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I. ERDELYI AND WANG SHENGWANG

The spectral duality theorem asserts that a densely defined closed
operator 7 induces a spectral decomposition of the underlying Banach
space X iff the conjugate T* induces the same type of spectral decom-
position of the dual space X*. This theorem is known for bounded linear
operators in terms of residual (S)-decomposability. In this paper we
extend the spectral duality theorem to unbounded operators, under a
general type of spectral decomposition. Qur approach to the spectral
duality leads through the successive conjugates 7*, 7** and 7*** of T,
under their domain-density assumptions.

1. FElements of local spectral theory for a closed operator. X is an
abstract Banach space over the complex field C. If S is a set, we write S
for the closure, Int S for the interior, S¢ for the complement, S for the
boundary, and cov S for the collection of all finite open covers of S. If S is
a subset of C, then the above mentioned topological constructs are
referred to the topology of C.Without loss of generality, we assume that
for § C C, each {G,};-, € covS has, at most, one unbounded set G,,. An
open G C C is said to be a neighborhood of oo, in symbols G € V_, if for
r >0 sufficiently large, {\ € C: [A|>r} C G. We write S* for the
annihilator of § C X in X* (as well as that of § C X** in X***) and *~ §
for the preannihilator of S C X* in X (or that of § C X*** in X**). B( X)
denotes the Banach algebra of all bounded linear operators which map X
into X. I stands for the identity operator.

For a linear operator T: D, (C X) — X, we use the following nota-
tions: spectrum o(7), resolvent set p(7), and resolvent operator R(-; T).

If T has the single valued extension property (SVEP) then, for x € X,
or(x) is the local spectrum, p,(x) is the local resolvent set and x(-) is the
local resolvent function. For § C C, an extensive use will be made of the
spectral manifold X(7, S) = {x € X: o,(x) C S}.

Inv T represents the lattice of all invariant subspaces under 7. For
YE€InvT, T|Y is the restriction of T to Y and 7/Y denotes the
coinduced operator on the quotient space X/ Y with domain D,y = {X €
X/Y:x N Dp#* &}.

If not mentioned otherwise, throughout this paper 7 is a densely
defined unbounded closed operator with domain and range in X.
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74 I. ERDELYI AND WANG SHENGWANG

Given T, the following domain-density conditions will guarantee the
existence of the successive conjugates:
(*) T* is densely defined;
(x*) T* and T** are densely defined;
(*x%) T*, T** and T*** are densely defined.
With J and K, the natural embeddings of X into X** and of X™* into
X*** respectively, we shall explore the direct sum decomposition

(1.1) X = KX* @ (JX) .

For completeness, we give a short proof of (1.1), (e.g. [10]). For every
x**¥* & X*** one defines x* € X* by

(x, x*)= (Jx, x***), x € X.

Then, (Jx, Kx*)= (x*, Jx)= (x, x*)= (Jx, x***) and hence y*** =
x*** — Kx* € (JX)*. This, together with KX* N (JX)* = {0}, estab-
lishes (1.1).

The spectral theoretic results will be expressed in terms of operators
with the spectral decomposition property, decomposable operators and
{ 00 }-decomposable operators.

1.1. DErFINITION. T is said to have the spectral decomposition prop-
erty (SDP) if, for any {G,}/_, € covo(T) with G, € V,_, there is a system
{Y}'_, C Inv T satisfying the following conditions:

(I) Y; C D;if G, is relatively compact in C (1 =i < n);

d)xX=23",Y,ando(T|Y,) CG,0=<i=<n.

If we restrict n to n = 1 then T is said to have the 1-SDP.
The concept of spectral maximal space [3] has two distinct extensions
to the case of unbounded operators.

1.2. DErFINITION. Y € Inv T is called a spectral maximal space (SMS)
of T if, for any Z € InvT, the inclusion o(7|Z) C o(7|Y) implies
ZCY.

1.3. DErFINITION. Y € Inv T is said to be a 7-bounded spectral maxi-
mal space (7-bounded SMS) if

(i) Y C Dy;

(i) foreveryZ € InvT,Z C Dyando(T|Z) Co(T|Y)imply Z C Y.

This concept appears in [8] under the name of maximal invariant
space. Clearly, every SMS of T is a T-bounded SMS. Conversely, however,
not every T-bounded SMS is a SMS of 7. In fact, if Y is a 7-bounded
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SMS and Z € Inv T is not contained in D, then o(7T|Z) C o(T| Y) need
not imply Z C Y. In the bounded case, the two concepts coincide.

The following properties of the spectral manifold X(7, -) for closed T
are analogous, in statement and proof, to the one for a bounded operator
[3, 5].

1.4. PROPOSITION. Let T have the SVEP. If, for closed F C C, X(T, F')
is closed then X(T, F) is a SMS of T and

(1.2) o[TIX(T, F)] C F 0 o(T).

Moreover, if T has the 1-SDP then, for every closed F C C, X(T, F) is
closed.

1.5. PROPOSITION. Given T, let Y € InvT be such that o(T|Y) is
compact in C. There exist T, W & Inv T with the following properties:

DHY=TOW,o(T|T)=0(T|Y),s(T| W)= &,

(IH T C D;.

Proof. 6, = o(T|Y) and o0, = & can be regarded as disjoint spectral
sets of o(T| Y). Thus, the functional calculus produces (I). For a bounded
Cauchy domain A D (7’| Y), T and W can be expressed in terms of the
spectral projection

(1.3) Q:mfaAR(A; T|Y) dA

(independent of the choice of A) as follows: T = QY, W = (I, — Q)Y,
where I is the identity in Y. Since 7 is closed, it follows easily that T,
We&lnvTand T C D;. d

1.6. THEOREM. Given T, let Y be a SMS of T with o(T|Y ) compact in
C. Then T, as defined by Proposition 1.5, is a T-bounded SMS.

Proof. Let Z € Inv T be such that Z C D, and
(1.4) o(7T1Z) C o(TIT).

By Proposition 1.5, (1.4) implies 6(7|Z) C 6(7T'| Y') and since Y is a SMS
of T, we have Z C Y. Then, for x € Z, A € p(T|Y), relation

R(N; T|Z)x =R(N; T|Y)x
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implies
_ 1 : __b : _
Ox =5 j;AR()\, TY)xd\ =5~ j;AR()\, T|Z)x dA = x,
where A D o(7T'| Y) is a bounded Cauchy domain and Q is the projection
(1.3). Thus, we have x = Ox € T and hence Z C 7. O

The next theorem (partly adopted from [11]) gives some necessary and
sufficient conditions for a T-bounded SMS to be a SMS of T.

1.7. THEOREM. Given T, the following assertions are equivalent:
(D{0} isa SMS of T;
(11) for every Y € Inv T with o(T|Y) compact in C, we have Y C Dy;
(II1) for every Y € Inv T, Y # {0} implies that o(T|Y) #+ &,
(IV) every T-bounded SMS is a SMS of T.

Proof. (I) = (II). Given Y € Inv T with o(7| Y) compact in C, Prop-
osition 1.5 gives Y =T ® W, T C D, o(T|T) =0o(T|Y), o(T| W) = &.
Then, by hypothesis, W = {0} and hence Y =T C D,.

(II) = (III). Let Y € Inv T be such that Y # {0} and suppose that
o(T|Y)= &. o(T|Y) being compact in C, Y C D,. Hence T|Y is
bounded and Y # {0} implies that o(7T|Y) % <. This, however, con-

tradicts the assumption on o(7T| Y).
(III) = (IV): Let Z be a T-bounded SMS and let Y € Inv 7 be such

that

(1.5) o(T|Y) C o(T|Z).

o(T'| Z) being compact in C, so is o(7T’| Y). It follows from Proposition 1.5
that Y =T @ WwithT,We&€InvT,T C Dy, o(T|T) = o(T|Y) and
(1.6) o(T|W) = &.

By hypothesis, (1.6) implies that W = {0} and hence

(1.7) Y=TCD,.

It follows from (1.5), (1.7) that Y C Z and hence Z is a SMS of T.
(IV) = (I). Evidently, {0} is a T-bounded SMS and hence {0} is a

SMS of T, by hypothesis. (]

1.8. LEMMA. Let T have the SVEP. If, for Y € Inv T, T|Y is bounded
then x € Y and a(x) = @ imply x = 0.
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Proof. By o,(x) = @, the local resolvent is an entire function. For
x € Y, the SVEP implies

x(A) =R(N\; TIY)x,  A\[>||T]Y].

Consequently, for I' = {A € C: |A|=||T| Y|l + 1}, we have

_ 1 . _ 1 _
x =5 /FR(A, T)Y)xdA = 5 frx(}\)d)\ = 0. O

1.9. THEOREM. If T has the 1-SDP then, for every compact F C C, there
exists a T-bounded SMS =(T, F) with the following properties:

(D) X(T, F)= (T, F) ® X(T, 9),

(Il) o[T| Z(T, F)] = o[T| X(T, F)).

Proof. Since o[T| X(T, F)] C Fis compactin C, for Y = X(T, F) and
T = =Z(T, F), Proposition 1.5 gives

X(T,F)=Z(T,F)® W,
o[TE(T, F)| = o[TIX(T, F)], o(TiW)= 2.

X(T, F) being a SMS of T, =(T, F) is a T-bounded SMS, by Theorem
1.6. Since X(T, &) is a SMS of T, o(T| W) = @ implies W C X(T, 2).
Conversely, let x € X(T, &). Then x € X(T, F) and hence Qx € =Z(T, F),
where Q 1s the projection (1.3) for Y = X(7, F). Since Q commutes with
T, we have 6,(0x) Co,(x) = & and hence Qx =0, by Lemma 1.8.
Thus, X(T, @) C Wand hence W = X(T, 9). O

1.10. PROPOSITION. Given T, every T-bounded SMS and every SMS of
T is hyperinvariant under T.

Proof. We confine the proof to a T-bounded SMS. Let 4 € B( X)
commute with 7 and fix A € C with |A|>||4]. Then R(A; A) =
*_,A"""'4". For every x € D, and positive integer k, we have

K K
AT AT = T( > }F”"A"x).
n=0 n=0

T being closed, k — oo implies that R(A; A)x € D, and
(1.8) R(A; A)Tx = TR(X; A)x.
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Now, let Y be a T-bounded SMS and put Y, = R(A; A4)Y. Since
Y C D, wehave Y, C Dyand Y, € InvT. For x € Y, (1.8) implies

R(A; 4) (T1Y,)R(X; A)x = (T]Y)x,
hence T'| Y, and T'| Y are similar. Thus, o(T'| Y,) = o(T'| Y). Since Y, C D,

and Y is a T-bounded SMS, Y, C Y, i.e. Y is invariant under R(A; 4), for
[A|>||4]|. It follows from the identity

= lim A[AR(A; 4) — 1],
A— o0
that Y is invariant under 4. O

1.11. LEMMA. Given T with the 1-SDP, let F C C be compact. Then
x € X(T, F) iff
(i) op(x)CF and (ii)) lim x(A)=0.

A-

Proof. (Only if): Let x € Z(T, F). We have
or(x) Co[T|E(T, F)] = o[T|X(T, F)] C F.

Since T'| =(T, F) is bounded, it follows that
Jim x(A) = lim R[A; TIE(T, F)]x =0.
(If): By (i), x € X(T, F). Since T is closed, it follows from (ii) and
from the identity
Ax(A) — x = Tx()),
that
lim [Ax(A) — x] = T)\liqnolox()\) =0.

A— o0

The function f: V — X, defined by f(A) = Ax(A) — x is analytic on a
neighborhood ¥ of oo and f(o0) = lim,_ ., f(A) = 0. Let r > 0 be suffi-
ciently large, for

FC{Ae€C:|Al<r} and VD {AEC:|\=r}.
We have
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and note that oo is, at least, a double zero of f(A)/A. Consequently, we

have
x= fr% :2 /(}\)dk 7 f“‘)d}\

1
27
- L
27

f [A; TIX(T, F)]xd\ = Ox € (T, F),
where

r={A€C:\|=r} and sz—:r—ifR[)\;TlX(T,F)]d}\. O
T

A direct sum decomposition property of X(7, F) for a bounded
decomposable operator [1, Lemma 2.3] admits the following generali-
zation.

1.12. THEOREM. Given T with the 1-SDP, let F, C C be closed and
E, C C be compact. If F, and F, are disjoint, then

X(T, F, U F,) = X(T, F,) ® 5(T, F,).

Proof. By denoting F = F, U F,, one obtain easily
(1.9) X(T, F) D X(T, F,) + E(T, F,).

On the other hand, by the functional calculus X(7, F) admits a direct
sum decomposition

X(T,F)=X, 9 X,,

with o(T|X;) C F, (i = 1,2) and X, C Dy . Then X, C X(T, F), i = 1,2.
Since T'| X, is bounded, for every x € X,, we have 6,(x) C F, and

lim x(A) = lim R(A; T]X,)x = 0.
A— 0 A— o0
Lemma 1.11 implies that x € (7, F,) and hence X, C Z(T, F,). Thus,
the opposite of (1.9) is obtained and hence
(1.10) X(T, F) = X(T, F,) + (T, F,).
To see that (1.10) is a direct sum, suppose that
x € X(T, F,)) N (T, F,) Cc X(T, F,) N X(T, F,) = X(T, ©).

Then o,(x) = @ and hence x(-) is an entire function. It follows from
x € (T, F,) that lim, _, , x(A) = 0 and hence x(A) = 0. Thusx = 0. O
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1.13. THEOREM. Given T with the 1-SDP, if F, C C is closed and
F, C Cis compact then

(1.11) =(T, F,NF,) = X(T, F,) N (T, F,).

Proof. With the help of Lemma 1.11, inclusion
(1.12) =(T,F,NF)CX(T,F)nET,FE)

follows easily. Let x € X(7, F)) N =(7, F,). Then o,(x) C F, N F,
and hence x € X(T, F, N F,)). Since x € E(T, F,), Lemma 1.11
implies lim, _ . x(A) = 0. Quote again Lemma 1.11 and infer that x €
(T, F, N F,). Thus, the opposite of (1.12) follows and hence (1.11) is
obtained. O

1.14. PROPOSITION. Given T, if there is a decomposition
X=X +X, withX,, X\, €EInvTand X, C D,
then T| X, is densely defined.

Proof. Recall that by our assumption, T is densely defined. For every
x € X, there is a representation

X =x, + x,, x, €X,i=1,2,

and there is a number M > 0 (independent of x) such that ||[x,|| + ||x,]| =
M]|ix||. Let x € X,. There is a sequence {x,} C D converging to x. For
every n, there is a representation

X—x,=x, tx, x,€X(i=1,2)
with
Il +lxnall = Milx — x|
Then x,, » 0 (i = 1,2) as n — oo. By hypothesis,
In =X " X=X, T x,, EDr N X,
and hence
Ix =yl =x,2l > 0 asn - o0

implies that 7’| X, is densely defined. a

1.15. LEMMA. Given T and Y € Inv T, consider the following conditions:

(1.13) o(T) U o(T|Y) # C;
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(1.14) T = T/Y is a closed operator on X/ Y.
Then (1.13) implies (1.14) and either of them implies inclusions

(1.15)  o(T) Co(T|Y) U o(T); o(T|Y) Co(T) U o(T);
o(T) C o(T) U o(T]Y).

Proof. Assume (1.13) and let A € p(T) N p(T|Y) be arbitrary. For
every x € Y, we have R(A; T)x = R(A; T|Y)x € Y and hence Y is
invariant under R(A; T). Denote R, = R(A; T) and let R, be the
coinduced operator by R, on the quotient space X /Y. The identities

(A—=T)Ryx=x, x€EX; R,(A—T)x=x, x €Dy,
give rise to
(1.16) (A\—T)R,x=%, 2€X/Y; R(A—T)x=3%, %€Djp

It follows from (1.16) that R, is the inverse of A — 7. Since R » 1s bounded
and defined on X/Y, it is closed and hence T is closed. By (1.16),
A € p(T') and this implies the first of (1.15). The remainder of the proof is
routine and we omit it (see [2, Proposition 2.2}). O

1.16. LEMMA. Given T, let X,, X;, Y € Inv T satisfy the following
conditions:
(1.17) X=X,+ X, X, CD,NY,;
(1.18)  o(T|X,) CF, o(T|X,NY)CF,
for some closed F C C, F # C.
Then T =T/Y is closed on X/Y. Furthermore, if T = (T Xy)/Y N X,,

(i.e. T is the coinduced operator by T| X, on the quotient space X,/ Y N X,),
then

~ ~

(1.19) o(T) =o(T).

Proof. The quotient spaces X/Y and X,/Y N X, are topologically
isomorphic. Since by (1.18), o(T|X,) U o(T|Y N X,) # C, Lemma 1.15
implies that T is closed.

Next, we show that 7 and 7 are similar. In view of (1.17), every
x € Dy has a representation

x=xy,+tx, withx, € X, i=0,1.
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Since x; € Dy, we have x, € D;. Thus, x, € Y N Dyand x, € X, N D;.
LetA=X/Y - X,/Y N X, be the topological isomorphism. For x € X,
letx=x+YE€X/Yand, forxE X, x=x+YNX, € X,/Y N X,.
Forevery X € Dy, thereisx € X N Dyand we have AX = AX, = X, € Dy.
Conversely, for every X € Dy, there is x € X N (X, N D) and hence
X € Dj. Consequently, ADp = Dj. For every X € D, we obtain succes-
sively

AT% = A(Tx) = (Tx) = Tx = TA%
and hence T is similar to 7. Therefore, T is closed and (1.19) holds. O

1.17. THEOREM. Given T with the 1-SDP, let G C C be open and put
_ {X(T, G), if Gisunbounded,
=(T,G), ifG is bounded.
Then T = T/Y is closed and
(1.20) o(T) C G-.
In particular, if G € V, then T is bounded.
Proof. First, suppose that G € V. Let A € G be arbitrary and let

{G,,G,} € cove(T) satisfy conditions: G, € V., A & Gy, A € G, C G,
C G and G, is relatively compact in C. By the 1-SDP,

X =X(T,G,) + X(T, G,)

and since X(7T, @) C X(T, G,), Theorem 1.9 implies the spectral decom-
position

(1.21) x=Xx(T,G,) + (T, G,).

Put X, = X(T, G,), X, = Z(T, G,) and obtain

(1.22) X, CD,NY.

Furthermore, we have

(1.23) o(T}XO) =o[T1X(T, G,)] C 50;

(1.24) o[TIX(T, G,) N G)| = o[T|X G,NG)] C Gy
(125) o[T1X(T,G,) N E(T,G)] = o[TIE(T, G, N G )] C Gy,

The last equality in (1.25) stems from Theorem 1.13. In view of the
definition of Y, relations (1.21)-(1.25) fulfill all hypotheses of Lemma
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1.16. Thus, 7 is closed and
(1.26) o(T) = o(T),

where T = (T|X,)/Y N X,. It follows from Lemma 1.15 and from
(1.23)~(1.25) that

(1.27) o(T) C o(T1X,) U o(T|X, N Y) C G,.

Since A & G,, (1.26) and (1.27) imply that A & o(T). Thus, (1.20) follows.

For G € V,,, we may assume that C # G. Let A € G be arbitrary.
Choose G, relatively compact in C such that {G,G,} € cove(T) and
A & G,. Since Tand T = [T|E(T, G)l/E(T, G,) N Y are similar and T is
bounded, o(T) = o(T) and T is bounded. By Lemma 1.15,

o(7) = o(F) C o[ T1Z(T, G,)] U o[ TIZ(T.G nG,)] € G,
and hence A € p(7"). Thus, inclusion (1.20) follows. O

While the two-summand spectral decomposition property (1-SDP) of
the given operator is a convenient mechanism in our spectral theoretic
study, it does not confine its scope. Similarly to some other types of
spectral decompositions (i.e. [6, 7]) it is shown that the 1-SDP and the
general SDP are equivalent. Details of that proof will be included in
another work. The two extensions of the spectral maximal space concept
give rise to two generalizations of the decomposable operator concept.

1.18. DEFINITION. T is said to be decomposable if, for any {G,}/-, €
cove(T) with G, € V_, there is a system {Y,}7_, of SMS of T satisfying
conditions (I) and (II) of Definition 1.1.

1.19. DerFINITION. T is said to be {oo}-decomposable if, for any
{G,})i=p € cove(T) with G, € V_, there is a SMS Y, of T and a system
{Y;}_, of T-bounded SMS satisfying conditions (II) of Definition 1.1.

The case of {oo}-decomposable operator fits into the theory of the
residually decomposable operators [8, 9] with residuum § = {o0}. If T is
{0 }-decomposable for n confined to » =1, then T is said to be
({00}, 1)-decomposable. If T is ({ oo}, 1)-decomposable then its conjugate
T* 1s again ({00}, 1)-decomposable [9]. Moreover, for every open G C C,
the spectral manifold X(T, G) is closed in X, as a fulfilment of condition y
[ibid.].

We conclude this section with some necessary and sufficient condi-
tions which make the unbounded operators with the SDP and the un-
bounded decomposable operators equivalent.
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1.20. THEOREM. Given T, the following assertions are equivalent:
(I) T is decomposable;
(II) T has the SDP and X(T, @) = {0}, or
T has the SDP and {0} is a SMS of T,
(III) T has the SDP and every T-bounded SMS is a SMS of T,
(IV) T has the SDP and X(T, F) C D for some compact F in C.

Proof. The conclusion will be reached through the following sequel of
implications: (I) = (II) = (III) = (IV) = (II) and (III) = (D).

(I) = (II). Clearly, T has the SDP. Let {G,, G,} € cove(T) with
G, € V... There corresponds the spectral decomposition

X=X, + X, with X; C D, spectral maximal.

Consequently, o|[T|X(T, @)] = & Co(T|X,) implies X(T, ) C X, C
D,. Then X(T, @) = {0}, by Lemma 1.8.

(IT) = (III) follows from Theorem 1.7.

(IIT) = (IV). Let F C C be compact. By hypothesis, =(T, F) is a SMS
of T. Then o[T| X(T, F)] = o[T|Z(T, F)] implies X(T, F) C =(T, F) C
DT-

(IV) = (ID). If, for some compact F C C, X(T, ') C D, then

X(T,F)==2(T,F)® X(T,o) and =(T,F)C D,

imply that X(7, &) = {0}.
(III) = (I). By the SDP, for any {G,}/_, € cove(T) with G, € V_,
there exists {Y,}/_, C Inv T'such that o(7T'| Y;) C G, (0 <i = n) and

X=3YvcYXxT,G)cCAX.
1=0 1=0

By Proposition 1.4, every X(7, (7,) 1s a SMS of T. Moreover,
X(1,6)==(7,G,)® X(T,2), 1<i<n, X(T,2)CX(T,G,)

imply
X=X(T,G) + 3 =(1,G,).
i=1
Since X(7, G,) and, by hypothesis, every (7, G,) (1 <i < n) is a SMS of
T, T is decomposable. O

(After this paper was accepted for publication, we noticed that
Lemma 1.15 appeared explicitly in F.-H. Vasilescu, Analytic Functional
Calculus and Spectral Decompositions, D. Reidel, Dordrecht: Holland,
1982.)
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2. Elements of spectral duality theory. While this section prepares
the main Theorem 3.1, some of the properties discussed here have intrinsic
values. Various topologies are involved in the duality theory. If 4 and B
are dual spaces, we use the notation 7(A, B) for the topology on A4
induced by B, under the given duality.

2.1. THEOREM. If T has the SDP then T* has the SDP.

Proof. Let T have the SDP. Then, for closed F C C, X(T, F) is closed
(Proposition 1.4). Let {G,, G,} € cove(T) with G, € V. The SDP im-
plies the spectral decomposition (1.21)

X =X(T,G,) + £(T, G,).

Since X(T, G,) is a SMS of T and =(T, 51) is a T-bounded SMS, T is a
({ 00}, 1)-decomposable operator. By [9, Theorem 2.10] as mentioned in 1,
T* is ({ 0}, 1)-decomposable. Consequently, 7* has the 1-SDP and hence
it has the SDP. O

2.2. LEMMA. Given T, let Y € Inv T be such that Y C D,. If T*| Y™ is
densely defined then T/Y is closable. Moreover, (T/Y)* = T*| Y.

Proof. Y* can be viewed as the conjugate of X /Y, under the isometric
isomorphism (X/Y)* - Y*. For convenience, we make no distinction
between Y+ and (X/Y)* and denote by (%, x*) the linear functional
x* € Y*onX/Y.ForX € D;,,,x €EXN Dy,y € Yandx* € Y* NDp.,
we have
(2.1) ((T/Y)%,x*)=(T(x +y), x*)= (Tx, x*)

= (x, T*x*)= (x +y, T*x*)= (%, T*x*).

Hence T/Y and T*|Y" are conjugates to each other. Since T*| Y~ is
densely defined, 7/7Y is closable (e.g. [4, II1. Theorem 5.28]). It remains to
prove the second statement of the lemma. Let 7/Y be the minimal closed
extension of T/Y. It follows from D, = X that D;,, = X/Y and hence
(T/Y)* = (T/Y)* exists. Then (2.1) implies

(2.2) G'(—T*Y*) c[6(T/Y)] = G'[— (T/Y)*].

It follows from (2.2) that (T/Y)* D T*|Y*.

To prove the opposite inclusion, let x* € D /y,.. For x € D; and
y € Y, we obtain successively

(2.3)  ((T/7)z,x*) = (%, (T/Y)*x*)
= (x +y, (T/Y)*x*)= (x, (T/Y )*x*).



86 I. ERDELYI AND WANG SHENGWANG

Thus, for every x* € Dz/yy., ((T/Y)%, x*) is a bounded linear func-
tional of x and hence x* € D;.. Furthermore, x* € D7,y C Y= and
hence x* € Y+ ND..

On the other hand, since x € D, for every y € Y, we have

(24) ((T/7)%, x*)= {(T/Y)%, x*)
= (T(x +y), x*)= (Tx, x*)= (x, T*x*).
It follows from (2.3) and (2.4) that (T/Y)* C T*|Y*. O

2.3. LEMMA. Suppose that Y*** C X*** js closed for T( X***, X**) and
Y*** is invariant under the projection P of X*** onto KX*, along (JX)™.
Then PY*** is closed for T( KX*, JX).

Proof. Let S*** be the closed (for the metric topology of X***) unit
ball of PY*** Let {x}***} C S$*** be a net converging to x3** € KX*
for 7(KX*, JX). Since {x}**} is bounded in X*** there is a subnet
{xf**} of {x3**} such that xz** — x*** € X*** for 7(X***, X**),
Since, by hypothesis, Y*** is closed for r( X***, X**), we have x*** €
Y*** LetJx € JX. Then (Jx, (I — P)x***)= 0 and hence

(2.5) Hm (Jx, x3**)y= (Jx, x***)= (Jx, Px***),
8 B

On the other hand, we have
(2.6) lig1<Jx, XFH*) = li§n<Jx, xExEY = (Jx, xE**).

It follows from (2.5) and (2.6) that

(Jx, Px***) = ( Jx, x3**).
Since both Px*** and x}** are elements of KX*, we have
(2.7) XE¥¥ = Px*** € PY***,

Since, clearly [|x3**|| < 1, (2.7) implies that x}** € S*** and hence S***
is closed for 7(KX*, JX). By the Krein-Smul’jan theorem, PY*** is
closed for 7( KX*, JX). O

2.4. THEOREM. Given T, the following properties hold.

(1) If the density condition (*) is satisfied then, for every x € D, we
have Jx € Dr.. and T**Jx = JTx; likewise

(') if the density condition (*+) is satisfied then, for every x* € D, we
have Kx* € Dyuev and T***Kx* = KT*x*.

(i1) Suppose that the density condition (x*) is satisfied and x*** € KX*.
If {T**Jx, x***) is a bounded linear functional of Jx € JD, then x*** €
KD . and T***x*** = KT*K™ 'x***,
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Proof. (i): Since G(t) =*[G'(—T*)] and [G'(—T*)]*"= G(T**), for
every (x, Tx) € G(T) we have (Jx, JTx) € G(T**) or, equivalently, Jx
€ Dy and T**Jx = JTx.

(1) follows directly from (i), with the original space X* and embed-
ding K.

(ii): Let x € D, and suppose that ( 7**Jx, x***) is a bounded linear
functional of Jx. With the help of (i), we obtain

(Tx, K™'x¥***) = (K 'x*** JTx)= (K 'x*** T**Jx)
— <T**JX, x***)

and hence K~ 'x*** is a bounded linear functional of x. Then K 'x*** &
D,.. and by (1), we obtain x*** € D... and T***x*** = KT*K 'x*** ]

2.5. COROLLARY. Given T, suppose that (*) holds. Then
KD, = KX* N Dpusn.

Proof. 1t follows from Theorem 2.4 (i') that KD,. C KX* N D.... TO
obtain the opposite inclusion, let x*** € KX* N D;.... Then

(T**Jx, X***>: <JX, T***X***>

1s a bounded linear functional of Jx. By Theorem 2.4 (ii), x*** € KD,.
and hence KX* N Dyuen C KDy ]

2.6. LEMMA. Given T, assume that (*x) holds. Then, the projection P of
X*** onto KX*, along (JX)™ commutes with T***,

Proof. Let x*** € Dy.... Then Px*** € KX*. For x € D, we have
successively
(T**Jx, Px***)= (T**Jx, Px***)+ (T**Jx, (I — P)x***)

— <T**Jx, x***>: <Jx, T***X***>: <JX, PT***X***>
and hence (T**Jx, Px***) is a bounded linear functional of Jx € JD;.
Theorem 2.4 (ii) implies that Px*** &€ D.... Then

(T**Jx, PX***>: <J.X, T***Px***>
implies that
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2.7. THEOREM. Given T, assume that (x*x) is satisfied. Then
JD,;=JX N Dju..

Moreover, for every Jx € JD, we have
JTx = T**Jx.

Proof. In view of Theorem 2.4 (i), JD, CJX N Dy ... Let x*** €
(JX)*. There is a sequence {x***} C Dju.. such that x}** — x***
as n—-oo. By Lemma 2.6, for every n, Px}** € D,... and hence
(I — P)x}** € Dyuus. Thus,

(1= P)xt** (I — P)x*** = x**s,

Consequently, (JX)* N Dy.. is dense in (JX)*.
Now let Jx € JX N Dy... For every x*** € (JX)™* N Duv, we have

(2.8) 0 = (Jx, TH**x***) = (T**Jx, x***).
Since (JX)™ N D is dense in (JX)™*, it follows from (2.8) that T**Jx
€ JX. For x* € D., Theorem 2.4 (i") implies that

T***Kx* = KT*x*
and hence, we obtain successively

(x, T*x*y= (Jx, KT*x*)= (Jx, T***Kx*)= (T**Jx, Kx*)
= (x*,T**Jx)= (J 'T**Jx, x*).

This means that the element (x, J~'T**Jx) €*[G'(—T*)] = G(T). Con-
sequently, x € D, and J~'T**Jx = Tx, i.e. T**Jx = JTx. Thus, it fol-
lows that

JX N Dy.. CJD;. O

2.8. THEOREM. Given T, assume that condition (x+) holds. If T* has the
SDP then

(1) for every closed F C C, X*(T*, F) is closed for 1( X*, X);

(ii) for every compact F C C, Z*(T*, F) is closed for 7( X*, X).

Proof. We confine the proof to (ii), that of (i) is similar. Assuming
that 7* has the SDP, it follows from Theorem 2.1 that both 7** and T***
have the SDP. Consequently, =***(7***, F) is a T***-bounded SMS and
it is closed for 7(KX*, JX), by [9, Proposition 2.9]. It follows from
Lemma 2.6, Proposition 1.10, and Lemma 2.3 that P=***(T*** F) is
closed for 7( KX*, JX).
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Next, we prove the equality
(2.9) KE*(T*, F) = PE***(T***, F).
Let x*** € K=*(T*, F). Since T* and T*** | KX* are similar (Theorem
2.4 (ii)), T*** | KX* has the SDP and K=*(T*, F)isa T*** | KX*-bounded

SMS. Consequently, 0...(x***) C F and lim,_ , x***(A) = 0. Lemma
1.11 implies that x*** € Z***(T*** F) and hence

(2.10) K=*(T*, F) = PKE*(T*, F) C PE***(T*** F).
Conversely, let x*** € =***(7T*** F). Then Lemma 1.11 implies that

Opea( X*¥**) C F and lim,_ ,x***(A) = 0. Since, by Lemma 2.6 and
Proposition 1.10, PEX**(T*** F) C E***(T*** F), we have

Opo( PX***) CF and  lim Px***(A) = 0.

Since x***(A) € Djuus, it follows from Lemma 2.6 that Px***(A) €
D;.... By Corollary 2.5, Px***(A) € KD,. and hence, for A €
P x**¥), we obtain

(A — T*)K™'Px***(N) = K~ Y (A — T***) Px***(X)
= K~ 'P(A — T***)x**5(X) = K~ 'Px***,
Thus, o,( K~ 'Px***) C F. Since lim, _ . K~ 'Px***(\) = 0, Lemma 1.11
implies that K~ 'Px*** € Z*(T*, F), i.e. Px*** € K=*(T*, F). Thus, we
have
(2.11) PE***(T*** F) C KE*(T*, F)

and hence (2.9) follows from (2.10) and (2.11). Now, by Lemma 2.3,
KZ*(T*, F) is closed for 7( KX*, JX) and hence =*(T*, F) is closed for
T( X*, X). O

2.9. THEOREM. Given T, assume that condition (x+=) holds and T* has
the SDP. Let G C Cbe open, G € V,_and Y =+ X*(T*, G). Then

DHYCD,YeEInvT,o(T|Y) C G

(II) T /Y is closable and, for its minimal closed extension m, we have
o(T/Y) CG.

Proof. Since T* has the SDP, X*(T*, G) is closed for 7( X*, X) and
hence Y*= X*(T*, G). Clearly, X*(T*, G) is invariant under 7*. Let H
be a relatively compact open set such that G¢ C H. Then {G, H} € covC
with G € V__ and the SDP of T* gives rise to the decomposition

(2.12) X* = X*T*,G) + =x(T*, H).
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Since Z*(T*, H) C Dy, it follows from Proposition 1.14 that
T*|X*(T*,G) = T*|Y*

is densely defined. It can be easily shown that Y € Inv 7.
Next, we show that Y C D;. In view of (2.12), for every x* € X*,
there is a representation

x*=x*+x*  x*€X¥T*G),x* €EXT* H)
with || x| + [|x3]| = M||x*]|, where the number M is independent of x*.

Let x* € Dy.. Then x3 € =%(T*, H) C D,. implies that x§ € D,. and
hence, for every x € Y, we have successively

(e, 7)Y | =] e, T =[x, T(xt + x3))] =|(x, T3]
<[ =T, H)|- ol -t = M| TR, )]l x7].

Thus, (T*x*, Jx) is a bounded linear functional of x* and hence Jx €
D;... By Theorem 2.7, Jx € JD,, i.e. x € D;. Consequently, Y C D;.
Since Y satisfies all hypotheses of Lemma 2.2, 7/Y is closable and

(2.13) (T/Y)* =T*| Y+ =T*X*(T*,G).
Thus, it follows that
o(T/Y) = o[(T/Y)*] = o[ T*|X*(T*,G )] C G No(T).

It remains to show that o(7'|Y) C G*. By applying Theorem 1.17 to
T*, we infer that T* /X*(T*, G) is bounded and
o[ T*/X*(T*,G )| C G“.
Now, it follows from the unitary equivalence
(TIY)* = T*/X*(T*,G),
that
o(T|Y) = o[(T]Y)*] = o[ T*/X*(T*,G)] C G- O

3. The duality theorem.

3.1. THEOREM. Given T, assume that (=) holds. If T* has the SDP
then T has the SDP.

Proof. Given {G,, G,} € cove(T) with G, € V. and G, relatively
compact, let Fy, F;, C C be closed such that F, € V__, F, C G,, F; C G,
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and {Int F,, Int F;} € cove(T). Then H, = Ff € V, H, = Fj is com-
pact. Put

(3.1) y=*[x(1, /)], z="[=x(1" H)],

use Theorem 2.9 and obtain

(3.2) YCD;, Y€e€InvT, o(T|Y) C H; = F, C G,.
Our next objective is to obtain the decomposition

(3.3) X=Y+ Z.

Since, by Theorem 2.8, X*(T*, H,) and =*(T*, H,) are closed for
7( X*, X), we have

(3.4) Yt=X*(T* H,), ZzZ'==*(T*H,).

It follows from

X*(T*, Hy) = X*[T*, H, N o(T)],
EZX(T*, H)) = 2*[T*, H, N o(T)],

[H, N o(T)] N[H, N o(T)] = &, and Theorem 1.12, that X*(T*, Hy) +
E*(T*, H)) is a direct sum and

(3.5) X*(T*, H, U H)) = X*(T*, H,) ® =*(T*, H,).

Apply [4, IV. Theorem 4.8] to Y and Z, as defined by (3.1), and infer that
Y + Z is closed. On the other hand,

(Y +Z) =Yt nz*= x*(T*, Hy)) N =*(T*, H,) = {0}

implies (3.3).
It remains to show that
(3.6) (a) ZenvT, (b) o(T]Z) C G,.

For x € Z N Dy, x* € E¥(T*, H,) = Z*, we clearly have
(Tx, x*)=(x,T*x*)=0

and hence Tx € Z This implies (3.6, a). By (3.3) and Proposition 1.14,
T| Z is densely defined and hence (7| Z)* exists. Next, we shall obtain

(3.7) (NZ2)* = T*/=*(T*, H)) = (T*).
Forx € Z N Dy, x* € Dy. and
(x*)'=x* + Z%(T*, H,) € X*/EX(T*, H,),
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we have

<(T[Z)x, (x*)A> = <(T[Z)x, x*> = (x, T*x*)y= (x, (T*)(x*)).
Consequently,
(3.8) (T1Z)* > (T*).

To obtain the opposite of (3.8), let x € D, and (x*) € D17y~ In view of
(3.3), there is a number M > 0 and a representation

xX=x,+x,, x,€Y,x,€Z  and 1l =+ Il = M]x|].
Then, for every x* € (x*)A (€ Dzzy+), we have successively:
(T, x*) [ < [Ty, x*)| +[(Txy, x*)]
:|<(T|Y)x,, x*>) +|<(T|Z)x2, (x*)A>|
<ITIYI - el - el e - [(T1Z)* (e
} -

Thus, (Tx, x*) is a pounded linear functional of x. Consequently, x* €
Dy. and hence (x*) € Dz+y. In view of (3.8), (3.7) is obtained. Now
Theorem 1.17 applied to T*, gives

of (T*)] c A}

< M{||T1Y] - [x*]| +](T1Z)*(x*)

and hence (3.6, b) follows by
o(71Z) = o[(TZ)*] = o[(T*)] C H{ = F, C G,.
By (3.3), (3.2) and (3.6), T has the SDP. O

The combination of Theorems 2.1 and 3.1 gives

3.2. COROLLARY. Given T, assume that condition (x¥**) holds. Then T
has the SDP iff T* has the SDP.
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