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DERIVATIVES OF BLASCHKE PRODUCTS

Hong OH Kim

Suppose B(z) is an infinite Blaschke product with zeros {z,}. It is
known that B’ & A%° (or D'/?B ¢ H?). We extend this to get B’ &
APP72 (p>1) (or DPB & H'/2, > 0) and apply this to the Taylor
coefficients of an infinite Blaschke product. We also present extended
versions of the Hardy-Littlewood theorem on fractional integrals and the
Hardy-Littlewood embedding theorem with simple proofs. These exten-
sions show that the above theorem becomes stronger as p 1 oo (or 810,
respectively). Finally, we give sufficient conditions on {z,} in order that
DPB € A”* or € HP, which shows that the above result is best possible
in a certain sense.

Introduction. Let U denote the open unit disc in the complex plane.
The Hardy space H? (0 < p < o0) consists of all functions holomorphic in
U for which

7 p 1/p
= 1 02 ([Treen57) " 0<p <o)
sup /() (s = )

is finite. The weighted Bergman space A7 with 0 <p < o0 and a > —1
consists of all functions holomorphic in U for which

1170 = f ‘ [ T f(re®) (1~ r)* d dr

is finite. See [1], [15]. The Hardy space H? (0 < p < o0) can be considered
as the “limiting space” of A”“as a | -1.

If {z,} is a sequence (finite or infinite) of complex numbers in U for
which 2 (1 — |z, |) < oo, then the Blaschke product

B(z) =
k k

converges uniformly on the compact subsets of U and has {z,} as its zero
set. See [S].

z, —z
1 —2z,:z

It is a well-known fact that a Blaschke product B is a finite Blaschke
product if its Dirichlet integral

lfo' foz”(f(rel")frdrda = S'kla,|’

T

175
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is finite; that is, if B’ € A*° or equivalently S k'/%a,z¥ € H?. In §1, we
extend this fact in two directions; in Theorem 1.1 we replace the condition
B’ € A%° by the condition B’ € A??~2 for some p > 1 and in Corollary
1.6 we replace the condition T k'/?a,z* € H? by the condition I k%a, z*
€ H'P. The latter is a consequence of the former but gives a new
information about Taylor coefficients (Corollary 1.8). Theorem 1.1 is seen
to be stronger as p / oo by means of an extension of the Hardy-Littlewood
embedding theorem (due to P. R. Ahern, unpublished) which we present
here as Theorem B. In §2, we extend the Hardy-Littlewood theorem on
fractional integrals with a simple proof (Theorem 2.1). This extension
shows that Corollary 1.6 is stronger as 8\ 0 and gives some information
about Bloch functions (Corollary 2.5). Finally, there are several known
conditions on the distribution of zeros of a Blaschke product that imply
that the derivative of that Blaschke product belongs to some H? or A7“.
See [3], [4], [13]. In §3, we extend these results to the fractional derivatives
of arbitrary order of a Blaschke product (Theorem 3.1, Theorem 3.2).
These theorems show that in Theorem 1.1 (or in Corollary 1.6), A”“ (or
H?) cannot be replaced by a larger A7~ or A7>*"¢ (or H? ¢ respectively)
for any ¢ > 0. The extended version of the Hardy-Littlewood theorem on
fractional integrals is essential to prove Theorem 3.2.

Throughout this paper, B always denotes a Blaschke product. C
denotes a constant and C( - - -) a positive constant depending only on the
arguments (---). Both C and C(---) may vary from occurrence to
occurrence even in the proof of the same theorem.

This paper represents a part of the author’s thesis written in the
University of Wisconsin. The author appreciates the encouragement of his
thesis advisor, Patrick R. Ahern.

1. Finite Blaschke products.

1.1 THEOREM. If B’ € A”?"2 for some p > 1, then B is a fintie
Blaschke product.

To prove this theorem, we need to quote a recent theorme of Ahern

[2].

THEOREM A. Let 0 < 1 + a < p < oo. Then B’ € A”“ if and only if

fol(l - r~)"]02”(—~*——1 _IB_(r:m)|)pd0dr< .
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1.2. Proof of Theorem. Suppose that B is an infinite Blaschke product
and let

o0
_ lze| 2z — 2
Let 0 <& < 1 be fixed. Since
Zy — 2 |z, — z|
[B(z)|= 1—zz| 11—z

|B(z)|<eif|z, — z|< e&(l — |z, ). Let z, = r,e' and z = re®®. Then

00
fm ol = (= n )+ drrsie S5 | < (= H (0 - 6,)"
Iftr,=r<r,+e&1 —r,)/2, then

21__ 2
|Zk—ZIZSE—(—4—&)—+ (6= 6,)°

solz, —z|<e&(l —r)if

2

62(1%“) +(0—-6,) <e(1 —r)

Hence |B(z)[<eifr,<r<r,+ ¢l —r,)/2 and
3
Thusifr, =r <r, + &1 — r,)/2, then
[ =|B(re)])" a8 = (1 = ey 3 e(1 = ).
0
Hence

rete(1=r)/2 /-277( 1 —|B(re'?)|

P
) (1—r)’"*ddr

T 0 1—r
rete(l—r)/2 —
=31 =’ (1—r) [T =1 e
y3e2(1 —¢)’
B 2—¢ )

Now, we take an infinite subsequence {z, } of {z,} such that

|ijl+e(l—|zkj|)/2 <|zkj+||, i=1,2,....
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We form a subproduct B (z) of B(z) with zero sequence {z kj}. Then since
| B(z)|=<|B,(z)|, we have

'E j(;zw(—————————l — |B(relﬁ)‘)tn(l — ) dfdr

1 —r

=
1—r

‘/02”(————-1 - 'B‘(’elg)')p(l — ) dfdr

o=

'/‘r,\ +e(l—r,, )/2/27;( 1 — |B1(re’0)|)”(1 P dbdr
0

1 —r
\Fz(l—e
2—¢

HMS

J

— 0.

HMS

=1

So B’ ¢ A”?~% by Theorem A, which is a contradiction. Hence B is a
finite Blaschke product.

1.3. REMARKS (1) If p =1 and A'! is replaced by H' then B is
continuous up to the boundary by Theorem 3.11 [5]; so it is a finite
Blaschke product, as is well known.

(2) To show that Theorem 1.1 really is a better result than the
classical one, we present an unpublished result of Ahern which is also
used again in the sequel.

THEOREM B. ( Ahern). Suppose that f(z) = O(1 — |z|) Y and let 0 <p
< g < o0. Then

(V) if f € HP, then f € A%~ ' T4,

(2) if f € AP*, then [ € AT*TY4™P),

Proof. (Due to Ahern.) Let M(1,8) = sup,—,-, |f(te'’)|. From the
hypothesis, | f(re'?) |< K(1 — r)~ for some K > 0. Then

[ e (=)
0

A oy —
le"f (1—r) " " ar
0

+M(1LO)Y [ (1 =)
A

(1 _ }\)’YP N M(l, 0)‘7 . (1 _ A)Y(f]‘l’) .

< K9
Yp y(q —p)
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Now, let A =0 if M(1,0) <K and let A =1 — (K/M(1,0))"/ if K<
M(1, 8). Then we have for any 6

f1|f(reto)tq(1 _ r)Y(q_P)*ldr
0
=C(K,v,p,q) + C(K,v, p,q)M(1,0)".

We integrate both sides with respect to § and use the complex maximal
theorem to get (1). (2) is similarly obtained.

If f€ H®, then f(z) = O(1 —|z|)™"; so f' € A?P~% implies that
f € A*972if p < q. Hence Theorem 1.1 is stronger as p goes to .

1.4. Fractional integrals and derivatives. Let f(z) = 2 a,z* and let
B be a real number. Flett [7] defines the fractional integral of f of order 8
as IPf(z) = 2(k + 1) Ba,z*. If B> 0, the following formula is easily
verified and will be useful later:

1f(z) = ﬁfol(log%)ﬁﬂlf(tz) dt.

The fractional derivative D?f of f of order 8 > 0 is defined as D?f = I #f.
The following easily verified remarks will be used without explicit men-
tion.

1.5. REMARKS. (1) If n is an integer = 1, then
n n—1
D(z) = (4 2) 1) = 3 M)1O() + 27 z),
k=0

where /% is the ordinary kth derivative of f and M,(z) is a monomial in
z,k=0,1,...,n — 1.
) Iff(z) = 01 — |z]))" Y (y = 0), then
(@) I*f(z) = 0(1 — |z))" P, where 0 < B < v, and
(b) DPf(z) = O(1 — |z|)~"*P), where 8 = 0.
(3) For any positive integer n and any positive number p, there exists
C,, C, > 0 such that

C = foz"u)"f(re“’)l" do/joz”’|f<">(re"")|" b =C,.

The second inequality is obvious from (1). For the first inequality, note
that

#(z) ZfOID‘f(tz)dt.
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So,
'f re’?)| < sup {D‘f(trei”)l;
o0=r=<1

so by the complex maximal theorem,
fzwlf(reia)lp dé < C(p)fzﬂlle(rei”)|p dé.
0 0
Since f'(z) = z~ Y D'f(z) — f(z)}, we get
[1rtre®) a8 = c(p) [|D'f(re)| db.
0 0

We can prove (3) for any » using induction, which we omit. Due to this
remark we use D"f and (" interchangeably in this paper.

We quote some known theorems for later use. The following Theorem
C was first proved by Hardy and Littlewood in [8, Theorem 10] when
p > 1 with slightly different definitions of the fractional drivatives and
integrals.

THEOREM C. (Hardy and Littlewood, Flett [7, Theorem 6).) Let f be a
holomorphic function in U, 0 < p < o0, and let § > 0. Then

(1) if f € AP*, then DPf € AP*TFP (a > —1);

(2) if f € AP%, then IPf € AP*BP (a — Bp > —1).

THEOREM D. ( Littlewood and Paley [10, Theorems 5, 6].) Let f be a
holomorphic function in U. Then

() iff' € APP 7 thenf € H? (0 < p < 2);

(Q iffE HP, then f € APP~1 (2 <p < ).

We combine Theorems C and D to get the following which is more
convenient for our applications.

THEOREM D'. ( Littlewood and Paley.) Let f be a holomorphic function in
U,B>0andlet 0 <p < 0. Then

(V) iff € AP~V EP then IPf € HP (0 < p < 2);

(2) if f € H?, then DPf € A~ 1*PP (2 < p < 0).

Now we can state and prove

1.6. COROLLARY. If DPB € H'/® for some B> 0, then B is a finite
Blaschke product.
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Proof. If B > 1, then DB € H'/ implies that
DBB I AZ,*I%—B(Z*I/[?) — AZ,ZB*Z,
by Theorem B (1), since D?B(z) = O(1 — |z|) %. So
D'B = [P~ 'DBB € 4228~ 2-2B~1) = 420

by Theorem C (2); so B is a finite Blaschke product by Theorem 1.1.

Next, if 8 < 1, then D#B € H'/# implies

D'B = D'"BDBB € AP~V (BB = 41/B1/B2

by Theorem D’ (2); so B is a finite Blaschke product by Theorem 1.1.

1.7. REMARK. Since D?B(z) = O(1 — |z|)"#, Theorem 2.1 in the next
section shows that DAB € H'/ implies that D'B € H'/7 if 0 <y < 8.
This means that Corollary 1.6 becomes stronger a 8\0.

1.8. COROLLARY. If B(z) = 2a,z* and I(k + 1)? '|a, P < oo for
some p = 1, then B is a fintie Blaschke product.

Proof. Suppose that B is an infinite Blaschke product. Then for any
B >0, DPB(z) = 3(k + 1)Pa, z¥ & H'/B by Corollary 1.6. First we apply
the Hausdorff-Young inequality (Duren [S, Theorem 6.1]) with ¢ = 1/8
=2and 1/p + 1/q =1, and get

o =[D"Bl, < B (k + 1)"|a,|;

soXk+ 1?7 "a,P=ocforl<p<=2sincefp=p— 1.
Next we apply the Hardy-Littlewood inequality (Duren [S, Theorem
6.2]) withg = 1/8 = 2 and get

o =| DB = C(q) T (k+ 1) 7k + 1)a,)
=C(q)S(k+ 1) a, /"

This completes the proof.

1.9. REMARK. The conditions S(k + 1)~ '|a,F < oo for a sequence
{a,} which is bounded by 1 are seen to be independent, for any two
different values of p. Forit 1 <5 <1, take

g = {2“/’”” if k = 27, » > 0 integer;
k= .
0 otherwise,
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and b, = (k + 1) Y{log(k + 1)} 7'/*, k =1,2,...; we can easily check
that

S(k+1) g <o but J(k+ 1) g, = oo,

and
S(k+1)°7 b= 00 but J(k+1)"""|b| < 0.
Note also that a,’s and b,’s are all bounded by one.

2. Hardy-Littlewood theorem on fractional integrals.

2.1 THEOREM. If f € H” and f(z) = O(1 — |z])~" with 0 <y = 1/p,
then IPf € H? with q = yp/(y — B) where 0 < B < .

Proof. We first assume that 0 < 8 < 1. From the hypothesis, | f(#z) |<
K(1 —¢|z)"Y=<K(1 —¢t)”" for some constant K> 0. Set M(r,0) =
SUPg< <1 |f(tre®)|. Since 1 — t <log1/¢,(log1/t)f~ ' < (1 —£)#~". So

—1

II’*f(Z)ISF—IB—) [ log2)" e

< sy (4 = 0 W)

Now, we proceed as in the proof of Theorem B and get

[ =0y p(wre®)dt = C(K, B,v) + C(K, B, v)M(r, )"
0

So,
[T11(re®)[" d6 < C(K, B, v, p) + C(K., B, v, p) [ M(r,8)" db
0 0

< C(K,B,v, p) + C(K, 8,7, p) /0 “If(re®)[ do.

We used the complex maximal theorem in the last inequality. So f € H”
implies that I#f € HY where ¢ = yp/(y — B).

Next, we note that I%f(z) = O(1 —|z|) " If B=1, we write
B=B+pB,+ -+, with0<pB, B,,...,B, <1. Then successive ap-
plication of the above argument with 8,, B,,...,8,, proves the theorem.

2.2 REMARK. If f € HP, then it is known that f(z) = O(1 — |z])~ /7,
I?f € HY where q = 1/p - p/(1/p — B) = p/(1 — Bp). This is the well-
known theorem of Hardy and Littlewood on fractional integrals, [9,
Theorem 30], [S, Theorem 5.12].
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2.3 COROLLARY. If f € AP*and f(z) = O(1 — |z|) Y where 0 <p <2,
a>—1 and (a+1)/p<y=<(a+2)/p, then I°’f€ H? where q=

(yp —a—1D/(y—B)and (a+ 1)/p<B <.

Proof. Since p <2, I[**VY/Pfc H? by Theorem D’ (1). Note
IC™Y/Pf(z)y = O(1 — |z )~ (*D/P) By Theorem 2.1, IPf =
IRt D/Pp(e* /P f € HY, where ¢ = (yp — a — 1) /(y — B).

2.4. REMARK. If f€ AP® then f(z)= O(1 —|z|)~**2/7 [15,
Corollary B]; so I?f € H? with ¢ = p/(a + 2 — Bp) where (a + 1)/p <
B<(a+2)/pif0<p=2.

A function f holomorphic in U is said to be a Bloch function if
f(z) = O(1 —|z])~". See Pommerenke [12] for more about Bloch func-
tions.

2.5 COROLLARY. If f is a Bloch function with f' € AP where p > o +
1>0, then f € HY for all g < .

Proof. Let 0 <p <2. Since D'f(z) = O(1 —|z|)”!, for any suffi-
ciently small 8 >0, D?f=I'"BD'f € H»~«"Y/F by Corollary 2.3; in
particular, f € H?~*"D/B for any > 0. Let 2 < p < . We can easily
check that f* € A”* implies that f’ € A>® if 8 >2(a + 1)/p — 1. But
since 2(a + 1)/p <2, we can choose § so that § + 1 < 2. Then f € HY
for all g < oo as above.

2.6. REMARKS. (1) If f is a Bloch function, then f* € A”* when
p<a-+l

(2) If fis a Bloch function and f* € H? (0 <p < 1), then f* € A>!77
by Theorem B (1); so f € H? for all ¢ < co by Corollary 2.5.

(3) The example f(z) = log(l — z) shows that ¢ = oo cannot be
allowed in the conclusion of Corollary 2.5.

3. Blaschke products. Throughout this section, let B(z) be a
Blaschke product with zeros {z,}. We write d, = 1 — |z, | as usual.

3.1. THEOREM. Let B> 0,0 <p < oo and let « > — 1. Then
(1) if2dyt? AP < 0, then

+ a+ 1
g+1’ B

3o

=3

DBB € AP (max(

) a+2)
<p< ;

B
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Q) ifZdflogl/d, < o, then

8 " _a+2 a+1)_
DPB € A7 Pz )
(3)if 2 d} < oo for some § < (a +2)/(B + 1), then

a+ 2
B+ 1

(a+2)/(B+ D) =(at+1)/Bie,B=a+ 1)

DAB € A7* foranyp <

3.2. THEOREM. Let 3 > 0. Then
(D) ifSd} P < o0, then

1 1
B P I, -
DB e H (,3 1<p<B),

(2)ifZdflogl/d, < w, then

1
B _ 1.
DEB € H” (p B+1y
(3) if 2d) < oo for some 8 <1/(B + 1), then DPB € H” for any
p<1/(B+1).

3.3 REMARKS. (1) If 8 =1 in Theorem 3.1, it is the result of Protas
(for A", see [13, Theorem 1]) and of Ahern (for 1 <p < o0, see [I,
Theorems 4.2, 5.1]).

(2) If B8 =1 in Theorem 3.2, it is the result of Protas [13, Theorems
2,3].

(3) Theorem 3.1 (1) with 8 =1 and 1 <p =<2 and Theorem 3.2 (1)
with 8 = 1 were shown to have their “converses”. See Ahern [1, Theorems
4.2, 6.2]. Both Theorems 3.1 (1) and 3.2 (1) for 0 < p =< 2 can be seen to
have their converses with the same method of proof. For example, if
DPB e H? (1/(B+ 1)<p<1/B), then DPB & 4> '"A2=P) by Theo-
rem B (1); so by Theorem C (2)

DIB et Iﬂ_lDBB EAZ’*I"‘ﬂ(Z*P)*z(ﬂ*l) = AZ,I—ﬂp;
SO
k*la,f 2
S = kel <,

where B(z) = Z a, z*. Now, by the theorem of Carleson quotd by Ahern
on page 335 of [1], there exists a set E of capacity 0 such that 3 d,(c)' 47
< oo if c € U\E and d,(c) =1 —|z,(c)| where z,(c) are the zeros of
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(¢ — B(2))/(1 — ¢B(z)). It would be interesting to know whether the
converse holds in general.

(4) Theorem 3.1(2) with 8 = 1 connects one of Rudin’s results:

if ¥d,logl/d, < oo, then B’ € A0

[14, Theorem I, and one of Protas’ results:

if 2 d}/*logl/d, < w, then B’ € H'/? (=421

[13, Theorem 3].

(1)

The following computational lemmas are well known.

LemMA E (Tsuji [17, p. 226])). If|a|< 1 and 0 < p < 1, then

1 .
C(y) — fr>1
, (1—1lalp)
f”_LS< !
0 |1 - apeio |7 ClOg‘l—I'—I‘; ify =1;
C ify<l.

LeMMA F (Shields and Williams [16, Lemma 6)). If 0 < r, p < 1, then

Cla,v)(1—=p)' "™ ify>1+a>0;

N
fo(l—rp)yd =1 C(a)log

= ify=1+a>0;
C ify<l+a>0.
3.4. LEMMA. B\")(z) is a finite sum of the terms of the form
K, A ...,k
Ec(k,l---m)Bk” ..... m(z)
L=l 1=1zF  1=lz,f

(1-z2)" (1-zz) (1-2z,2)"

where 2 is the sum over k, | # k,... . m # k, [,...,

(2)

(3)
(4)

k,A,...,p

s /by ’ < < NR ,A,.,,, ,
C(k,l,...,m) C(n) <o foranyk,l,...,m;«x n

Bra...l2) = B(2) Z,—z z,—z z,— 2z’

(k—1D)+A—-1)+--+(p—1) =n.
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Proof. We proceed by induction. It is true for n = 1, since
1 — |z, P
B'(z) = EBk(Z)—‘_—klz
k (1—-1%,2)

See Protas [13] for example. Assume that the lemma is true for n = 1.
Consider B*Y(z). It is a finite sum of derivatives of terms like (1), i.e.,

Ky A,...
2(j(k l )B;CJ ..... m(z)
I_IZkIZ l—lzl|2 l—lzm|2
(1-z2)" (1-zz)" (1-z,2)"
Ka A,-..,'LL

+2C(k,l,...,m)BkJ ..... m(Z)
ICZk(l_leIZ) 1— |z, L=z
(1—Zz2)"" -z (1-z,2)"

+ similar terms to the second term.

But since

’ _ 1 — IZs '2
Bk,/ ..... m(Z) - 2 Bk,[,...,m,s(Z) _ 2
s#k,d,..., m (1 - ZSZ)

the first term above is of the form (1) with » + 1 in place of » in (2) and
(4). The other terms are also of the form (1) with » + 1 in place of n by
absorbing the constants like kz, in C(§;"*~*). This completes the
proof.

3.5. Proof of Theorem 3.1. By Theorem C, it suffices to prove the
theorem with 8 replaced by its integral part n. We may also consider the
ordinary nth derivative B instead of D"B because of 1.5. (3). We only
prove (1). (2) and (3) can be read off in the proof of (1). Suppose first that

o (a+2 a+1)< _1
+1° n p—n'

By Lemma 3.4, | B"(re'®)| is dominated by a finite sum of the terms of
the form

11—z, 1 —]z] 1—]z,]
n)z 22 k . !
m Ik

|1 —z,reF |1 — Zre |1 — 2z, re'}
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(k, I,...,m runs through all positive integers here), which is

1= 1z ) ( 1 -1z ) ( L=z, )
( )(§|1—z’kre'”r‘ ;Il—frre’”r‘ %H—z‘mre'”r‘
Since 0 <p <1, [2"| B"™(re'®) P d0 is dominated by a finite sum of the
integrals of the form

o 11zl | ( 1—|z] ),,
n - —_—
p)f ( 11—z re’”l ) ;]1—Z,re"’|"
1___ p
A )
m |1 —Z,re”
Now, we apply the Holder’s inequality with indices
k—1 >\—1+”_+,u—1

+
n n n

=1

Then the integral is domainated by

— (xk—1)/n
S 1—1z np/(k—=1)
Pl )
0 t |1 —Z,re”[

— (p—1/n
2 1__ np/(p—1)
NSt
o\ |1—z,re”|

Since np/(k — 1) =< np =< 1, the integral of the first factor is dominated
by
1 _ |Z I)"P/("_l)

2 27 d0
P j(; |1 -z rezﬂlxnp/(x 1)

which is

(L= z )" "

<C(n,p,x) 2

€ (1= fzfr)™
(1 —1z)°
<C(n,p, k)Y e
k(1= |z r)m 0Pt

We used Lemma E with knp/(k — 1) > kn(a + 2)/(k — I)(n + 1) > 1in
the first inequality and replaced some power of (1 —|z,|r) by the same
power of the smaller (1 — |z, |) to get the second inequality. We estimate
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the other factors similarly and replace the constants C(n, p, k),... by the
bigger constant C(n, p) and get
(1 —1z)”

1 — |Zk|r)(n+1)p‘l .

Lﬂmww%ﬁwsqmmg(

Now, we integrate both sides with respect to (1 — r)* dr and use Lemma F
to get

/01 fOz"'B(m(rew)lP(l —r)*dfdr < C(n, ”%“ _lzk,)aﬂ_n,,.

So we get B! € AP if TdFt2T < 0.

Before proving the remaining case, we note that the above for n = 1
and the results of Ahern [1, Theorems 4.2, 5.1] and Theorem B completely
prove the theorem for n = 1. Now assume 1/n<p <(a + 2)/n. We
proceed by induction. As noted above the theorem is true for n = 1. Let
n = 2 and assume that (1) is true for » — 1. Since we can easily check that
a+2—np=(a—p)+2—(n—1p,

(e=p)t2_ =~ la=p)F1
n n—1

(a —p)+2

<p and p—

>p,

we have B("~D € 47*~P by the induction hypothesis. By Theorem C (1),
B € A7“ This completes the proof

3.6. Proof of Theorem 3.2. Here again we prove only (1). (2) and (3)
can be read off from the proof of (1). Write B =n — b where n is a
positive integer and 0 < b < 1. Assume first that 0 < p < 2. By Theorem
D’ (1),

DAB = I’D"B € H?P if D"B € APbr~ 1,
But D"B € A7*?~! by Theorem 3.1 since
zdl((bp—l)+2*np - Edllc—(n*b)p < o0,

and

(bp—1)+2 (bp—1)+1)< <(bp—l)+2
n+1 i n p n

max (

can easily be checked. Next, assume p > 1. We use induction on the
positive integer » with 1/(» + ) <B<1/». Iff =1 and 3 =B8<1,
then + < Bp <1; so 2d]} A7 < o implies D'B € HP? by the argument
above. Hence DB = I'"#D'B € H”? by Theorem 2.1. Now assume that
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we have proved the theorem for 8 in 1/r=8<1/(v — 1), and let
1/(v + 1) < B <1/v. Since

Nd /B = N qlmBr < oo,

y o _
Bp=vp= g = 1, ad vBp<v= 1

we get D'/"B € H"P? by the induction hypothesis. By Theorem 2.1 again
DPB=1'/""ED\/*B € H?.

This completes the proof.

3.7. REMARK. We used Theorem 3.1 (1) to prove Theorem 3.2 (1).
Conversely, we can deduce Theorem 3.1 (1) from Theorem 3.2 (1).
Suppose that Theorem 3.2 (1) is proved. We shall prove Theorem 3.1 (1).
Letn = 1 an integer, « > —1 and ¢ > 0 be fixed so that

o+ 2 a+1) o+ 2
,—— | <g< .
n+1 n

n
Assume that X df"27"” < co. We need to show that B™ € 47 Since
g—(a+2)/(n+1)>0and ¢ — (a+ 1)/n >0, we can choose p >0
very close to ¢ so that
Ng—(a+2)/(n+1)>(q—p)/(n+1)>0and
(1) 0 <(ng — (a+ 1)/p<n.
We set B=(np —(a+ 1)/p. Then 1 — Bp =a + 2 — ng. Also
1/(B+ 1) <pby(i), and 1/B > p since ¢ < (a + 2)/n. By Theorem 3.2
(1), DPB € H?; so DPB € A%~ '*#~P) by Theorem B (1). Now by
Theorem C (1)

D"B = D" ADPB € A9~ 1 tAlamp)tain=F) = ga.e

since —1+ B(q—p)+q(n—B)=ng— Bp—1=a This completes
the proof.

max (
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