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When considering adapted sequences of Pettis-integrable functions
with values in a Banach space we are dealing with the following problem:
when do we have a strongly measurable Pettis-integrable limit? Here the
limit can be taken in the strong or weak sense a.e. or in the sense of the
Pettis-topology.

Not many results in this area are known so far.

In this paper we give some pointwise convergence results of
martingales, amarts, weak sequential amarts and pramarts consisting of
strongly measurable Pettis-integrable functions. Also the Pettis conver-
gence result of Musial for amarts is extended.

The results are preceded by a preliminary study of some vector
measure notions such as Pettis uniform integrability and o-bounded
variation. We give a new proof of the result of Thomas stating that in
every infinite dimensional Banach space one can find a vector measure
which is not of -bounded variation.

1. Introduction, terminology and notation. In the sequel, E will be a
Banach space and ({2, #, P) a fixed complete probability space. A
function X: € — E is called scalarly measurable if (x’, X) is measurable
foreachx’ € E".

A function X is called Pettis-integrable if it is scalarly integrable and
if for each A € F, there exists x, € E such that, for each x” € E’

(x', xA>=fA<x’, X)dP.

x 4 is denoted by [, X dP, the Pettis-integral of X over 4. Let X and Y be
two Pettis-integrable functions. We say that X is weakly equivalent with
Y, denoted by X ~ Y, if foreach x’ € E’

(x', X)=(x",Y),ae.
Denote by P, the space of all Pettis-integrable functions up to weak

equivalence. Put on P the following norm, called Pettis-norm,

s e = R, X = Xlp = sup [ [(x', X)[dP.

xli=1
iy

X
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346 L. EGGHE

The notions of strong measurability and Bochner-integrability we suppose
to be familiar to the reader (see [D-U])).

It 1s trivial that every Bochner-integrable function is Pettis-integrable
and that mean convergence (i.e. for the norm || - ||, on L%, the space of
Bochner-integrable functions) implies || - ||, convergence. The converse of
these two implications is never true except in finite dimensional spaces as
is well known. Even if we suppose that every strongly measurable
Pettis-integrable function is Bochner-integrable we can prove that £ must
be finite dimensional. Indeed, suppose E is infinite dimensional. Using the
theorem of Dvoretzky-Rogers (see [D-R]) there exists an unconditionally
convergent series 1 x,, such that X ||x,[| = co. Let (4,), <y be a countable
measurable partition of {} such that P(A ) > 0 for eachn € N. Put

X =
ngN P(A

Then X is Pettis-integrable strongly measurable and not Bochner-integra-

ble. Of course here one has || X||, = oc and || X||, < oo.

Let (#,),ey be a stochastic basis, i.e. an increasing sequence of
sub-o-algebras of #. Let (X,),cn be a sequence in P.. We say that
(X,, #,),n 1s an adapted sequence if each X, is % -scalarly measurable.
If in addition each X, is strongly measurable then X, is % -strongly
measurable as follows easily from Pettis’ measurability theorem (see
[D-S]). With respect to a stochastic basis (%, ), y, We say that a function
7: £ > Nisastopping time if {7 = n} € # foreachn € N.

Let us denote by T the set of all bounded (i.e. finitely valued)
stopping times. We order 7 in the natural (pointwise) way. For 7 € T and

(X,. #,), ey an adapted sequence, define
max 7
X,= X XiX (r=k)-
k=minT

Alsodefine# = {A € F|AN{r=k} € F,eachk € N}.

It is obvious that X is scalarly % -measurable. Adapted sequences of
Bochner-integrable functions have been studied intensively. We refer to
[Eg] which is a monograph on this subject which is about to appear at this
moment. On the contrary, on adapted sequences of Pettis-integrable
functions virtually nothing is known. This is of course due to the com-
pletely different nature of the Pettis-integral (see remark above). To
illustrate this see also [Ts], [Mu,], [Mu,]. Before mentioning the results,
let us give some well-known definitions. Let (X, #,),c be an adapted
sequence in Pp.
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It is called a martingale if for eachn € N and each 4 € % :

LXn =LXn+1-

(Here the integrals are in the Pettis sense of course.) In other words,
X, =&%X_ ., where &% denotes the Pettis conditional expectation w.r.t.
Z.. It must be emphasized that the Pettis conditional expectation of a
Pettis integrable function does not always exist, even if the function is
strongly measurable; see [Mu,] and also §2.

Of course, as is well-known and easy to prove, the conditional
expectation of a Bochner integrable function always exists.

An adapted sequence (X, %#,),cn is called an amart if the net
(fq X,),er converges in E. It is obvious that every martingale is an amart.

Finally a Banach space E is said to have the weak Radon-Nikodym-prop-
erty (abbreviated (WRNP)) if for every complete probability space
(2, &#, P) and for every vector measure F: # — E of o-bounded variation
which is P-continuous, there exists X € P, such that for each 4 € #:

F(A) =/AX.

An equivalent statement of (WRNP) is obtained if one replaces “o-
bounded variation” by “bounded variation”.

However the first definition is more natural since a Pettis integral is
always of o-bounded variation.

For a discussion of (WRNP) we refer the reader to [Mu, ] or [Mu,].

The first result we have to mention concerning convergence of adapted
sequences of strongly measurable Pettis integrable functions is one of
J. J. Uhl Jr..

THEOREM ([U,], THEOREM 3.1): Let (X,, %),y be a martingale
consisting of strongly measurable Pettis-integrable functions.

Suppose

(1) sup, e vl X, Il p < o0.

(i) The set { [, X,|A € Z,, n € N} is weakly relatively compact.

(ii1) For each € > 0 there is a weakly compact set K C E such that for
each & > 0, there exists ng € N and A, € Z, for which P(Q\ A,) < & such
that n > n, implies [, X, € P(A)K + 0By for all A C Ay, A € %, (here
By = (x € E|ljx|| < 1)).

Then ( X,), ey converges strongly a.e. to a function in Py.
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Condition (iii) is a Rieffel-type condition (see e.g. [Die] Theorem 1,
pp. 204-205) and is satisfied if £ has (RNP) and if (i) is strengthened to
sup,enllX,ll; < oo, in which case we have the Chatterji results on
martingales consisting of Bochner integrable functions (see [C]) (condition
(i1) can be dropped in this case; see Corollary 3.4 in [U,]). So this is an
interesting and nontrivial extension of the classical martingale conver-
gence theorem.

Concerning weak convergence we refer to [Me]; we are not dealing
with weak convergence of martingales in this paper.

Another result—one of Musial—can be stated as follows:

THEOREM ([Mu,], THEOREM 5). The following assertions are equivalent:

(i) E has (WRNP).

(i1) For every complete probability space (R, &, P) and every martingale
(X,, %) pen in Pg on (U, F, P) which is Pettis uniformly integrable and
variationally bounded there is an X € Pg such that lim |1 X, — X||, = 0.

n— o0

Here, Pettis uniform integrability means
f A n
A

See also §2. Variationally bounded means that

lim sup = 0.
P(A)-0 pen

)

sup |r,|(R) < o0

neN

where |v,| denotes the variation of

v:F - E, A —>an.
A
The extension to amarts in the above theorem can easily be made in
Musial’s proof.

However, Musials’ theorem, when stated for (RNP) spaces teaches
nothing new, even when it is stated for amarts. Indeed, in this case, as is
easily seen (see e.g. [J], p. 129), for each n € N, there exists Y, € Py,
strongly measurable such that Y, ~ X,. From the definition of variation
and from Y, ~ X, for each n € N it now follows that

sup [ %)= sup [ X, < o0.

nenN nenN
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So we have here an L}-bounded amart satisfying also

fAYn

This is a known situation ([U;], Corollary 4, p. 294) yielding a Bochner
integrable function Y such that

lim sup = 0.

P(A)=0 pen

lim Y, - Y], =0.
n— o0

But since X, ~ Y, for each n € N we also have
lim |X,— Y|, = 0.
n— o

So, Musial’s theorem reduces—in case E has (RNP)—to Uhl’s theorem
[U;], Corollary 4, p. 294, and is certainly only a convergence theorem for
amarts consisting of Bochner integrable functions.

However, it would be interesting to have convergence results in
(RNP) Banach spaces for strongly measurable Pettis-integrable amarts
and martingales which are not Bochner integrable. This is one of the
purposes of this article. The paper is divided as follows: In §2 we study
the notions o-bounded variation and Pettis-uniform integrability. Con-
cerning the first notion a result of Thomas [T,] (later reproved by
Janicka-Kalton [J-K]) is reproved yielding a straightforward proof. In §3
we prove a martingale strong a.e. convergence theorem for strongly
measurable functions in P, where E has (RNP).

Section 4 reproves and generalizes the Pettis convergence theorems
for amarts of Musial and Uhl. A Riesz decomposition theorem is proved
for amarts in P, generalizing the one of Edgar-Sucheston.

Section 5 proves a weak a.e. convergence theorem for weak sequential
amarts.

Finally §6 proves a strong a.e. convergence result for pramarts con-
sisting of strongly measurable functions in P where E has (RNP),
extending a theorem of Millet-Sucheston.

2. Study of some notions related to the Pettis integral.

2.1. Vector measures of o-bounded variation.

DEFINITION 2.1.1. Let F: # — E be a vector measure. We say that F is
of o-bounded variation if there is a disjoint sequence (A4,,),cy i F such

that the restriction F|, to A, is a vector measure of bounded variation,
foreachn € N.
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This is a notion which is very natural in connection with Pettis
integrals. Indeed we have that every Pettis integral (considered as a vector
measure) is of o-bounded variation. This is a result of Musial, see [Mu, ].
Compare this with the well known fact that every Bochner integral is a
vector measure of bounded variation. As is the case with the Pettis
integral, the notion of o-bounded variation is not easy to study. For
instance, if F: # — E is of bounded variation and if is a sub-c-algebra
of Fthen it is completely trivial that F|¥is of bounded variation. This is
false for the o-bounded variation notion. This is easy to prove and firstly
remarked by Musial [Mu, ]. Indeed we have:

PROPOSITION 2.1.2. Suppose E has (WRNP). Let F: % — E be given by
a Pettis integral

for each A € &, and let 9 be a sub-o-algebra of #. The F|% is of o-bounded
variation iff E¥X exists in Py.

Proof. The proof is very easy and included for the sake of complete-
ness. Indeed, suppose F|Zis of o-bounded variation.

Since F < P|%we have also F|9 < P|%.

So, using (WRNP), there exists a function Y € P.(Q, 9, P|¥9) such
that foreach4 € ¢

(F|9)(4) =/AY.

By the form of F, Y must be E¥X.
Conversely, suppose that E¥X € P.(Q, 9, P|¥9) exists. Then for each
Aed

(F|9)(4) =fAE‘fX

and since this is a Pettis integral, it is of o-bounded variation (see
[Mu,]). =

Now it is clear that a vector measure F of o-bounded variation (w.r.t.
a o-algebra #) exists such that F|Zis not of s-bounded variation, where ¥
is a sub-o-algebra of & . It suffices to take a Pettis integrable function /-
& — E without a conditional expectation. see [Mu, ], [H], [R].
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Although Proposition 2.1.2 is interesting it does not solve completely
the problem of when a vector measure is of o-bounded variation w.r.t. a
sub-o-algebra.

Another question one might ask is the following: Suppose a vector
measure F is absolutely continuous w.r.t. Lebesgue-measure on [0,1]. Is F
of o-bounded variation?

The property is obviously true in any finite dimensional Banach
space. This was disproved in any infinite dimensional Banach space by G.
Thomas in [T,] and later by Janicka-Kalton [J-K]. Incidently I found a
new proof on this fact in a very straightforward way. It runs as follows:

THEOREM 2.1.3 (Thomas). Suppose E is an infinite dimensional Banach
space. Then there exists a probability space (§2, %, P) and a vector measure
F: % — E such that F < P and such that F is not of o-bounded variation.

Proof. The characterization of infinite dimensional Banach spaces of
Dvoretzky-Rogers [D-R] yields a sequence (x,),cy in E such that ¥ x,
converges unconditionally and such that X ||x,|| = oo.

Put x, = X*

Write

nln

(1) x; = (x; — xy) + ni::lxn = i [

?('xl - xo) + Xn]a

|30 = )+,

®  me=noxw)tLxn=%

Then do the same with the first term of the series appearing in (1), then
with the second and so on. The same with (2) and so on. Every series
appearing above converges unconditionally but not absolutely since (we
take the series in (1)—an analogous proof for the other series)

o) ) 1
2 Z lbeall + =5 e = ol
n=1 n=1

ziwmwﬁ—mhw
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Let now X y, be any of the series introduced above. By assuming x, # 0
and x, # 0 for each n € N and by making additions and relabelings we
can assume that

o0

2

n=1

y,#0, VneN and > 2y, Vk=2.

(Since X} _, y, = X%_, y, and since y, — 0 and [[X%_, »,|| > O there exists
ny € N such that X3, y.ll > 2||yll, Vi > ng. Relabel y/ = 32, y,, y; =
Yny+1> and so on.)

Take now 10, 1] and divide it dyadically into

]%71]’]%7%]’ %’%]""‘
Each of these intervals are also divided dyadically in the same way
(homothetically). This constitutes the second level. The same for the third
level and so on.
We are now going to construct the vector measure F.
We put the following values for the first level intervals

LS Xa, X % ! ]

' ‘ ]

1
24 23 22 2

i x,on |1/2/,1/2"71] except for x, and x, or: We put first x; on the
second place from the right and then put the vectors x,, X3, X4,...
consecutively from the right on the not yet used intervals. Let 2. y, be one
of the series of the second level adding up to, say x;. Here we put on the
interval where we have put the value x;:

Toos, Ya o N V3 X Y2 ]
S N 1 ’
2224 23 22 2

(homothetic interval and divisions)

y; on the third place from the right (division 1/2° relatively to the
interval) and then put the vectors y,, ys, y4,... consecutively from the
right on the not yet used intervals.

Inductively, let ¥ y, be one of the series from the nth level. Here, we
put y, on the (n + 1)th place from the right (division 1,/2"*? relatively to
the interval in consideration) and then put the vectors y,, ys, Vs, .,
consecutively from the right on the not yet used intervals.
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Now we estimate from above the total length of the intervals on
which the first terms y, are appearing.

For the first level: just one place: length 1 /22,

For the second level:

1 1 1 1 101 1
PRI A S P

For the fourth level: 1,/2* and so on.

A majorization is obtained by adding these values: ¥°_,1/2" = 1/2
(considering all the intervals on which the y, are appearing as disjoint
which is not the case). Call the complement of this set 4. So A(A4) > 3
(A = Lebesgue measure).

Call F the constructed vector measure, restricted to A. Since on A,
every vector appearing in the nth level has norm smaller than 3 times the
norm of the corresponding vector in the (n — 1)th level, we have that F on
A is A| ,-continuous.

Also since for every series L y,, appearing in the construction we have
that 2 ||y, || = oo it follows that F is not of o-bounded variation. a

We end with a problem of Musial [Mu,] which would (in case of an
affirmative solution) completely settle the problem concerning o-bounded
variation w.r.t. a sub-o-algebra as well as extend the result of Thomas
(Theorem 2.1.3.)

Problem 2.1.4. Is it true that in any infinite dimensional Banach space
E there exists a probability space ({2, #, P), a P-continuous measure F:
Z — E of o-bounded variation and a sub-o-algebra ¢ of #such that F|Zis
not of g-bounded variation?

2.2. Pettis uniform integrability. If (X,),cy is a sequence in L} two
well-known equivalent definitions of uniform integrabi]ity are in use:

() sup, eyl X, ll, < o0 and limp 4y o SUp, e n [y 1 X, 11 =

(i) im,_, ,, sup,en fryx =) 1 X1l = 0. Obviously, L -norms are in-
volved here. When working with sequences ( X,),cy in Pg the following
definition of Pettis uniform integrability is quite natural.

DErFINITION 2.2.1. The sequence (X,),en 15 said to be Pettis uni-
formly integrable if

sup | X,[p <o and lim sup sup = 0.

neN P(4)»0 ,eN BeF

Jios®
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Indeed the Pettis norm is involved here since the norm sup, .|| [, X, || is
equivalent with || X, || 5.

Definition 2.2.1 is not only natural because of the replacement of
Il - 1l by |l - || » in the classical definition of uniform integrability. It is also
a “uniform” notion of Pettis integrability. Indeed, in [P] it is proved that

a Pettis integrable function satisfies
[ x
ANB
(and of course || X||, < o0).
One question is coming up immediately: What about the following
possible definition of Pettis uniform integrability:

1 lim su
( ) P(A4)—0 Bepﬁv*

-o

lim sup sup

/ g
A= penN BeF|Y{BNX,I>A)

X, -o.

Certainly this is only meaningful if the sequence (X,),cn consists of
strongly measurable functions (only then {|| X, || > A} is surely in &). In
this case, what is the relation with Definition 2.2.1? We only have the
following easy result:

THEOREM 2.2.2. Let (X,),en be a sequence conmsisting of strongly
measurable Pettis integrable fuunctions. Suppose

1) lim sup P([X,]> A) = 0
A= yen

Then the following two assertions are equivalent:
(1) (X,) ey is Pettis uniformly integrable.

(ii) lim, , SupneNsupBe.?f“.[Br‘\{][X,,||>>\} Xl =0.

Proof. (i) = (i1). Is done much in the same way as in the case of
(Bochner) uniform integrability and hence the proof is omitted. We do not
use condition (1) here.

(i1) = (i). Is obvious, using condition (1). O

Theorem 2.2.2 is an extension of a remark in Bru-Heinich [B-H]
proving that a strongly measurable function X is Pettis integrable if

lim sup Xj|= 0.

A-w peg

'/;m{llXIl>>\}
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Indeed, since || X|| is measurable we always have here lim, _, , P(]| X|| > A)
= 0. To indicate some cases in which (1) is satisfied we prove the
following

THEOREM 2.2.3. Consider the following assertions for an adapted se-
quence (X,, %,),cn consisting of strongly measurable Pettis integrable
functions:

(@) (X, £#)),cy is an Li-bounded martingale,

(@) (X, #,),enis of class (B); i.e. sup,crfoll X,|| < oo,

(b) hm)\—’ocp(supneN”Xn” > }\) = 0’

(c) lim, , , sup, - P(| X;|| > A) = 0,

(¢) lim, _,, sup,y P(I X,]| > A) = 0,

(d) lim, . P(|X, ]| > 7) = 0,

() lim, ey P(]| X, ]| > n) = 0.

Then we have

Oy . A \(d/)
@ S0

Proof. (a) = (b) and (a’) = (b) follow from the classical maximal
inequality for adapted sequences of Bochner integrable functions.

(b) = (¢) = (¢’) is trivial.

(¢c) = (d). For each &> 0, choose A, € N such that if A > A,
sup, ey PIX,I| > N) < e.

Foreachr > Ay, € T we so have
P(IXl> 7) < P(IX] > Xo) < SUI;P(UXTH >N) <.
TE

(¢) = (d’) is similar
(d) = (d) is true since N is cofinal in 7. O

EXAMPLES 2.2.4.
1. For any function X € P which is strongly measurable we have
lim P(|X]|>A) = 0.
A— o0
2. Let E be a o-Dedekind complete Banach lattice and suppose

(X,, #,) is an adapted sequence of strongly measurable Pettis integrable
functions.
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Suppose also that, for each n € N, 0 < X, < Y, a.e. where Y € P..
Then

lim P( sup | X,)| > 7\) = 0.
A=o00 nenN

Proof. Since E is o-Dedekind complete, sup,cy X, (@) € E exists, a.c.
Hence

0<X,<supX, <Y, ae.

neN

Now sup,cy X, is strongly measurable and Y € P.. Hence by [J] pp.
19-20, Theorem 2.10, sup, .y X, € Pr. In other words we may and do
suppose that Y itself is strongly measurable. So ||Y|| 1s measurable.
Furthermore

sup || X[ <[|Y], ae.
neN

So (the inclusion is valid a.e.), for each A > 0
{sup IX,]1> A} < {I7]> ).
nenN

Since ||Y|| is measurable it follows that lim,_,  P(||Y]| > A) = 0. Hence
also

lim p( sup | X, > x) - 0. o
A—o0 neN

3. Pointwise convergence of martingales. In this section it is our
purpose to extend Chatterji’s martingale convergence theorem ([C]) stating
that in every Banach space E with (RNP), each L}-bounded martingale
converges strongly a.e. to an integrable function. As was done already in
[U,], the Li-boundedness condition was weakened as to be usable in the
case of Pettis integrable functions (i.e. his condition (ii) in Theorem 3.1, p.
375 in [U,], or see §1).

Of the same nature is our extension: instead of L)-boundedness, a
notion of “o-L}-boundedness” is required (see condition (ii) in the theo-
rem below) which is natural since Pettis integrals are of o-bounded
variation ([Mu, ]).

THEOREM 3.1. Let E be a Banach space such that c, is not isomorphic to
a subspace of E (denoted c, % E). Let (X,, %),y be a martingale
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consisting of strongly measurable Pettis integrable functions such that

(1) sup, eyl X, p < o0 (i.e. condition (i) in Theorem 3.1 in [U,])

(ii) There is a disjoint sequence (A,),cy in U,y F, such that for each
meN

sup [ [1x,]1 < oo.
neN YA,

(iii) For each € > 0 there is a weakly compact set K C E such that for
each e > 0 there exists ny € N and a set Ay € N, with P(Q\ 4,) < € such
that n > n implies [, X,, € P(A)K + 6By for all A C Ay, A € #,, (i.e.
condition (iii) in Theorem 3.1 in [U,]). (This condition may in fact be
localized on each A,,.)

Then there exists X, € Py (of course strongly measurable) such that
(X,,) e n converges strongly a.e. to X_.

Proof. For eachm € N, let n(m) € N be such that 4,, € &, .. Then

(Xn’Am’ Z,Am)nzn(m)

is a martingale in L%(A4,,) satisfying the conditions of [U, ], Theorem 4. So
there exists X7 € L.(A4,,) such that (X,| 4,)nen converges a.e. to X7 for
eachm € N. Put

[
Xoo = Z Xo’ngm'
m=1

Obviously ( X)),y converges strongly a.e. to X_..

Furthermore X € P;. Indeed, from (i) it follows that for every
x' € E’, ((x', X,)),en is an L'-bounded martingale so a.e. convergent to
a function in L'. So X, is scalarly integrable. Since ¢, % E it now follows
from [T,] (see also [B-H], [J]), since X is strongly measurable, that
X, € P a

COROLLARY 3.2. Let E have (RNP). Then every martingale ( X,,, %,) e n
consisting of strongly measurable Pettis integrable functions such that

(1) SupneN”XnHP < o0.

(i1) There is a disjoint sequence (A,) en in U,cn %, such that for each
me& N

sup [ 1%, < oo

neN Y4,

is strongly converging a.e. to a Pettis integrable function.
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Proof. Indeed, for each m € N, the martingale (X,|, , %4 )usnim
(n(m) was defined in the previous theorem) is L%( A4, )-bounded, with E
(RNP). An appeal to Chatterji’s theorem [C] now delivers X7 as in the
previous proof. The rest is now the same as in this proof since ¢, & E. 0O

This corollary is a meaningful extension of Chatterji’s theorem (even
in case X, € Li; for each n € N, it does not reduce to Chatterji’s theorem).
We shall use the corollary later in this paper.

4. Pettis convergence of amarts. It is our purpose in this section to
generalize and reprove Musial’s result on Pettis convergence of martingales
(or amarts). This is done by first proving a Riesz decomposition theorem
in this setting, generalizing the Riesz decomposition of Edgar-Sucheston
[(E-S].

THEOREM 4.1. Let E be a Banach space with (WRNP) and (X,,, %,) ,en
be an amart in Py (not necessarily consisting of strongly measurable func-
tions).

Suppose there is a disjoint sequence (A,),cy in %, and a strictly
increasing sequence (m,), <y in N such that

sup /A X, I < oo
k

neN
for each k € N. Then there is a unique decomposition
X, =Y, +2,

where (Y,, %), < is a martingale in Pg such that

sup [ 1)< oo
neN YA,

foreachk € N and(Z,, %,), <y is an adapted sequence such that
lim ”ZT”P = 0.
7€T
Proof. From the definition of an amart we can see (in the same way as

in the case of Bochner integrable functions—[B], Theorem 1, p. 279) that,
foreachi € N

p(4) =: lim fAan

n—o0
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exists for each A € &,. It is easy to check that u, is of s-bounded variation
w.r.t. (the sets (A4;),cy suffice) and that u, << P. Using (WRNP) this
yields Y; € P such that

Lx=mu)

foreach 4 € & and eachi € N.

1
Now (Y,, #,),cn 15 casily seen to be a martingale and furthermore
SINCe SUP, e |ty | 4,I(Ax) < 00, for each k € N, we see that

SupfA [RARES
k

neN

for each k € N. Furthermore, for each o € T and each 4 € &,

lim fAan-fAXU.

gn~&)

H, %
So
|
su Y, — X, )||= su lim | X, — [ X,
Ae};u ‘/:4( ) Aeg‘U anZO%L " '/:4

< sSup sup
m,>0 AEF,

fe i

The term on the right-hand side goes to zero for o going through 7', again
using [B] Theorem 1, p. 279, extended to our case. Hence

lim ||Z,]|, = li — =
olen} ” o”P (}IEH}HYG Xa“P 0

The uniqueness of the decomposition is proved in exactly the same way as
in the Bochner integrable case: suppose

X,=Y,+2,=Y,+ 2

where (Y,, #,),ey and (Y, #),cy are martingales and where
lim, c /1|Z, ]| = lim, < 71| Z;] » = 0.
Then, for each4 € U, Z,

lim f(zn - Z)=0.
n—oo Y4
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ButY, — Y, = Z, — Z, forms also a martingale. So, for each m € N and
AeF,

lim L(zn~2;)=[4(zm—z;)=o.

n—oo

SoZ,=272,,aec. andalso ¥,, = Y, a.e. foreachm € N. a

COROLLARY 4.2. Let E have (WRNP) and ( X,,, %,) <y be an amart in
P such that there is a disjoint sequence (A, )ien in ¥, and a strictly
increasing sequence (m,), c y in N such that

sup [, < o0

nenN

for each k € N. Suppose that ( X)), <y is Pettis uniformly integrable. Then
there exists a function X, € Py such that im,_, || X, — X_||, = 0.

Proof. Using Theorem 4.1 above it suffices to prove the result for the
martingale (Y,, %),y constructed in the above proof. Obviously, since
im, 1 Z,lp = 0, (Y,),cn 1s Pettis uniformly integrable too.

The limit measure u(A4) = lim,_,  /,7Y, exists on U, %, and, due to
the Pettis uniform integrability, on &, = ¢(U, %,). It now follows that p
1s of o-bounded variation on %_ and that p < P.

So, the (WRNP) of E implies that Y, € P exists such that

for each 4 € %,. We have lim,_, ||Y, — Y, ||, = 0 since Y, = E®Y_ for
each n € N. This is seen in the next lemma.

LemMMA 4.2.1. Let E have (WRNP). Let Y € Py be such that w.r.t.
(F),ens EZY € Py exists, for eachn € N. Thenlim,,_, _||Y — E%Y||, =
0.

Proof. If Y is a simple function, the result is certainly true (and even
lim,_, .||Y — E%Y]|, = 0 in this case!).

The general case follows, using a || - ||, density argument. Simple
functions are indeed dense in P since E has (WRNP), see [Mu,], p. 330,
Theorem 1. O
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REMARKS 4.2.2. (1) In the above lemma we in fact only used that £
has the so-called “Pettis Compactness Property” i.e. In E has every Pettis
integral norm relatively compact range.

(2) Corollary 4.2 extends the main result in [Mu,] (Theorem 5, p. 334)
and gives a simpler proof for it. Indeed we did not use Proposition 2 in
[Mus;].

The next corollary belongs to this section but is in fact only a
corollary of Corollary 3.2.

COROLLARY 4.3. Let E have (RNP) and (X,,, #,),cn be a martingale
in Py such that there is a disjoint sequence (A, ),y in U, %, such that for
eachk € N

sup [, < oo

neN YA
and such that (X,),cy is Pettis uniformly integrable. Then there is a
function X € Py such that lim, _, || X, — X ||, = 0.

Proof. Since E has (RNP) and since we are dealing with || - || -
convergence we may suppose (see [J], p. 129) that every X, is strongly
measurable (cf. the discussion in §1 concerning Musial’s theorem). From
Corollary 3.2 we have X € P, such that lim,_, X = X_, a.e. So, the
Pettis uniform integrability of ( X, ), . y finishes the proof. O

5. Weak convergence of weak sequential amarts. It is our purpose
to extend the theorem of Brunel-Sucheston [B — S] on weak convergence
a.e. of weak sequential amarts to the case of strongly measurble Pettis
integrable functions. First a definition.

DErINITION 5.1. Let (X, #,),ey be an adapted sequence in P.. We
say that (X, %,),cn 1S a weak sequential amart (abbreviated (WS) amart)
if for every increasing sequence (7,),cy in T the sequence (fo X, ),cn
converges weakly in E.

The same proof as in the case of Bochner integrable functions shows
that every amart is a (WS) amart.

In [B — S}, Brunel-Sucheston proved the following extension of a
result on amarts of Chacon-Sucheston [C-S] to (WS) amarts.

THEOREM 5.2 (Brunel-Sucheston). Let E be a Banach space with
(RNP) and with separable dual. Let (X, F,),cn be a (WS) amart of class
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(B), i.e.

sup [ %] < oo.

7€l Yw

Then there exists X,, € L. such that X, converges to X, weakly a.e.
o0 E n )

For (WS) amarts consisting of strongly measurable Pettis integrable
functions we can prove

THEOREM 5.3. Let E and E’ have (RNP). Let (X,, #,),en be a (WS)

amart in Py, consisting of strongly measurable functions. Suppose that:
(i) lim, . ,, P(sup, e v/l X,[| > A) = 0

(ll) Sup, ¢ T.[{”X-r”ST}”XT” < ©

(ii1) ( X,), ey is Pettis uniformly integrable.

Then there is a X,, € Ly such that (X,),<y converges weakly a.e. to
X,

Proof. For each n € N, define
Y, = XX (ixn<ny-

Then (Y,, &%),y is an adapted sequence in L%, due to the fact that every
|| X, || is measurable. (Y,, #,),cy is furthermore a (WS) amart. Indeed, let
(7,) ,ey be any increasing sequence in 7. We may assume that lim,,_, 7,
= 00. Now

(-7 - f(nxf”n»,.}XT”'

Since lim, _, , P(sup,c vl X, |l > A) = 0 it follows that

lim P([| X, > 7,) =0
n— o0
(even if (7,) <y is not cofinal in 7). Hence, using (iii) one sees easily that

lim sup
n—% geF

XT“=O.

'/AF\{HXT"IPT,.}
So

lim

n—o0

f X, II = 0.
(X, 11> "

T }
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Since ( X,,, #,), ey 1s @ (WS) amart, there is an x, € E such that

weak-lim [ X, = x,.
n—o00 Q
So, also weak-lim,,_, . fo ¥, = x,.
Using (i), (Y,, #,), ey 15 of class (B).
Hence by Theorem 5.2, there is Y, € L}, such that weak-lim,_, Y, =
Y, ,ae Now

lim sup | X, — Y, || = lim sup | X[ (x> n) -
n n
Since {||X,|| > n} C {sup,||X,|| > A} if n > A and by (i) we have
now that limsup, || X, — Y, || = 0. Consequently ( X,,), < 5 converges weakly
ae.to Y. O

REMARK 5.4. From (ii) we knew already in advance that whenever
(X,),en converges weakly a.e., the limit must be Bochner integrable.
Indeed:

sup [ X, = lim sup X, = [ limsup | X,|Ix x<n
'/;“XTHST} reT '/;“XAIST} j&; n {1 Xull<n}

TeT

(see [B-E], [Ed)).
Now, if we suppose weak convergence a.e. of (X,),x, we have that
(X,(w)),n 18 weakly, hence strongly bounded a.e. So

j;llimnsup ”XnHX{HX,,HSn} =js;limn5uP X,

So (ii) implies

/ﬂ “ weak lim X,

nh— o0

< [ timinf| X, < [ fimsup X, < .
Q n Q n

6. Strong convergence of pramarts.

DErFINITION 6.1. Let (X,, %),y be an adapted sequence in P.
Suppose that for every o, 7 € T with ¢ < 7 the conditional expectations
E% X, € Py exist.
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(X,, #,),en 18 called a pramart if for every ¢ > 0 there exists o, € T
such that 7 > 0 > 0,, 7,0 € T imply

P(”E“‘O”_UXT - XOH > e) <e.
In [M-S], Millet-Sucheston prove

THEOREM 6.2 ( Millet-Sucheston). Let E be a Banach space with (RNP).
Then every pramart (X,, %), cy in LY such that sup,crfoll X,|| < oo is
convergent strongly, a.e. (to a Bochner integrable function).

We can show now the following extension of Theorem 6.2

THEOREM 6.3. Let E be a Banach space with (RNP). Let (X,, Z,),en
be a pramart consisting of strongly measurable Pettis integrable functions.
Suppose that

(i) lim, _ . P(sup,cy[| X[l > A) = 0

(1) sup, 7 fx<ny I Xl < 0.

Then there is a X, € L such that ( X)), < y converges strongly a.e. to X,,.

Proof. We start in the same way as in the proof of Theorem 5.3.
Indeed we also apply Theorem 6.2 on (Y,, #,) ey Where Y, = X, X (v j<n)
foreveryn € N.(Y,, %,),cy 1s indeed a pramart due to (i).

Since, as in Theorem 5.3 we also have

limsup |, — ¥, = 0

n

it follows that ( X)), . » converges strongly a.e. tolim, , Y, € L}. O

REMARKS 6.4.

(1) We have not used condition (iii) of Theorem 5.3 in the proof of
the above theorem.

(2) In Theorem 6.2, (1) does not appear but is of course implied by the
condition

sup fQHXT||< %0

Te€T
which appears there. So even if X, € L. for each n € N, Theorem 6.3 is
an extension of Theorem 6.2.
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