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Recently it has been shown that whenever a finite group G (not a
p-group) acts on a homotopy sphere there is no general numerical
relation which holds between the various formal dimensions of the fixed
sets of p-subgroups ( p dividing the order of G'). However, if G is dihedral
of order 2q (g an odd prime power) there is a numerical relation which
holds (mod 2). In this paper, actions of groups G which are extensions of
an odd order p-group by a cyclic 2-group are considered and a numerical
relation (mod2) is found to be satisfied (for such groups acting on
spheres) between the various dimensions of fixed sets of certain sub-
groups; this relation generalises the classical Artin relation for dihedral
actions on spheres.

0. Introduction. When a p-group P acts on a mod p homology
n-sphere X, the fixed point set, X”, of any subgroup H has the mod p
homology of an n( H)-sphere, for some integer n( H). The function from
subgroups of P to integers defined by H — n(H) is called the dimension
function and any such function arising in this way is known to originate
in a real representation of P (see [2]). If P is elementary abelian, the Borel
identity holds (see [1, pg. 175]):

n—n(P) =2 (n(H) = n(P))

(sum over all H <P such that P/H = Z,). The motivation for this
identity comes from consideration of representations of P.

Now suppose G is the dihedral group D, (p odd prime) (a semidirect
product of Z, and Z, via the automorphism of Z , g — g™ ). If Vis a real
representation of G, one can by considering the real irreducible represen-
tations of G, write down the following Artin relation,

dimV — dim V%
2

dim V% =dimV?% —

In {3], K. H. Dovermann and Ted Petrie show that for actions of D, (and
more generally any non p-group) on a homotopy sphere one cannot expect
to find a numerical relation between the various dimensions of the fixed
sets (in particular for smooth actions of D, one cannot expect the Artin
relation to hold). However, in [8, Thm. 1.3}, E. Straume has shown that
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336 RONALD M. DOTZEL

the Artin relation does hold, (mod 2). Specifically,

THEOREM ([8, Thm. 1.3.]): If X is a mod2p homology n-sphere (i.e.,
X ~2,8") with an action of D,= G and X% ~, 8!, X% ~,8™ then
x(XC) = x(S9) where
n—
2
In this paper we will generalize the Straume’s result, and hence the
Artin relation, considerably. Suppose G is a finite group which is an
extension of an odd order p-group P by a cyclic 2-group Q = Z,;
P - G - Q. We will call such groups G, “p-elementary”, though this is
not quite standared. Such G are always semi-direct products (Schur-
. . ¢
Zassenhaus Lemma) via a homomorphism Z,« — Aut(P). If G acts on
X ~,, 8", we have:

dEm—( l) (mod 2).

THEOREM 1. There exists a sequence of subgroups e =P, <P, | <
-++ <A P, <A P, = P and a corresponding sequence of non-negative integers
ky<k,=< .- <k, such that x(X°) = x(S“) where
P) —n(P_,)
2k—k,

m
d=n(zy) -3

i=1
It should be noted here that the sequence of subgroups can be selected so
that each factor group P,_,/P; is an irreducible representation of Z,« over
the field Z,. If this is done, then by a Jordan-Holder type theorem the
length m is unique. Also, the subgroups P, and the integers k; depend
entirely on the group structure of G. It isn’t difficult to verify that a
p-group with an action of Z,« has a decomposition similar to the above;
we have taken pains in Lemma 2 below to ensure that one exists of an
especially nice type. Also, we should regard Theorem 1 as a generalization

of the situation for linear representations (see the remark following §3).
I would like to express sincere thanks to the referee, whose comments

resulted in substantial improvements.

(mod?2).

1. Irreducible representations of Z . over Z, ( p odd prime). In this
section we want to determine the irreducible representations of Z,« over
Z,. The necessary results are contained in Lemma 1.

From now on the cyclic group Z,, will be written C(j). If A is a 2/
root of -1 in Z,, Z;‘ denotes the one-dimensional representation of
C(j + 1) given by multiplication by A (this includes the case A = -1,
corresponding to j = 0 and C(1), in which case we write Z ).
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For any m such that 1 <m <k, one can consider the induced
representation of C(m) over Z,, Ind&({)(Z,), which we write as p,,. As a
vector space over Z,, , P has dlmensmn 2™~ ! and a generator of C(m)
acts'on a basis {a} , by a,»a,, if i<2™ ! while a,n-1 > —a,. In
general, if G is any group, H = K = G are subgroups and V' is a represen-
tation of H over some field, then induction is transitive, i.e. Ind§(V) =
Ind$(Ind%(V)). Also if V=1V, + V, then Ind%(V) = Ind%(V,) +
Ind§(V,). (For more information on induced representations, see [7;
Chapter 7]).

Now there is a one-to-one (up to similarity) correspondence between
faithful 1rredu01ble representations of C(k) over Z, and the irreducible
factors of x2 "' (consider the characteristic polynonnal of a generator of
C(k)). Our main concern here, therefore, will be to understand the
factorisation of x2 """ over Z,. Given any irreducible factor of x2
note that if & is a root then the companion matrix in Z,(a) provides a
representation of C(k) which is faithful, irreducible, and such that the
generator of C(k) has the given factor as its characteristic polynomial. In
the following lemma, evidently (a) is well-known—a proof is included for

completeness.

LEMMA 1. (a) The irreducible factors of x**~ """ all have the same degree
d and that degree is the order of p (mod 2%), i.e. p¢ = 1 (mod 2¥).

M) Ifk=1orif k>1 and p=1 (mod4) then all the irreducible,
faithful representations of C(k) over Z, are either 1-dimensional or are
induced up from a 1-dimensional representation of a proper subgroup, all of
the same dim = 2%/,

(c) If k > 1 and p = 3 (mod 4) then all the faithful irreducible represen-
tations of C(k) over Z, are either 2-dimensional or are induced up from a

2-dimensional representation of a proper subgroup, all of the same dim =
2k—1+ l.

Proof. (a) Let g(x) be an irreducible factor of degree d of x> + 1.
Then g(x) is the minimal polynomial for a primitive 2% root of 1, say a.
Consider the splitting f1eld of x?' — x, Wthh is just Z,(a) (since the
degree of g is d). Thus &”'~' = 1, so that 2* |p? — 1 (since a is a primitive
root of 1). Now let d be any natural number such that 2¢|p? — 1, We
claim that d < d, establishing (a). Let F be the splitting field of x?* — x
and let ¢: F — F be the generator of the Galois group over Z, glven by
y = yP. Suppose a, ¢(a),...,¢"(a) are all distinct where 1 < n <=d-—1
and consider the polynomial A(x) = II7_(x — ¢'(a)). The coefficients are
symmetric functions in the ¢'(a) and are fixed by ¢ hence belong to Z,
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Since h(a) = 0, it follows that d < n + 1 < d. Thus d = degree of g is the
order of p (mod 2%).

(b) If k = 1, the only faithful, irreducible representation of C(1) is Z,.
So, we will assume that kK > 1 and that p = 1 (mod4). Let / be the largest
integer such that p =1 (mod2’). If k </, then p = 1 (mod 2*) and part
(a) implies that any faithful irreducible representation of C(k) has dimen-
sion 1, and these are given by multiplication by a 2! root of 1, A.
These are the representations Z" If Kk >1and f(x) is an 1rreduC1ble factor
of x2™' + 1(deg fis 1, sayf(x) =x— ?\) then g(x) = f(x*""") has degree
the order of p (mod 2%), is a factor of x? '+ 1and is 1rredu01ble On the
other hand the characteristic polynomial of Ind&{f)(Z)) is x> — A (note
that this representation has dimension 2¢~/).

(c) If k> 1 and p = 3 (mod 4), let / be the largest integer such that
p=-1(mod2'").If k </then p = -1 (mod2* ') and p* = 1 (mod 2%).
Thus any irreducible factor of x2 + 1 has degree 2 and so the dimen-
sion of the corresponding representation is 2. If kK >/ and f(x) is an
irreducible factor of x2™' + 1 (of degree 2) then g(x) = f(x*"') has
degree the order of p (mod 2¥), is a factor of x2' + 1 and is irreducible.
However, the characteristic polynomial of Ind{})(V') is g(x) where V'is a
two-dimensional representation corresponding to f(x) (note that this
representation has dimension 2¢~/*!). This completes the proof of the

lemma.

2. Normal chief series for p-elementary groups. A normal chief
series for a p-group P is a normal series whose adjacent quotients are
elementary abelian. When P comes equipped with an automorphism ¢ of
period 2% (as in the present case, via conjugation) we would like to find a
¢ invariant normal chief series. We will call a representation of C(k) over
Z, “homocyclic” if it decomposes into irreducible subrepresentations each
having the same kernel.

LEMMA 2. A p-group P with an automorphism ¢ of period 2* has a ¢
invariant normal chief series whose adjacent quotients P,_,/P, are homo-
cyclic representations of C(k) with kernels C(k,), and k, <k, ,

Proof. For any p-group, P, the characteristic subgroup P’P? (P’ is the
commutator subgroup, P? is generated by all pth powers) is called the
Frattini subgroup, P. P/P is elementary abelian and representatives in P
of generators of P/P will generate P. Moreover, P = e iff P is elementary
abelian (see [S; Ch. 5, Thm. 1.1]).
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Set P, = P, consider the pro;ectlon 7. Py — P,/P, and suppose that
the representation of C(k) on PO/P decomposes into ¥, ® V,, where V,
is the sum of all irreducible summands having the same, minimal kernel
among the kernels appearing on P,/P,, say C(k,). Now let P, < P, be
*‘(V ). Then on Fy/P,, C(k) acts with kernel C(k). Consider P /P1 and
write P /P as ¥, ® V,, where again V, is the sum of all irreducible
summands with minimal kernel, say C(k,). k, = k, because generators
for P /P lift to generators for P, and C(k,) acts tr1v1ally on P, hence on
P, by [5; Thm. 14]. Let P, == 1(V) where 7: P, - Pl/P This process
can be continued until a P; is found such that Pj = e. But then P is
elementary abelian and certainly P, can continue to be decomposed in this
way. Thus we have a normal series

:PmQval< <]P1<1P0:P
such that C(k) acts on P,_, /P, with C(k,) and k, =k, |, i = 1,2,...,m.

3. Special cases and the Main Theorem. If G acts on a mod-p
homology sphere X, we wish to compare the degree, § -, of a generator of
C(k) acting on X with the degree, 8-, of the generator on X” (the
induced action since P <3 G). The following lemma is central and is a
modification of a key result of [8, compare Prop. 1.1].

LemMA 3. Suppose G is a semidirect product of an elementary abelian
p-group P and a cyclic 2-group C(k) such that the action of C(k) on P (by
conjugation) has kernel C(m) and is irreducible. If G acts on a mod-p
homology n-sphere X then the degrees § y and 8 yr are related as follows:

n—n(P)
2k—m '

Proof. Proceeding exactly as in [8, loc. cit.], we consider the relative
fibration (X, Z) — (Xp, Zp) - BP, where Z = X" ~,S". There is the
spectral sequence of this relative fibering with Ej,-term given by Ej/ =
H'(BP) ® H/(X, Z) (coefficients in Z)). If d: E}»" - E; """ (where
r = n(P)) is the transgression then d(x) = A ® 6z where x generates
H"(X) and z generates H'(Z). If rank P is 1 then 4 = t("~"/2 where ¢
generates H*(BP). If rank P > 1 then recall the Borel identity, n — r =
= (n(H) — r), with sum on all corank 1 subgroups H in P. Suppose there
are exactly s corank1 subgroups H,,...,H, such that n(H;) —r>0.
Letting r, = n( H,), there are elements wy,...,w, € H*(BP) and an a €
H%(BP) such that 4 = aw{iws> ---w® where d, = (r, — r)/2 (see [6,
Thm. 2]).

8, = (-1)°8yr wheree=
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Since P is an irreducible representation of C(k) (let a be a generator)
with kernel C(m), P has either dimension 1 (if either Kk —m =1 or if
k—m>1and p =1 (mod4) with kK — m <[, where / is as defined in the
proof of Lemma 1 (b) and depends only on p), or has dimension 2"~/
(resp. 25"~ I"1) (if p = 1 (mod 4), resp. p = 3 (mod 4)).

Now, just as in [8], C(k) acting by conjugation on P determines an
action of C(k) on the fibration (and so on the spectral sequence) as
follows. Define

¢: EGX X—>EGX X byole,x)=(ea,a'x)

where a generates C(k). For g € P, we have ¢(g(e, x)) = Y(g)o(e, x) (¢
is the automorphism of P defined by a 'ga = ¥(g)). Thus we have an
action on the fibration (since EG ~ EP):

(x,2) > (X,2)

J )
(XP:ZP) > (Xp. Zp)
! l
BP 5 BP

a: BP — BP is induced by y: P - P. If P has dimension 1, a*(z) = At, ¢:
P — P is multiplication by A, a 27" ! root of —1 and ¢ generates
H?(BP). If the dimension of P is larger than 1, the action of C(k) on the
collection of subgroups { H,,...,H,} must be considered (and the corre-
sponding action on w,,...,w,). First of all, if p = 1 (mod4), «* " acts
on P by multiplication on the basis elements by A, a 2" ! root of ~1 and
no smaller power of a leaves the H, invariant (smaller powers are
represented by even dimensional irreducible subrepresentations). If p = 3
(mod 4), since there are no roots of -1 in Z,, the smallest power of a
leaving the H, invariant is a® (this is _]USt multiplication by -1).
Therefore the members of { H,,...,H } are permuted, each one in a orbit
of size 2™ (if p = 1 (mod 4)) or size 2*~" ! (if p = 3 (mod 4)). This
observation has several consequences. If H, and H | are in the same orbit,
(n(H) —r)/2=(n(H) —r)/2 and it follows from the Borel Identity
that 2“""~/(p = 1 (mod4)) or 2"~ ' ( p = 3 (mod 4)) divides (n — r) /2.
Now consider the class aw;’t - - - wé:. It follows from [6; Thm. 2; Lemma 3]
that if w,,...,w,_, . (p =1 (m0d4)) or W,,...,w,, ., (p =3 (mod4))
are in the same orbit, the classes are permuted say w, =W, and
W, - Aw, (A a2'"!root of 1 and p = 1 (mod 4)) (or w s -W,

lak-m—| 1ok m—!
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€ d d

if p = 3 (mod 4)). Under a* the class aw’! - - - wf is sent to Xaw{" - - - ws

(OI‘ (_l)eawldl . e WSdS) where g = (n — r)/2k—‘m~/+l (Or (n . r)/zk_m lf
p = 3 (mod 4)).
Consider now the commutative diagram (from the E,-term):
Hn(X> Z) - Hn(X,Z)
ld ld

o* %

H""(BP)® H''\(X,Z) "o H"'(BP)®H™(X,Z).
We have:
d(a*x) = 8,(A4A ®8z) = (a* ® a*)(A4 ® §z)
= N8,r(A ®8z) (or (~1)°8,r(4 ® 82))
where
(n—=r)/25xm= "1 ifp =1 (mod 4),
£ {(n—r)/Zk_’" if p = 3 (mod4).
Thus
8y = N8yr (o1 (~1)°8,»).
Since each of 8y, §,»1s =1, it follows thatif k — m < |,
2" N (n = r)/2
whileif k — m > [,
2 (n = r) /2
(all of this only when p = 1 (mod 4)).
Finally we have, .
8y = (-1)°8yr wheree= (n—r)/2x ™.

This completes Lemma 3.

We can now prove an analogue of [8, Thm. 1.3]. Suppose G is a
semidirect product of a p-group P and C(k). Also, suppose that G acts on
a Z ,-homology n-sphere X.

LEMMA 4. There is a sequence of subgroupse = P, <P, _, <1 --- <P,
<1 P, = P and a corresponding sequence of non-negative integers k, < k, <
- =< k,, such that if 8y and §r denote, respectively, the degrees of a
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generator a of C(k) on X, X¥ then
8)( = (— 1)€6Xp

where

o h(P)—n(P
£ = 2 n( 1) _n( 1—1).
“ 2k—k,
i=1

Proof. This now follows directly from Lemmas 2 and 3 applied to the
P_ /P, action on X", where a normal series is obtained as in Lemma 2
and a refinement made so that adjacent quotients are irreducible.

The proof of the following is now clear.

THEOREM 1. If G is a semidirect product as above, acting on a mod-2 p
homology n-sphere X, then x( X¢) = x(S9) where
_ o n(P) —n(P,)
d:n(sz)'_- 2 2k"k, !

i=1

(mod ?2)

where the P, and k; are as in Lemma 4.

Proof. From a well-known result of Floyd ([4]), x( X©) is the Lefschetz
number of a generator of Z,« acting on X”. One can easily verify that
(from Lemma 4),

SXP — (__l)n—n(sz)'Fe.

Since n + n(P) is even,
X(X9) =1+ (-1)"*07.
This completes the proof of Theorem 1.

COROLLARY. If G and X are as in Theorem 1 and, moreover, G is a
direct product then

x(X9) = x(X%*).

Proof. The reader may check that in this case the sum term appearing
in the conclusion is 0 mod 2 (this is easy to see via Lemma 3). Note that
this corollary is also easily obtained from a well-known result of Floyd
(see [1; Ch. III, Th. 4.4.)).

REMARK. Suppose G is an extension of an elementary abelian p-group
P by a cyclic 2-group Z,«, P>> G —> Z,« and §: Z« - Aut(P) has kernel
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Z,». If V is a real representation of G then we have:

o
dim V© = dim %+ — | 2 Vzk_i‘m v (mod 2).

This can be verified by considering the real irreducible representations of
G, which originate from complex irreducible representation which in turn
are induced up from complex irreducible representations of the subgroup
P X Z,.. If those complex irreducible representations of G, for which
both P and Z,. act nontrivially, are compared with those for which P acts
nontrivially but Z,~ acts trivially, the congruence above can be derived. It
should also be noted that if m = 0 then the above congruence is actually
an equality (for more information see [7; Chapters 7, 8 and 13]).
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