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If cf is a quasitriangular algebra, i.e., a compact perturbation of a
nest algebra, then every automorphism of & close to the identity is inner.
As a consequence, every derivation on & is inner.

Introduction. The derivation problem for nest algebras was solved
by Christensen in [3], where it was shown that every derivation on a nest
algebra is inner. The corresponding problem for quasitriangular algebras
is different since these algebras are not weakly closed and since the nest
which determines the algebra is not unique. The first result was obtained
by Christensen and Peligrad [4] for the case of any nest which consists of
an increasing sequence of finite rank projections which converges strongly
to the identity operator. It was shown that every derivation on the
associated quasitriangular algebra is inner. The proof used the fact that
every automorphism on such an algebra is inner, proved by Plastiras in
[16]. In [18], the author generalized these results for all quasitriangular
algebras which have a determining nest of order type the extended natural
numbers, the extended integers, or the unit interval [0,1]. In the latter
case, Andersen's theorem (Theorem 3.5.5 of [1]) was crucial. The two
former cases were proved by fairly direct methods, the basis of which were
a preliminary result of Andersen (Corollary 1.4.3 of [1]) and a theorem of
Davidson (Theorem 1.1 of [5]).

Recent important results of Larson [15] and Davidson [8] have made
it possible to study automorphisms and derivations of arbitrary quasitri-
angular algebras, instead of using the case-by-case analysis of [18]. The
main tools we use for this purpose are Theorems 1.3 and 1.5 below, due to
Davidson [8]. The main result (Theorem 2.1) is that any automorphism a
of a quasitriangular algebra with \\a — id\\ < \ must be inner. It then
follows easily (Theorem 2.2) that every derivation on a quasitriangular
algebra is inner, thus answering a question posed by several people (see [9,
§3] and [12, §3]).

Other problems concerning quasitriangular algebras have been studied
in [2], [6], [7], and [11], in addition to the references cited above. In
particular, the results of [11] (Theorems 1.1 and 1.2 below) play an
important role in our analysis.

Finally, we wish to thank William B. Arveson for his encouragement
and helpful advice.
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1. Preliminaries. Throughout this paper, % will be a complex
separable infinite-dimensional Hubert space. The set of bounded opera-
tors on % is denoted by £,(%) and the set of compact operators is denoted
by %. All operators discussed will be bounded, and all projections will be
self-adjoint.

A nest is a family of projections in &{%) which is linearly ordered (by
range inclusion), contains 0 and /, and is closed in the strong operator
topology. A nest equipped with the strong operator topology forms a
compact separable complete metric space. Given a nest Φ9 let alg P̂ = [T
E £(%): P1-TP = 0 for all P E <?}. alg 9 is the nest algebra associated
with Φ9 and an operator T E alg P̂ is said to be triangular with respect to
<3\ alg 9 is closed in the weak operator topology. Let QT(9) = alg Φ + %.
QT{<$) is the quasitriangular algebra associated with <3\ and an operator
T E QT{^) is said to be quasitriangular relative to <3\ The following two
results concerning QT(^) were proved by Fall, Arveson, and Muhly in
[11].

THEOREM 1.1. For any nest <$> QT(^) is a norm-closed algebra.

THEOREM 1.2. If 9 is a nest, then QΊ\Φ) = {T E £(%):
(i) P± TP E %for allP <Ξ<$ and

(ii) the function P E P̂ -» P"1 TP E % is strong-norm continuous (i.e.,
the function is continuous with respect to the strong operator topology on $
and the norm topology on %)}.

Let ® be a Banach algebra. A derivation δ:% -> ® is a linear function
which has the property that 8(ST) = δ(S )Γ + 5δ(Γ) for all S j e l
We denote δ by ad X if δ(S) = XS - SX for some X E e(3C). δ is inner
if δ = ad X for some Jf E %. If α is an automorphism of <$>, then we
denote a by Ad 4̂ if a(S) = ^ S ^ " 1 for some invertible Λί E £(5C). a is
m/ier if α = Ad A with >4, Λ" 1 E £δ. If δ is a continuous derivation, then
δ is the infinitesimal generator of the uniformly continuous one-parameter
automorphism group (exp(ίδ): / E R ) . If δ = ad X, then exp(ίδ) =

Let 9 be a nest. An interval of Φ (^-interval, semi-invariant projec-
tion) is a projection E = Pf - P9 with P9 P' E ^ and P<P'. P and P r

are called the Wer and wp/?er endpoints of E, respectively. It is easy to see
that the endpoints of an interval are unique. An atom of P̂ is a minimal
^-interval (or equivalently, a minimal projection in ψ'9 the double corn-
mutant of ζP). P̂ is continuous, or non-atomic, if it has no atoms.
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Two nests P̂ and £ are unitarily equivalent if there is a unitary
operator U such that &={t/PC/*: PeΦ}. In this case, alg£ =
£/(alg Φ)U*. In [10], Erdos completely analyzed the unitary invariants for
nests. Two nests P̂ and & are similar if there is an invertible operator A
such that {Q%: Q<Ξ%} = {AP%: P e ? } . In this case, alg& =
^(alg^P)^"1, so Ad A is an isomorphism of alg^P onto algS, and it
extends to an isomorphism of QT(ty) onto £>Γ(£). Given an order
isomorphism θ: P̂ -> % we say that θ is implemented by A il A is an
invertible operator and Θ(P)% = AP% for all P E 3\ 0 is dimension-pre-
serving if dim(0(P') - 0(P))3C = dim(P' - P)3C for all P, P ' E <$ with
P < P'. In [8], Davidson completely analyzed the similarity invariants for
nests. Since we will need this result, we record it in the following theorem:

THEOREM 1.3. (Davidson [8, Theorem 5.1]). Two nests <3> and £ are
similar if and only if there is a dimension-preserving order isomorphism θ of
ty onto 2 . Moreover, any dimension-preserving order isomorphism ofty onto
% can be implemented by an invertible operator which is an arbitrarily small
compact perturbation of a unitary operator.

Theorem 1.3 has an interesting corollary (Corollary 1.4 below) which
is related to the factorization property. A nest 9 is said to have the
factorization property if, for every invertible operator A9 there exists a
unitary operator U such that A = US for some S E (alg 9) Π (alg (3))~1.
(An equivalent statement is that for every invertible operator A9 there is a
unitary operator U such that AP%= UP% for all P E (3)). In [15],
Larson made a complete analysis of the factorization property. He showed
that Φ has the factorization property if and only if P̂ is countable, i.e., if 9
is uncountable, there is always some operator A for which factorization
fails. If we replace alg ^ by QT(9)9 however, we have the quasi-factoriza-
tion property: for every invertible operator A there exists a unitary opera-
tor U such that A = US for some S E (QT(Φ)) Π

COROLLARY 1.4. Every nest has the quasi-factorization property.

Proof. Let ? be a nest, A be an invertible operator, QP be the
projection onto AP%, and & = {QP: P £$}. Let θ be the order isomor-
phism P -> QP. θ preserves dimensions, so by Theorem 1.3 θ is imple-
mented by an invertible operator T — U + K, with U unitary and K
compact. Then Γ"1 = U* + L with L compact. Now T~λA E (alg P̂) Π
(alg ίPΓ 1 since TP% = AP% for all P e ? , so U*A + LA, A~ιU +
^-iδΓ E alg 9. Thus, f/*Λ, Λ"1!/ E alg # + 9C = QT(Φ). Now let S =
IP A. D
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Another important result of Davidson (Theorem 1.5 below) which we

will need gives necessary and sufficient conditions for the equality of two

quasitriangular algebras. If 9 is a nest and P is a finite rank projection in

Ψ (the commutant of # ) , let Φp = {0, P V P: P E «P}. ^P is a nest, and

is said to be a finite perturbation of <3\ Note that QT{^) = β Γ ^ ) , since

if Γ is in either alg <3> or alg <$F

9 then P-1 Γ P ± belongs to both.

THEOREM 1.5. (Davidson, [8, Theorem 2.2]). For ίwo nests 9 and %

following are equivalent:

(2) There are finite perturbations ^?p and 2 ^ α«<i α dimension-preserv-

ing order isomorphism θ: ^p -> S e swc/z //zα/ θ — id: ^p ^ %is strong-norm

continuous.

(3) Γftere are //rate perturbations (3>p and S ρ wA/cλ are similar by a

compact perturbation of the identity.

_ (4) There are finite perturbations (3>p and QQ, an order isomorphism θ:
(3>F -» S 0 , a«ύ? a sequence of unitary operators Un with Un~ I E %such that

θ = lim^^^ Ad [/„ \qϊ uniformly in the norm on (3)P.

REMARKS. The equivalence between (1) and (4) is essentially due to

Andersen [1]. This equivalence is interesting because it yields the fact that

two quasitriangular algebras are unitarily equivalent if and only if, after

finite perturbations, the determining nests are "approximately" unitarily

equivalent. The equivalence between (1) and (2) seems to be much more

useful, however, since it allows one to make use of the characterization of

quasi triangularity given in Theorem 1.2. Finally, the equivalence between

(1) and (3), along with Theorem 1.3, gives the important connection

between similarity of nests and unitary equivalence of quasitriangular

algebras. Stated explicitly, two quasitriangular algebras are unitarily

equivalent if and only if, after finite perturbations, the determining nests

are similar. The similarity can be taken to be an arbitrarily small perturba-

tion of a unitary, so again the nests are "almost" unitarily equivalent.

Finally, we will need several additional lemmas. If P̂ and £ are

linearly ordered sets of projections (not necessarily nests), we say that ̂ P

and S are compactly equivalent, denoted P̂ ~% S, if the following two

properties hold:

(i) For each P E 9 there is some Q G S such that P - Q E %.

(ii) For each Qf E S there is some Pf E ^ such that P' - Q' E %.
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LEMMA 1.6. Suppose 9 ~% % P9P'eΦ9 Q, Qf G % P < P',

dim(P' - P)% = oo, and P - Q, P ' - β ' ε l Then Q < Q' and

d i m ( β ' - Q)%= oo.

β ^ β ' , because otherwise we would have Pf — P =

(/>' - β') + ( β - P) G 3C, a contradiction. Now suppose £ > β'. Then

(P' - p) + ( ρ - Q') = (P ' - ρ') + ( ρ - p) e %

=> (P ' - P ) = - ( ρ - β') + Jf for some K<E%

is the canonical homomorphism. Therefore, σe(P' — P) — σe( — (Q — QJ)9

where σe(T) denotes the essential spectrum of T. Pe — P and Q — Q' are

self-adjoint projections, so π(P' — P) and π(Q — Qr) are also. Thus,

σ e ( P ' - P ) C {0,1}, σe(Q - Q') C {0,1}, and

σe(P' - P) = {0} ^ τr(Pr - P ) = 0 o f - P e l

Since P' - P £ 3C, we have that

{1} C σe(P' - P) = σ e(- (β - β')) = -σ e (β - β') C {0,-1},

which is a contradiction. Therefore, Q < Q\ If dim(ρ' — Q)% < oo, then

P'-P = (P'- ρθ + (ρ r - ρ) + (ρ - P) G X, a contradiction. Thus,

d im(ρ '- Q)%= oo. G

LEMMA 1.7. Lei {P,, P 2 , . ..,/>„} ~gc{βi, β 2 , . . . , β π } wi/Λ P}<P2<
- <PnandQ]<Q2< < β π . Suppose also that dim(P f - P,-- , )^ =

00 <^ d imίβ, - β , - - , ) ^ = oo /or 2 < / < /i. ΓΛew Py - β. G X jfor α// /,
1 < / < Λ.

Suppose that ^ - β, £ 9C. Then Pj - Qk G 5C with

ρ ^ X = oo for some k, 2<k<n, and Py - Qx G 3C with

dim(Py — Pj)3C = oo for some 7, 2 < / < n. But this contradicts Lemma

1.6. Therefore, Pλ- Qλ<E %.

Now if dim(P2 - Px)%< 00 and dim(ρ 2 - ρ i ) 5 C < 00, then clearly

P 2 - ρ 2 E X. Suppose dim(P2 - P^X = dim(Q2 - Qx)% = 00. Then

Pj - Qk 6 X and P^ - Qx & % for all k9 2<k< n. It follows that

{P2,...,PW} ~%{Q2>' - ">Qn}> a n d therefore, by the same reasoning used

in the first paragraph above, P 2 — ρ 2 G %. In a similar manner, it follows

that P3- Q3 E %, and then that P4- Q4<Ξ %, etc. D

LEMMA 1.8. Let {En\ \ < n < oo) be a sequence of projections such that

En -» 0 strongly, and let K be any compact operator. Then \\KEn\\ -> 0 and
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Proof. This lemma is well-known. First, suppose that K is a rank

one operator, so Kx — (x, e)f for some e, / E %. Then | |£ n/C| | =

\\{ ,e)EJ\\ < | |e | | \\EJ\\ -* 0 and | |AEJ| - \\{ ,Ene)f\\ < | | ^ | | | | / | |

-> 0. For general ίΓ, approximate K with finite linear combinations

of rank one operators. D

2. The derivation theorem. Our main result is Theorem 2.1 below,

from which the derivation theorem (2.2) follows.

THEOREM 2.1. Let $ be a nest, and let a be an automorphism of QT{^)

such that \\a — id\\< j . Then a is inner.

(Note: This implies that the quotient topology on Out(βΓ(^P)) =

automorphisms/inner automorphisms is discrete.)

We will give the proof below. First, however, we will obtain the

derivation theorem.

THEOREM 2.2. Let ^ be a nest. Then every derivation 8: QT(Φ) ->

QT(<$) is inner.

Proof. Note: The proof is a slight variation of the argument given by

Christensen and Peligrad [4] for the special case in which <? consists of an

increasing sequence [Pn\ 1 < n < oo} of finite rank projections such that

Pn-+ I strongly.

Let δ: QT(<3>) -» QT{^) be a derivation. Then δ\% is continuous by

[13, Lemma 1.2]. Moreover 8(K) E % for K E %. To see this, let {Pn:

1 < n < oo} be any increasing sequence of finite rank projections such

that Pn-*I strongly. Then ||ϋC — i^PΛ|| -^ 0 as n -> oo by Lemma 1.8.

Therefore,

(δ(K)Pn + Kδ(Pn))\\ = \\8(K) - δ(KPn)\\ = \\δ(K - KPn)\\ - 0

since δ | κ is continuous. Since δ(K)Pn + Kδ(Pn) G % for each n, it

follows that δ(K) G%. Therefore, δ 1̂ : % -» Xis a continuous derivation,

so δ ^ = (ad X) ^ for some X E £(%) by [14, Theorem 4]. Now if

T e QT{<$) and KE%, then

δ(r)λ:+ rδ(A:) = δ(τκ) = xr/c- r^x

= (XT- TX)K +T(XK- KX)

= {xτ- τx)κ+ τδ(κ)^δ(τ)κ=(xτ- τx)κ.
Let K = Pn and take strong limits as n -» oo. It follows that δ(Γ) =

XT - 2 X so δ = ad X.
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It remains to show that X E QT(^). δ generates the uniformly
continuous automorphism group (exp(ίδ): / E R ) on QT{ty), where
exp(rδ)(Γ) = (exp(^))Γ(exp(-^)). Thus, there is some t0 such that
||exp(ίδ) - id\\ < j for | /1< t0, so by Theorem 2.1, exp(ίδ) is inner for all
| f | < / 0 Therefore, if | / | < ί 0 . t h e n (exp(^))Γ(exp(-^)) = ATA"1 for
some operator A such that A, A'1 E QT(Φ)9 and for all T E QΊ\Φ).
Then A-\exp(tX))T = TA-\exp(tX)) for all T E QT(<3>), so
A~Xexp(tX)) e ( β ? W = λC (since βΓ(g>) D %). Thus, exp(/*) =
XA for some λ E C, so exp(/*), E QΊ\Φ) for all 11 \< tQ. Now, by taking
the derivative of the function t -» exp(rX) at t = 0, it follows that A' E

•

Proof of Theorem 2.1. The proof is long, so it will be divided into
several steps.

Step 1. Since QT(Φ) D {finite rank operators), it follows by [17,
Theorem 2.5.19] that a — Ad A for some invertible operator A E £(%).
By Corollary 1.4, there is a unitary operator U such that ί/*Λ, A~ιU E
QT{<$). Therefore, Ad(A~ιU) is an inner automorphism of QT(^), so
Ad t/is an automorphism of βΓ(^P) since Ad Ϊ7 = (Ad A) <> (Ad(A~]U)).
Also, a is inner if and only if Ad U is inner. The remainder of the proof
consists of showing that U, U* E QT(Φ)9 thus proving that α is inner.

Let QP = UPU* and let S = {QP: P E<$). Then S is a nest and
QT{<$) = (Ad t/)(βΓ(^)) = U{QT{Φ))U* = QT(U9U*) = QT(%).
Therefore, by Theorem 1.5, there are finite rank projections P E^J and
g E S ' and a dimension-preserving order isomorphism θ: 9P -* S e such
that 0 — w/: ^ p -»5)Cis strong-norm continuous.

Step 2. Suppose that Po is a left limit point of <?, so there is a sequence
{/>„: 1 < π < oo} C P̂ such that Pπ < Pn+ι < Po for all n and Prt -> Po

strongly. In this step we will show that there is some N > 0 such that
n>N=*θ(PnV P) = QPΛV Q= UPnU* V (λ By the continuity of 0, we
then also have that 0(PO V P) = ί/P0C/* V Q. Also, the same result is true
if Po is a right limit point and {Pn\ 1 < « < oo} C ty is a decreasing
sequence with P^ -» Po strongly, and the proof is similar.

By Lemma 1.8, ||(P0 - Pn)P\\ -̂  0 as « ^ oo, so ||(P0 - P J P | | - 0 for
n > some JV, since (P0 — Pn)P is a projection. Thus, P0P — PnP for
tf >: jV1? SO

PnV P<Pn+ιV P<P0V P ίorn^N^
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(note that PnV P = Pn + P - PnP). Similarly, UP0U*Q = UPnU*Q for
n > N2, some N2 > Nl9 so

UPnU* V Q < UPn+ XU* V Q < UP0U* V Q for n > N2.

Also, Pn V P -» P o V P and C/i^t/* V ρ -» C/PΌt/* V β strongly.

Let En = (P o V P ) - (/>„ V / ) , FB = (UPf* V Q) - (UPnU* V β ) ,

and E'n = Θ'\UPQU* V Q)~ θ~\UPnU* V β), for n > JV2. Let r =
\\a - iW||. Since E'n G ρΓ(^P/>) = β 7 χ ^ ) , we have

||Λ£,;Λ ~' - E'n\ <r<\ for all n > N2.

Since θ — id is strong-norm continuous, it follows that there is some

N3 > N2 such that n > N3 => | | £ ; - FJ | < i ( i - r). Therefore, n > 7V3 =»

l l ^ ' i ί - 1 - FB | | < r + | ( i ~ 0 , and thus

\\U*AE'nA-χU - U*FnU\ < r + i ( i - r).

But t/*^v,t/ = £„ for n > N3. To see this, note that since P Q P = PnP, we

have

p0 - Pn = i > 0 ^ - ^ • L = ( ^ x +P) ~ {PnP^ +P) = En.

Similarly, since UP0U*Q = UPnU*Q, we have UP0U* - UPnU* = Fn.

Therefore, UEnU* = U(P0 - Pn)U* = Fn. It follows that

U*AE'HΛ~ιU -En\\<r + i{$- r), for n>N3.

Now. U*A, A~ιU E QT(<$) = QT{<$P), so there are operators X, Y
E a l g ^ and compact operators K} and K2 such that U*A = X + Kλ

and A~}U = Y + K2. It follows by Lemma 1.8 that ||AΊ£ΛΊ|, H ^ ' ^ l l -* 0,

so there is some N4 >: 7v"3 such that

\\U*A\\ m

Therefore,
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We then have that

where En_m = Em-En = (/>„ V P) - (Pm V P), and E'n_m = E'm- E'n

= θ'\UPnU* V Q) - θ-\UPmU* V Q).
If we can show that En_m — E'n_m for all n > m > N4, then it follows

that θ(Pn V ? ) = UPnU* V () for all n > N = iV4 + 1, which is what we
set out to prove in this step. First, suppose that there is some n > m>NA

such that the lower endpoint R of £ n _ m is strictly smaller than the lower
endpoint R' of E'n_m. Thus, there is some ζ £ En_m%, ||f || = 1, such that
R^ξ = 0. Then Ύζ e Λ'OC, so ^ _ m 7 f = 0 and | |(AE,;_wy- £„_ J f | |
= 1, a contradiction. Now suppose there is some n> m>NA such that
the upper endpoint S of En_m is strictly greater than the upper endpoint
S' of £;_ m . Then there is some | e £„_„%, | |l | | = 1, such that S ' | = 0.
Let λ = XE^JΓξ. λ G S'%, so λ ± ξ and

a contradiction. Since the upper endpoint of En_m is the lower endpoint of
Eg_n, it follows that En_m = E'n_m for all n > m > N4.

Step 3. We are now ready to show that t/, U* e β ^ ^ ) . First, we will
show in this step that P e f - ^ ^ t / P a n d P e ? ^ ? 1 U*P are strong-
norm continuous functions.

θ — id: ^p -> 3C is strong-norm continuous by Step 1, so it follows
that P E Φ -* Θ(P V P) - P V P E % is strong-norm continuous (since
P -* P V P is strongly continuous). Now suppose Pn -> P strongly. Then

v p) - p-1 (p v p)) - (p^^(p w v p) - p ^ (pπ v p

+ Kil ||(fl(p v p) - p v p) - (θ{pn vp)-pnvp

-> 0 as « -» oo

by Lemma 1.8 since Θ(P V P) - P V P E 5C. Therefore, the map P G ?
-> P± Θ(P V P) - P^ (P V P) E % is strong-norm continuous (note that
sequential continuity is sufficient since P̂ is metrizable). It follows that
P EίP -> P±Θ(PV P) E% is strong-norm continuous, since P E <$ ->
^ ( P V ? ) = ? 1 ? E X i s strong-norm continuous by Lemma 1.8.

Now suppose Po is a left limit point of <?, and {Pn: \ < n < oo} C Φ
is an increasing sequence which converges strongly to Po. We know
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by Step 2 that there is some N > 0 such that n > N ^ θ(PnV P)
UPnU* V Q, and also that Θ(PQ V P) = UP0U* V ρ. Then

/ι > ΛΓ H l P o 1 ^ - P^ί/Pj = | |(P0

xί/P0 - Pf

= \P£ {UPOU* v Q) - pf {upnu* v

The first term converges to 0 as n -> oo since P ^ P±Θ(P W P) is strong-
norm continuous, and the second term converges to 0 by Lemma 1.8.
Therefore, Pj~ UPn -» Pj~ UPQ as n -> oo.

If Po' is a right limit point of 9 and {P :̂ 1 < /i < oo} C 9 is a
decreasing sequence which converges strongly to Po\ then a similar argu-
ment shows that P^ \JP'n -> Po

/X £/P0' as n -> oo. Therefore, the map
P E: Φ -+ P1- UP is strong-norm continuous.

To show that P ξΞ $ -^> P1^ U*P is strong-norm continuous, first note
that P E<3>-* U*Θ(P V P) - t/*(P V P) e X is strong-norm continu-
ous, and then that P <E($^P± U*Θ{P V P) - P± ί/*(P V P ) E X and
P (ΞΦ ^P± U*Θ(P V P) - P± U*P E % are strong-norm continuous.
An argument similar to the one given above (i.e., by considering left and
right limit points) shows that P ^<$ -* P^ U*Θ(P V P) is strong-norm
continuous, and the result follows.

Step 4. In this step we will show that P±UP E% and P x U*P E %
for all P e i It will then follow, by Step 3 and Theorem 1.2, that
U,U* EQT(<$).

If Po is a limit point of <3\ then P£(UP0U* V β ) = Po

x 0(PO V P) by
Step 2. Since

and Q E 9C, it follows that PQ^C/PO Ξ X Also,

P£U*(P0 v p) = P0

±U*Θ{P0 v p)

- (P0-
Lί/*(^(P0 V P) - P V P)) E 3C
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since

P^U*θ(P0 V ? ) = P^U*{UP0U* V Q)

It follows that Pf U*P0 E % since P e l
Now suppose Po is an isolated point of <$. Let <3l= {P E Φ: P < Po

and P is a limit point of eP} and let § = {P E 'fP: P > Po

 a n d ^ i s a l i m i t

point of <eP). If <&7* 0 , let R' = V{P: P e <&}. Then i?' is a limit point
of <3). If R' is a right limit point, then by Step 2 there is some R" E <3\
i?' < Λ" < Po, such that 0(Pv" V P ) = UR"U* V {λ Let i? = R". If i?' is
not a right limit point, let R = R'. Finally, if <3l = 0, let R = 0. Then
0(i? V P) = C/ΛC7* V Q and {P E ^P: R < P < Po) is finite. Similarly, if
§ Φ 0, let 5" = Λ{P: P e §}. Then 5" is a limit point of 9. If 5" is a
left limit point, then by Step 2 there is some 5" G <ίP, Po < S" < S', such
that Θ(S" V P > £/S"l7* V Q. Let 5 = 5". If S' is not a left limit point,
let S = S'. Finally, if S = 0, let 5 = /. Then Θ(S V P) = ϋSί/ V β
and {P E<$: P0<P<S} is finite. Therefore, {P eΦ: R<P<S] is
finite and thus has the form R = i?0 < i?, < R2 < • •• < Rn - S. Now
θ(Rt V P) - /?, V P e %ΐoτ all /, 0 < / < /i, so

{Λ, V P: 0 < i < «} ~gc {̂ (Pv, V P ) : 0 < i < «}

= {£«,•!/• V β : 0 < ι < n }

since Θ(RV P)= URU* V Q and Θ(S V P) = USU* V β. Therefore,

(i? ;: 0 < i < «} -xiURjU*: 0 < ι < «}, so by Lemma 1.7 we have Pv; -
UR,U* E% for all i, 0 </"<«, since ί/ is unitary. Thus, Po - ί/Poί/* E
3C, since Po — Rk for some /c, from which it follows that Po

x ί/P0 E % and

5. By Step 3, the functions P E <3> ^ Px UP and P E <? ->
P x f/*P are strong-norm continuous. By Step 4, P±UP e% and P"1 C/*P
E % for all P E -5P. Therefore, U, U* E ρΓ(^P) by Theorem 1.2, and
thus α is inner by Step 1. D

There are several immediate consequences of Theorem 2.2, including
improvements (Corollaries 2.4 and 2.5 below) of Theorem 2.1.

COROLLARY 2.3. Let Φ be a nest, and let δ be a derivation of QT(<$).
Then the function P E P̂ -» P±8(P)P E %is strong-norm continuous.
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Proof. By Theorem 2.2, 8 = ad X for some X e βΓ(^P). Therefore,
P G ? ^ P± XP E%is strong-norm continuous by Theorem 1.2, and the
result follows since P±δ(P)P = P±(XP- PX)P = P±XP. •

COROLLARY 2.4. Let $ be a nest, and let a be an automorphism of
QT(ty) such that σ(a), the spectrum of a, is contained in Ω = [z E C:
Rez > 0}. Then a is inner.

Proof. By [17, Theorem 2.5.19], a = Ad Λ for some invertible ,4 e
£(3C), so α is continuous. Therefore, by [19], there is a derivation δ of
βΓ(^P) such that a = exp(ίδ) for some ί E R. By Theorem 2.2, δ is inner,
so δ = ad X for some X E QT(<3>). Thus, exp(L\Γ) E βΓ(^P) for all t E R
and a — Ad(exp(/X)), so a is inner. D

COROLLARY 2.5. Let ty be a nest, and let a be an automorphism of
such that \\a - id\\ < 1. Then a is inner.

Proof. The result follows from Corollary 2.4 since \\a — id\\ < 1 =>
σ(α) C Ω. D

Addendum (June, 1983). Since this paper was written, Kenneth R.
Davidson and the author have prepared a joint paper, Automorphisms of
Quasitriangular Algebras, which contains a different proof of Theorem 2.2.
The new proof follows fairly quickly from a complete analysis of the outer
automorphism groups of quasitriangular algebras.
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