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The main result of this paper is a formula relating characters of
principal series representations of a reductive Lie group to weighted
orbital integrals of wave packets.

1. Introduction. Let G be a reductive Lie group satisfying Harish-
Chandra's general assumptions [2]. Let P = MAN be the Langlands
decomposition of a cuspidal parabolic subgroup of G. Denote by ε2(M)
the set of equivalence classes of irreducible unitary square integrable
representations of M. For ω e ε2(Af) and v e J^= α*, the real dual of
the Lie algebra of A9 let πω v be the corresponding unitary representation
of G induced from P. Let/be a wave packet corresponding to ω. Then the
integral of / over any regular (semisimple) orbit of G which can be
represented by an element of L = MA has been evaluated by Harish-
Chandra in terms of the character Θω v of πω ^ [4].

Let γ be a regular element of G contained in a Cartan subgroup H of
L. Write H = HκHp where Hκ is compact, Hp is split, and A c Hp. Then
for suitable normalizations of the G-in variant measure dx on Hp \ G and
Haar measure dv on J*\

(1.1)
Ήp\G

where W(ω) = {s <E NG(A)/L\sω = ω] and ε(A, H) is 1 if Hp = A and
is 0 otherwise. This formula can be interpreted as giving the value of Θω v

on regular elements γ of a fundamental Cartan subgroup of L in terms of
the integral of a wave packet for ω over the orbit of γ. It also gives the
Fourier inversion formula for the tempered invariant distribution

/ ~ > ( Λ ( γ ) , / ) = / f(x~1yx)dx
JHp\G

restricted to the subspace of ^(G), the Schwartz space of G, spanned by
wave packets corresponding to representations induced from cuspidal
parabolic subgroups P = MAN with A c Hp. The complete Fourier inver-
sion formula for Λ(γ) is much more complicated. (See [5].)
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368 REBECCA A. HERB

In the case that P = G is cuspidal and ω G ε2(^)? then Θω is a
discrete series character of G, and / is a matrix coefficient corresponding
to ω. Formula (1.1) becomes

(1.2) f f{χ-ιyx) dx = e(l, J ϊ)(θ ω , /)Θω(γ).

Arthur has obtained the following generalization of (1.2) [1]. Let A be the
split component of a parabolic subgroup of G. Let L be the centralizer in
G of A. Corresponding to A, Arthur defines a function υA on G which is
left L-invariant. Let γ be a regular element of G contained in a Cartan
subgroup H = HκHp of L. Let ω e ε2(G), and let / be a matrix coeffi-
cient for ω. Then Arthur's formula is

(1.3) / f(χ-ιyx)vA(x) dx = (-l)pe(A, //)<Θω, /)Θω(γ)
JHp\G

where p is the dimension of A. This formula gives the value of the
character Θω on the nonelliptic element γ in terms of a weighted orbital
integral of a matrix coefficient of ω. It also gives the Fourier inversion
formula for the tempered distribution

/-*(^(y)>/> = / f(χ-ιyχ)vA(x)dχ

restricted to the space 0(£(G) of cusp forms on G. The distributions rA(y)
occur in the Selberg trace formula for Γ \ G, Γ a discrete subgroup of G
for which T\G has finite volume but is not compact. As formula (1.3)
shows, ^ (γ) is invariant on 0<%(G). However, ^ (γ) is not an invariant
distribution on ̂ (G), and the full Fourier inversion formula for ̂ (γ) is
not known.

Authur's formula can be generalized to the setting of induced repre-
sentations and wave packets. Let P = MAN be a cuspidal parabolic
subgroup of G, and let Ax be the split component of a parabolic subgroup
of L = MA> Lλ its centralizer in G. Let γ be a regular element of G
contained in a Cartan subgroup H = HκHp of Lv We will define a left
LΓinvariant function υ% on G with the following properties.

If / ' is a wave packet coming from a cuspidal parabolic subgroup
P' = MΆ'W of G with dim A' < dim A and A not conjugate to A\ then

α 4 ) /„
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Now let/be a wave packet corresponding to ω e ε2(M). Then

(1.5) f f(χ-ιyx)v%ι(x)dx = O if Hp Φ Aλ.

If Hp = Al9 let γ = yv γ 2,.. . ,yk be a complete set of elements of L for
which γz = xtyx~ι for some xz e G, but γz and γ7 are not conjugate in L
for 1 < / Φ j < k. Let^^ = x^x'1. Then

k
ί si -I \ V P ( \ J

(1.6) ^ X G

where/?1 is the dimension of Aλ Π M.

Formulas (1.4)-(1.6) are proved by using Arthur's formula and results
of Harish-Chandra relating characters and orbital integrals on G to those
on M and L. Any unexplained notation follows that of Harish-Chandra
[2,3,4].

2. Background material. Let G be a real reductive Lie group, g the
Lie algebra of G. Let K be a maximal compact subgroup of G, θ the
Cartan involution of G corresponding to K, and B a real symmetric
bilinear form on g. Assume that (G, K, θ, B) satisfy the general assump-
tions of Harish-Chandra in [2] and that Haar measures are normalized as
in [2]. Given a 0-stable Cartan subgroup H of G, we will write H = HκHp

where Hκ = H Π K and Hp is a vector subgroup with Lie algebra i)p

contained in the - 1 eigenspace for θ. Let Gf be the set of regular
semisimple elements of G, H' = H Π G\ If / is any subgroup of G, we
will write NG(J) and CG(J) for the normalizer and centralizer of / in G,
respectively, and W{G, J) = NG(J)/CG{J).

We will first review some definitions and formulas of Harish-Chandra
from [2, 3, 4]. Fix a double unitary representation T of K on a finite-di-
mensional Hubert space V. Let ^(G, r) and 0 (^(G, T) denote the τ-spheri-
cal functions in the spaces of V-valued Schwartz functions ^(G, V) and
V"valued cusp forms 0<^(G, V) respectively. Let Fo be the operator on V
given by

V = fτ{k-ι)υτ(k)dk, υ&V.Jκ

F o r / e ^(G, F) and x e (?, define/(JC) = fκf(k~ιxk) dk. Then if/'
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Fix a cuspidal parabolic subgroup P = MAN, that is, a parabolic
subgroup of G with ε2(M) Φ 0. Let τM be the restriction of T to
KM = K Π M. For any/ G < (̂G, F), m e M, and a G Λ, let

(2.1) /(/>)(mα) =/r(m) = δj^ia) ί f(man) dn

where δP is the module of P. Then / j P ) e <V(M, V\ f(P) G ^(ΛL4, F),
and the following relationships between / and f(P) can be found in or
easily derived from results in [2, 3, 4].

Let if be a 0-stable Cartan subgroup of L. for / e ^(G, K) and
A e / Γ ,

(2.2) Γ /(^i-1

where ΔL

+ and Δ+ are the functions Δ+ on H, considered as a Cartan
subgroup of L and G respectively, defined by Harish-Chandra in [2].

For v e J^"= α* and m e M, define

(2.3) Λ ( P ) ("0

Then because ί/̂  is the dual measure to da on A and / ( P ) is rapidly
decreasing in the A variable,

(2.4) f(P)(ma) = ί dv.

For ω e ε2(M) and ί Έ j ^ , let ττω ̂  be the tempered unitary represen-
tation of G induced from ω Θ ez" Θ 1 on MAN. Let Θω v and Θω denote
the characters of πωv and ω considered as functions on G' and M'
respectively. For/ e ^(G, r), g G ^(M, T M ), define

( θ w r , y ) = ί f(x)Θωv(x)dx and (θ ω ,g>= ί g(m)θω(m)dm.

Then, for/ e ^(G, T), y e ^ , / / P ) e i?(M, τM) and

(2.5) ( θ ω , r , / ) =

For ω e ε2(M), let L(ω) =°^(M, τM) Π ί)ω 0 F where ί)ω is the
closed subspace of L2(M) spanned by matrix coefficients for ω. For
ψ e L(ω), a e CC°°(J^), and x G G, define

(2.6) φα(x) = f a(v)E(P: ψ: ^ x)μ(ω: v) dv
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where E(P: ψ: v) is the Eisenstein integral defined in [2], and μ(ω: v) is
the Plancherel factor corresponding to πωv. Then φα G ^(G, T) is called a
wave packet for ω G ε2(M), and for J> G J*\ (Φα)^ belongs to
ΣJ<E w/(G,/ί) £(«*«) and is supported on a compact subset of J*\

We now turn to Arthur's results. Let A be a special vector subgroup
of G, that is, the split component of a parabolic subgroup of G. Write
£?(A) for the (finite) set of all parabolic subgroups of G having A as split
component. For P G ̂ ( ^ ) let ΦP denote the set of simple roots of (/\ A).
We identify α, the Lie algebra of A, and its dual via the bilinear form B. A
set 9= {YP\P G ̂ (A)} of points in α is called yl-orthogonal if for any
pair of adjacent parabolic subgroups P, P' G ίP(A), YP - YP> = ra, r G R,
where α is the unique element of ΦP with - α e ΦF,. Let

α°= α|(α, i/) = 0 for every root a of ( Q , α)},

α1 its orthogonal complement in A. Let/? be the dimension of α1, and let
ĉ  = |det C| 1 / 2 where C is the Cartan matrix for the roots of (g, α). For
any P = MAN e ^ ( ^ ) and x G G? write

x =

where m{x) e M, n(x) e N9 k(x) G K, and HP(x) G α. For any 4̂-or-
thogonal set ^and λ G aι

C9 define

Then ϋ(x : 9) is independent of λ and is left-invariant under L = CG(A).
It is also clearly right ^-invariant, lί vA(x) = v(x : Φ) for any A -orthogo-
nal set <&, then (1.3) is valid.

3. The distributions. Fix a cuspidal parabolic subgroup P = MAN
of G. Let A™ be a special vector subgroup of M, Ax = A™A. Let (&ι be an
^4^-orthogonal set, and let υ™{m) = υ(m: S^), m G M, be the function
on M defined as in (2.7) with respect to A%* and ^/v Extend υ^ to a
function vλ on G by setting

(3.1) vι(mank)= [W(G, A)] ~ιυ^{m),

m <Ξ M,a <Ξ A,n <Ξ N,k (Ξ K.

This extension is well defined since υ± is right ^-invariant. Since υ^
if left-invariant under L™ = CM(A^)9 v1 is left-invariant under Lλ = L^A
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Let H be a 0-stable Cartan subgroup of G with AλQ Hp. Write
/ = H Π M. Let h e i/ ' . F o r / e CC°°(G, K), define

(3.2) () f
JHp\G

LEMMA 3.3. For any h e /-P /Ae distribution rλ(h) is tempered. For any
f e #(G, F), /^ ̂ / ( ^ " ^ J ^ f x ) ί/ c ώ absolutely convergent and

(ri(h),f)= ( f{x-lhx)Vl{x) dx
JHp\G

f(P){m-ιhm)υ™{m)dm.

Proof. Let / e <g(G, V). Write A =yα where y e / ' , α e ^. Then
using (2.2) and (3.1),

\
Hp\G

\f{x-'hx)Vl{x)\dx

= [W{G,A)]~ι ( v^(m)\f \f{k-χn-ιm-ιhmnk)\dndkdm
JJp\M JNK

Jp\M

since Δ+ and ΔL

+ are invariant under conjugation by M. The lemma now
follows since for any a e A, f -> / j P ) is a continuous map from #((?, K)
to f (M, F) [2]. Further, for g^^(M, V)J e /',

/ g{m~ιjm)v™{m) dm
JJp\MJp\M

is absolutely convergent and defines a tempered distribution [1]. D

COROLLARY 3.4. Let Ar be a special vector subgroup of G with dim A'
< dim A. Let Pf = M'ΛW e &{A% ω' e ε2( Af'). Ler/te α wave packet
defined as in (2.6) w/ϊA respect to ω' and P'. Then (rι(h)9 f) = 0 KAJ/^5 ̂ 4'
is conjugate to A under K.

Proof. In this case/ ( P ) = 0 [4]. Thus the result follows from (3.3). D
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LEMMA 3.5 Suppose that f = φa is a wave packet associated to ω e
B2{M).Leth e # ' . Then

where pλ = dim Λ^.

Λw/. Using (3.3) and (2.4),

/* v?(m)( e'"(log α)/,(i>) (w " ιjm )dvdm.
JJ\M J^
/

JJP\M

Since fv

(P) e ^(Λf, F) and is supported on a compact subset of &, we can
interchange the order of integration. Let W = W(G, Λ), and write fv

(P) =
Σ 5 e w/w(ω) Ss w h e r e ?s € L(sω). Then, using (1.3),

Jp\M

But ε ί ^ , 7) = ε(Alf H), and (Θ s ω, gs,> = 0 if 5ω Φ s'ω. Thus using
(2.5),

JP\M

-(-l)ΛeUi,^) Σ
ί£ W/W(ω)

Now for each s ^ W,

since Θ,ω^ = Θω,. D

Now suppose that // is a Cartan subgroup of G with Hp = Av and fix
Λ G iY'. Let Λ7 = xfrxj1, 1 < / < /c, be defined as in (1.6). Then using
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results from [6, 7], for ω e ε2(M) and v e i^,

(3.6) θβ.r(A) = f Δ* (Λ,)"^(*,)(©„ 0 «")(*,).

Fix 1 < / < A:. Let A{ = x ^ x " 1 , Λf = Λf. Π M. Let L, = CG(yίz). Then
^Z

M is a special vector subgroup of M. Let ^ be any .4 f-orthogonal set,
and define υx on G as in (3.1) starting from v™. Then ^ is left L-invariant
so that x -> ^(Xyx) is left L^invariant. For x e G define

(3.7)

THEOREM 3.8. Let H be a Cartan subgroup of G with Hp = Av h e //'.
Then r(h) is a tempered distribution, and for f a wave packet corresponding
toω e ε2(AΓ),

Proof. Define x l 9... 9xk and Λl5... ,hk as in (3.6). Then for 1 < i < k9

Hj = XjHx^1 is a Cartan subgroup of G with 4̂, = (Jϊ,)^ so that using
(3.3),

(r(h),f)-Σ ( f{x-lhx)Vi{xlX) dx
, - 1 ^ X G

= Σ / f{x'1h,x)vi{x)dx

where
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