion. Ifp = max>?eyA2(j>) < oo, then n{y) <p
for some points y E Y. In particular, if y — ]imk^o0f(xk) for an infinite
sequence of distinct points xk E X which does not accumulate in X, then
n(y)<p.

Proof. Suppose that n(y) = p with j^\y) = {al9...9ap). Choose
disjoint closed cells U{ in X such that at E int Ĉ  and such that f\ Ut is
injective for 1 < / < / ? . Then xk £ U ^ for almost all k. Now choose a
neighborhood K of y such that F C Π f = 1 / ( φ and let Vt denote the at

component oίf~\V). Then/maps each Vi homeomorphically onto Kand
hence n{y') =p for all y' E Vo. It thus follows that/C^) g Kfor all xΛ

in ΛQ = Λ" — UVi9 that is for almost all xk. Hence /(^Λ) -^ 7, contradict-
ing the assumption f(xk) -*y, and thus «(.y) <ρ.

2. REMARK. For compact manifolds X with boundary Theorem 1 says
that n( y) <p for every y in the cluster set of / o n dX. This contains a
result of Brannan and Kirwan [1, Theorem 1] as a special case.

3. Suppose that X is non-compact, that Y is compact and that
1 <p = max n( y) < 00. We say that/has a deficiency at a pointy E 7 if
Λ(>0 </? - 2. The set ^ { j 6 7 : w( >>) <p - 2} will be called the
deficiency set of /. It is not hard to construct immersions, for instance of
Sx X R into Sι X Sι with empty deficiency set. The purpose of this note
is to show that if Y is simply connected, then the deficiency set A is
non-empty and, in fact, it is quite large.
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4. THEOREM. Let X be an n-manifold and Y a simply connected compact
n-manifold, « > 2, and let f: X-+Y be an immersion with 1 < p —
max n(y) < oo. Then the deficiency set A contains a compact subset E such
that Y — E is not simply connected.

5. REMARK AND NOTATION. The proof is based on two elementary
lemmas and on application of the monodromy theorem to a certain
extension of/. The extension of/is essentially the same as in Lyzzaik and
Styer [2, §2]. The following notation will be used: For r > 0 and a E Rn,
Bn(a, r) = {xERn: \x - a\< r}, Bn(r) = Bn(0, r\ Bn = Bn{\) and in
particular B2 = {z E C : | z | < 1}. We say that a compact set E in a simply
connected space Y is TΓ ̂ negligible if Y — E is simply connected. In this
notation, Theorem 4 asserts that the deficiency set A has compact subsets
which are not π, -negligible in Y.

6. LEMMA. Let H: B2 -> Rn be a continuous function with H(—l) E Bn

and H(\) £ Bn. Then H~\dBn) contains a continuum C which meets both
components of dB2 — { — 1,1}.

Proof By the Jordan separation theorem F = H~\dBn) separates the
points —1 and 1 in B2. Let Bx denote the connected component of
B2 — F, which contains the point —1, and let B2 be the connected
component of C — Bl9 which contains the point 1. Then C = dB2 Π B2 is
the desired continuum.

7. LEMMA. Let A be a closed set in Rn. If every compact subset E of A
such that Rn — E is connected is m^-negligible then

(i)intΛ = 0.
(ii) U = Rn — A is connected.

Proof, (i) is trivial.
(ii) Suppose that U is not connected. Choose points ax and a2 which

belong to different connected components of U. Since A is closed there is
r > 0 such that Bn(ai9 2r) C U9 i = 1,2. Let

G = U Bn{tax + (l-t)a29r)
0</<l

and E = A Π dG. Now choose points 6Z E θ^α, , 2r), / = 1,2, so that α1?

a2, bl9 b2 are vertices of a rectangle i?. Since Rn — E is simply connected,
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there is a continuous function H: B2 -> Rn — E mapping dB2 homeomor-
phically onto Λ. We may assume that H(—l) = al9 H(l) = ft,, #(/) E
Θ-S^Λ,, r) and H(—i) E dBn(a2, r). By Lemma 6 there exists a con-
tinuum C in H~ι(dG) joining the components of dB2 — { — 1,1}. Hence
C" = #(C) is a continuum in dG joining d"B(al9 r) and d"B(a29 r).
Hence α, and a2 can be joined by a continuum in t/, contradicting the
assumption that U is not connected.

8. Proof of Theorem 4.. Let Ak= {y E Y: n{y) = A:}. Then Ap and
^ U yl/7_1 are open and hence the deficiency set A — Y — (Ap U Ap_x) is
compact. Consider the disjoint union X= X U ̂ ^ with the topology
containing the topology of X and the topology of int Ap_x, which makes
the extension /: X -+ Y of /, /(x) — f{x) forxEX and /(JC) = x for
x EAp_v a local homeomorphism. Obviously, / is a local homeomor-
phism i n l U i n t ^ . , . Fory E Ap Π Λ^.., wi th/" 1 ^) = {x,,...,^^,}
choose disjoint cells U; in Z with xy E int Lζ. and such that each f\ Ut is
injective, 1 </</?. Now let V be an open set in Πf(Uj) containing y.
Then /maps U0=f~\V) — U Lζ homeomoφhically onto V Π Ap and /
maps ί / = ί / 0 U ( F Π ^ r , ) injectively onto F. Such sets ί/ form a base
of neighborhoods of y E Ap Π Ap_v

Suppose now that Theorem 4 is false, i.e., all compact subsets E of A
such that Y — E is connected are π, -negligible in 7. Then obviously
int A = φ. Also, if Z> is an open cell in Γ, then, by Lemma Ί, D — A is
connected. Since every two points α and b in Y can abe connected by a
chain of open cells Dv...,Dk such that α E Dv b E Dk and D, Π £>,+, ^
0 for 1 < ϊ < k, it follows that Y — A is connected and hence so is
AΌ = X — f~\A). Now Xo is a manifold and /0 = / | JΓ0 is a /? to 1
covering map of Xo onto Y — A. The assumption that 7 — A is simply
connected implies, by the monodromy theorem, that f0 is injective and
hence that/? = 1. This contradiction completes the proof.

9. REMARK. For n = 2 Theorem 4 says that the deficiency set of an
immersion of a non-compact surface into S2 has at least two points. This
contains a reuslt of Brannan and Kirwan [1, Theorem 2] as a particular
case.

10. Acknowledgement. I wish to thank Mike Freedman, Brit Kirwin
and Joe Wolf for helpful discussions.
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