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Let i, be a homology theory on an admissible category of C*-alge-
bras. We define a homology theory /_(—;Z/n) which fits into a
Bockstein exact sequence

; , B,
—h,(A) Sk (A) DR (452/m) Sh,(4) > -

Let p be a prime. If p is odd orif's, is ““good” then h (A4;Z/p)is a
Z/p-module and (with finiteness assumptions on the torsion of /_(A4))
there is a Bockstein spectral sequence with E 3.; =h,(A;Z/p) which
converges to (4 (A)/(torsion)) ® Z/p. In the special case of K-theory,
we show that K, (4 ® N) = K _(A; Z/n), provided that K(N) = Z/n,
K| (N) = 0, and N is in a certain (large) category i of separable nuclear
C*-algebras.

Let A, be a homology theory on an admissible category of C*-alge-
bras. This paper has three objects: to define and investigate the properties
of the associated mod p homology theory h.(—;Z/p), to generalize the
notion of Bockstein coboundary homomorphisms and the apparatus of
the Bockstein spectral sequence to this setting, and to establish a unique-
ness theorem for the introduction of mod p coefficients into K-theory.

DEFINITION [16]. A homology theory is a sequence {h,} of covariant
functors from an admissible category € of C*-algebras to abelian groups
which satisfies the following axioms:

Homotopy axiom. Let h: A — C({0, 1], B) be a homotopy from f, = p,h
to f, = p,h [p;(§) = £&(i)] in C. Then f,, = f,,: h,(A) = h,(B) for all n.

Exactness axiom. Let
i J
0-J->4>5B-0

be a short exact sequence in C. Then there is a map 93: 4 ,(B) > h,_,(J)
and a long exact sequence

o b () S (A) DR (B) Sh,_((4) > -
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The map 0 is natural with respect to morphisms of short exact sequences

in C.

There is a weaker notion which is also required. Recall [16] that a map
g: A - B is a cofibration if any homotopy h,: D — B of a composite fg,
f: D - A, can be extended to a homotopy H,: D - A with H, = f and
gH,=h,.

DEFINITION. A cofibre homology theory {h,} is a sequence of covariant
functors from an admissible category of C*-algebras to abelian groups
which satisfies the homotopy axiom and the following axioms:

Cofibre axiom. Let g: A — B be a cofibration, and let

Cg = {(¢,a) € C([0,1], B) ® 4]4(1) = 0, £(0) = g(a)}

with 7(g): Cg - A by 7(g)(&, a) = a be the mapping cone. Then the
sequence

h,(Cg) " S h(4) S, (B)
is exact for each n.

Suspension axiom. There is a natural isomorphism
04: h,(A4) >h,_(S4)

where S4 = Cy((0, 1), 4) is the suspension of 4.
The groups h,(A; Z/n) are defined in §1 by

hJ(A,Z/n) = hj—2(A ® CG)n)’

where ©,: C(R) — Cy(R) is the canonical map of degree n. Then there is a
long exact sequence

n 3 B,
k() S (A) SR (A5Z/m) Sk _(4) > -

with Bockstein map f,. It is easy to establish that if A, is an (additive)
(cofibre) homology theory then so is h,(—; Z/n). Furthermore, there is a
short exact sequence

0-h,(4)®Z/n E’ihj(A; Z(n)) - Tor(h, (A),Z/n) - 0,

which is natural in 4, known as the Universal Coefficient sequence.
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§2 is concerned with the relationship between the theories h,(—; Z/n)
for various n. There is a serious difficulty. The Universal Coefficient
sequence above need not split; 4,(A4;Z/n) need not be a Z/n-module.
Fortunately this problem arises and is disposed of already in the algebraic
topology setting. Following Deleanu and Hilton, we say that a homology
theory h, is good if the Hopf map S* — S? induces the zero homomor-
phism

h*(A ® CO(RZ)) - h*(A ® CO(R3))

for all C*-algebras 4 in the category. (For instance, K, is good). If 4, is
good or if p 1s odd then we show that the Universal Coefficient sequence
splits, so that h,(A;Z/p) is a graded Z/p-module. As a consequence of
our coherence work we introduce other Bockstein maps of the form

Bunn:h (A;Z/n) > h,_\(A;2/m)

and
b,:h(A;Z/n) —>h,_(A;Z/n)

with b? = 0.

In §3 we show that corresponding to the relation b; = 0 there is a
family of higher order homology operations B,. for h,. Since the Adams
operations ¢* do not extend to K, for C*-algebras, the operation b, on
K.(—;Z/p) is the first example of a non-trivial homology operation for
C*-algebras. The operations Epn are differentials in the Bockstein spectral
sequence.

§4 is devoted to the study of torsion in integral homology. The tool is
the Bockstein spectral sequence. Fix a prime p and let 4, be a cofibre
homology theory such that the p-primary component of the torsion
subgroup of 4 ;(A) is finite for all j and for all requisite 4. Assume further
that p is odd or that A, is good. Then there is a spectral sequence with

which converges to

J

e ()
~ | torsion

) ®Z/p.

The spectral sequence processes the torsion. For instance, if y € h H(A)
generates a direct Z/p” summand in /,(A) then p,(y) € h;(A;Z/p) = E}
survives to E” in the spectral sequence and then dies.

These results carry over without difficulty to cohomology theories A *;
in §5 we indicate the result.
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§6 deals with K-theory. We report on joint work with J. Cuntz. If N is
a C*-algebra in a certain large category it with K(N) =Z/n, K (N) =0,
then there is a natural equivalence of homology theories

K. (A4;Z/n) =K, (A®N)

so that, in this sense at least, K .( ; Z/n) is unique.

The problem of introducing coefficients into a cohomology theory on
spaces has attracted much attention. Our work builds upon that of
Araki-Toda [1], Browder [5], Deleanu-Hilton [9], and Maunder [12]. We
have learned much from conversations and correspondence with Larry
Brown, Joachim Cuntz, and Jonathan Rosenberg, to whom we are most
grateful.

This paper is closely related to [16] and inadvertently undefined terms
in this paper are defined there.

1. Construction of h,(A;Z/n). This section is devoted to the
construction of the (cofibre) homology theory A,(—; Z/n) associated to a
given (cofibre) homology theory 4,.

Let ©,: Cy(R) = Cy(R) denote the canonical map of degree n. Write
Cn = CO, for the mapping cone, with cone sequence

2\ {8 | m®,)
(1.1) 0- CG(R*) » Cn - CyR)~ 0.

DEeFINITION 1.2. The groups ,(A4; Z/n) are defined by
h(A;Z/n) =h,_,(A® Cn).

As Cn is commutative the tensor product is unambiguous. It is clear
that for each j the correspondence 4 ~ h,(A4;Z/n) is a homotopy-in-
variant covariant functor defined on the same admissible category © as A,,.
(We assume here and henceforth that © is closed under the operation
A~ A®Cn)

The long exact sequence associated to the mapping cone of the map

1286,
SA=A®C,(R) » A4®C,(R) =854
has the form

(1.3)

1®eis,)), 1®7(8,)),
—>h,_,(S°4)

( 3
hya(A® Cn) ———"> h,_(S4) ——>h, 5(5%4)

0, |= = o |= =lo

h,(A) h,(A4;Z/n) hj_,(=A) h,_1(A)
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Define the reduction map
p,:hi(A) > h(A;Z/n)

by

On = (1 ® i(en))*UZ'
Define the Bockstein map

B, hj(A;Z/n) > h,_\(A)

by

B, =o' (1®7(8,)),.

LEMMA 1.4. The composite o;'90: h (A) — h;(A) is given by
(05'90)(x) = nx.

(We write this as n: h (A) — h,(A) henceforth.)

Proof. Expand to the diagram
hj—l(A)~—‘_"hj—1(A)
hj—Z(SA) _—>'h,~2(SA)

hy_5(S74)

d

It thus suffices to show that 67'9 = n. However
c7'd=(1®8,), by][16,3.5b]
=n by [16, Remark 8.7]. O
Rewriting the long exact sequence (1.3) yields the long exact sequence
(1.5) —> h,(4) —> h(4) > h(4;Z/n) o h_(A) — -,
which is called the Bockstein exact sequence. To summarize:

PROPOSITION 1.6. Given a (cofibre) homology theory h,, there are
canonical natural transformations p,, B, such that the Bockstein sequence
(1.5) is exact. O

PROPOSITION 1.7. Let h, be an (additive) ( cofibre) homology theory.
Then so is h,(—;Z/n).
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Proof. The homotopy axiom is clear. Suppose A, is a cofibre homol-
ogy theory. Let f: A — B be a cofibration. Then sois f® 1: A ® Cn - B
® Cn and there is a natural isomorphism C(f® 1) = Cf ® Cn. The
diagram

h(Cf: Z/n) ——L > b (432 /) ——L s (B Z/n)

hj_z(Cf_® Cn)

=

h;(C(f® 1))

1
i

7(f® 1) (f® D«

h,_5(4® Cn) h(B® Cn)

commutes, the vertical maps are isomorphisms, and the lower row is exact
by the cofibre axiom for h,. Hence the upper row is exact. Thus
h,(—; Z/n) satisfies the cofibre axiom. The suspension axiom is obvious:

h(A;Z/n)=h, ,(A® Cn) ;h1_3(SA ®Cn)=h, (A;Z/n)
and, hence, h,(—; Z/n) is a cofibre homology theory.
If Ak, is a homology theory and
0-J->4->B-0
is exact, then the sequence
0-JO®Chn—-AOCn->BO®Cn—-0

is exact since Cn is nuclear. Apply 4, and one obtains the long exact
sequence

o b (J5Z/n) > h(AsZ/n) = h (B;Z/n) >h,_(J;Z/n) — ---

as required. Thus h.(—; Z/n) is a homology theory.
If A, is additive then there are natural isomorphisms

hJ(G)A,;Z/n) Ehj((@A,) ®Cn) ;h,(@(A,.@cn))
=@ h,(4,®Cn) since h, is additive

=@ h,(4,;Z/n)
as required. O

Note that Proposition 1.7 implies h,(—; Z/n) satisfies the homology
of a triple axiom, has an appropriate Mayer-Vietoris sequence, and (if
additive) commutes with limits, by the main results of [16].
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PROPOSITION 1.8. There is a natural short exact sequence

0-h(A)®Z/n ﬁhj(A; Z/n) ‘—;"» Tor(h,;_(4),Z/n) - 0.

This is referred to as the Universal Coefficient Theorem (UCT) for
h(A;Z/n).

Proof. Consider the Bockstein sequence; it unsplices as shown in the
diagram below:

h,(A) ——h,(4) b h (A3 Z/n) a B (4)
\ 7, B, /
Cok(n) Ker(n)
0 / \0 o/ \0

It is routine to complete the argument, for
G®Z/n=Cok(n: G- G)
and
Tor(G,Z/n) =XKer(n: G > G). O
2. Relations between theories; good theories. Next we consider the

relations between the theories h,(—; Z/n) for various n. Let ©, ,.: Cm —
Cn be a map making the diagram

5 i(®,) (,) o,
Co(R?) Cm Co(R) —— Gy(R)
ls(")n/(n.rn) len,m lem/(n.m l@n/(n.m»
2 i(8,) (6,) 0,
Co(R?) Cn Go(R) — > Gy(R)

commute, where (n, m) is the greatest common divisor of » and m. Define
Kpom = (l ® Gn,m)*: hj(A; Z/m) - hj(A; Z/n).

This is evidently a natural transformation of theories.

ProroSITION 2.1.

(D) Bykey = (m/(n,m))B,.

(2) Ky = p,(n/(n,m)).

(3) Kk,n'cn,m = (n(k7m)/((ksn)(n»m)))"k,m
and, in particular, x, , = 1.
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Proof. These follow directly from the definitions at the level of
homotopy before applying 4,. See Deutz [10] for details. O

PROPOSITION 2.2. The diagram

fm
0> h (A) ® Z/m—">h (4;Z/m) — > Tor(h,_,(4),Z/m) —>0

’ ”
lkn,m ixn.m l"n.m

B,
0—>h (4)® Z/n— s h,(A;Z/n) ——>Tor(h,_\(A),Z/n) —>0
commutes, where k' and k" are induced by multiplications by n/(n, m) and
m/(n, m), respectively.

We omit the proof.

Note that h (A4) ® Z/n and Tor(h,_(A),Z/n) are Z/n-modules.
One might hope, then, that h,(4;Z/n) would be a Z/n-module. This
turns out to be true if »n is odd. If » is even (the case n = 2 illustrates the
difficulty) then the UCT need not split.

Recall that the Hopf map n: S° — S? is a generator of my(S?) = Z.
Writing

2 2
S = {(21,22) € C?llz| +lz| = 1},

S?=CP'=C*—-{0}/~ where(z,,z,) ~(Az;,Az,),A € C— {0},
then n(zl’ ZZ) = [Zl’ ZZ]'

DErFINITION 2.3. (Deleanu and Hilton [9].) A homology 4, is good if
the Hopf map n: S° — S? induces the zero homomorphism

h(A4 ® C(R?)) - h, (4 ® G(R))

for all C*-algebras A4 in the category.

Note that 1 induces a map h (A4) - h . (A). If h, has the property
that h,;, (A) = 0 for all 4, then h, is good. K-theory itself is good, for
the Kiinneth Theorem applied to the situation yields a commuting dia-
gram

D K.(4)® K, (C(R))——K,(5%4)
i+j=0

1 ®q* n*
D K(4) ®K(C(R)) ——K,(5°4)

i+j=0
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and K ,(Cy(R?)) = K ,(C,(R?)) is the zero map on trivial algebraic grounds.
The difficulty in proceeding without “goodness” arises as follows. Let
h(A;Z) = h;(A) and let

h(A;GOH)=h(A;G)®h(4; H)
so h,(A; G) is defined for all finitely generated abelian groups G. Is the
assignment
G~ h,(4;G)
natural in G? No, not in general, even on cyclic groups of order p’, and

there lies the difficulty. Let {4, B} = lim,_ , [S*4, S¥B] denote stable
homotopy. There is a natural map

d: {Cm,Cn} > hom(Z/m,Z/n)
given by d( f) = f,: Ko(Cm) — K (Cn). It is not an isomorphism. Barratt
[2] shows that there is an exact sequence

d
0->Z/m®Z/n®ZL/2 > {Cm,Cn} > Hom(Z/m;Z/n) - 0.

If both m and n are even then d is not injective. The kernel is related to
the map 7: S° - S? and thus goodness enters.
We summarize and refer to Deleanu-Hilton [9] for details.

PROPOSITION 2.4. Let h, be a homology theory and suppose h, is good
or that n is odd. Then the Universal Coefficient sequence

0->h(A)®Z/n—h(A;Z/n) > Tor(h; (A),Z/n) -0

is natural in Z/n and the sequence splits (unnaturally).

Proof (Hilton-Deleanu). For good homology theories or in the world
of odd primes the Universal Coefficient sequence is natural. Regard

h(A)® (=) —— h,(4; =) — Tor(h,_,(4), —)

as an additive functor to a category of short exact sequences. An algebraic
argument which uses the fact that 4;(4) ® (—) is right exact implies that
the Universal Coefficient sequence is pure exact. The group
Tor(h;_\(A),Z/n) is the direct sum of cyclic groups, which implies that
the Universal Coefficient sequence splits. O

The splitting is obtained on algebraic grounds and is certainly unnat-
ural. However, an argument of Bodigheimer [3], [4] carries over to produce
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a better splitting result. Fix a prime p. Then there is an inverse system of
Universal Coefficient sequences

0——>h,(4)®Z/p ———> h (A4;Z/p) ——> Tor(h,_(4),Z/p)——> 0
f f f
0——>h,(4) ®Z/p" _ h(45Z/p") __LTor(h, (4).Z/p")——0

’ ”
TKF"'P"H T'cp"‘p“l TK’)”‘pml

P B
0——>h,(4) ® Z/p"*' ——>h (A;Z/p""") ———Tor(h, (A4),Z/p"") —>0

that is, a short exact sequence of inverse systems. The following proposi-
tion asserts that the short exact sequence of inverse systems splits.

ProprosITION 2.5 (Bodigheimer [3, 2.8]). Let h, be a homology theory.
Let p be a prime and suppose p is odd or that h, is good. For every n =1
there is a homomorphism
sp”: Tor(hl~l(A)’Z/pn) - hl(A’ Z/pﬂ)
such that

Brs,n =1

so s, is a splitting of the UCT for h(A;Z/p"), and the s,. are coherent in
that
Kpn‘anSan = Sanpn’an.

The proof may be taken verbatim from [3]. ]

Suppose we are given whole numbers n and m. Then there are maps
h(A;Z/m) —""h (A;2Z/mn) —= h,(A;Z/n)

and one immediately is led to expect a long exact coefficient sequence
analogous to that in ordinary homology of spaces. Note that «, , &

n,mn "mn,m

= (n, m)x, . by (2.1), and (n, m)x, ,, = 0 by direct computation.

PROPOSITION 2.6. Let m and n be whole numbers. Then there is a
natural transformation of theories

Bynih (A Z/n) > h, \(A;Z/m)

with the following properties:
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(1) There is a natural long exact sequence

mn.m

. Ko Bon.r
~h,(A3Z/m) =" h (A;Z/mn) S h (A3 Z/n) Sh,_(A3Z/m) > -

(2) The diagram

B"
h(A;Z/n)—————h;_,(A4)
Bm.n Prm

h;_ (4:Z/m)
commutes ( providing an alternate definition of B, ,,).
3 an‘n: h(A;Z/n) > h;_,(A;Z/n) is the zero homomorphism.
Note that (2) implies (3) since
. = 0,B,0,8,=0 since B,p, = 0.

Proof. We apply Verdier's axiom [16, 2.10] to the commutative
triangle

198,,,
A ® C)(R) ——————> 4 ® C,(R)

1 QN /; o,
A ® C,y(R)

and obtain a cofibre sequence of the form
®e, 1®0, ,,

1 mn,m

> A®SCH —s4 ® Cm—"54 ® Cmin 1A ® Cn

such that the map v is the composite
1©5m(8,) 19i(®
48 SCh—"2% 4 & C,(R) =L
Apply the functor 4, to obtain the long exact sequence

(l®9n,mn)t Y x
h(A;Z/mn)————h (A;Z/n) —>h,_\(A;Z/m)—>

mn.m)x

(188
—h,(A;Z/m)——>

Since k, , = (1 ® O, ),, if we define B,, , = v, then the exact sequence (1)
has been established. Furthermore,

.Bm,n =Y = (1 ® l@(m))*(l ® SW@("))* = Pmﬁn’

so (2) is also satisfied and the proof is complete. O
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3. Higher order homology operations. Let us write
bp = ﬂP~P: hj(A’Z/p) - hj-l(AaZ/p)

for a fixed prime p. Suppose we are given an element x € & (A4;Z/p)
such that b,(x) = 0. Then we would expect some sort of secondary
homology operation to be defined on x, associated with the relation
bj =0, and having some connection with B.: h(4; Z/p*) - h,_\(4),
since x = k, 2(y) for some y € h (4; Z/p*). If this secondary operation
vanishes on x, a tertiary operation ought to be defined, and so on.

This is indeed the case, just as in the topological setting. Following
Maunder [12], we define a series of operations E (s =1) as follows.
Given x € h,(A;Z/p), suppose B,(x) € h;_(A) is divisible by p*~'.
Define B (x) to be the set of pp( y), for all y € h;,_(A) such that
p*~ 'y = x. It is best to think of B as a relation

B,
h(4;2/p) —h,_\(4)

s—1

p

hj~1(A)_i">hj—1(A§ Z/p)

with B <(x) defined for some subset of 4;(A4;Z/p) and for each x having
value a certain subset ,B {(x) Ch,_(4; Z/p)
To show the connection between ,B and b,;, we note first that since
pps B, = Byt B s(x) 1s defined if and only 1f By ,(x) =0, ie, x =
b (z) for some z € h (A;Z/p*). Thus the domam of ,B is exactly the
kemel of B,

By-1,:h(4;2/p) - hj(A; Z/p*"),
which is the image of the map
K, h(A;Z/p°) > h (A;Z/p).

Now
S lB Bp pp by (2'1)
so that
P’ B,(z) = B,(x),
and thus

p,B,:(z) € Eps(x).
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In fact we could have defined Eps(x) to be the set

,B_I,s(x) = {Kp’p:b s(z)lxp‘p:(z) = x}

using the relation

h(A;Z/p)<———h(A;Z/p*)

bys

h,_(A;Z/p*) ——>h (4;2Z/p)

since with either definition, the indeterminacy of B;,s(x) is
(3.2) p,B,-1h,(A;Z/p ")

(using the relation Bk, 1 = B,-1).
The operations B, (s = 1) have all the properties one would expect of
higher operations.

THEOREM 3.3. The operations Ep: have the following properties:

(D) @, = b,. _

(2) B,s(x) is defined for those elements x € h,(A;Z/p) such that B,(x)
contains zero, for s >r > 0.

(3) If x is such an element, then Eps(x) is an equivalence class of
elements of h;_,(A;Z/p), two elements being equivalent if they differ by an
element of Im B, (the set of all elements in B,.-(y), as y runs over all
elements of h;(A; Z/p) such that B,.-( ) is defined.)

(4) Givenamap - A —» B and x as in (2), then

f*[Ep‘(x)] - B;f(f*(x))-

(5) If 0: h(A;Z/p) = h,_((SA;Z/p) is the suspension isomorphism
then

o[ B,:(x)] =[B,(sx)].

The proofs are elementary except for (3) which follows from our
discussion of indeterminacy at (3.2). O

In the following section these operations will appear as differentials in
a Bockstein spectral sequence.

REMARK 3.4. Our work shows that 4,(—Z/p) does have at least one
possibly non-trivial homology operation, namely

b,:h(A;Z/p) > h,_\(A;Z/p).
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For example, take h = K, A = Cp. Then bp corresponds to
b: Ko(Cps Z/p) — K\(Cps Z/p),
and
b{": K\(Cp;Z/p) — Ko(Cps Z/p).

The UCT implies K (Cp;Z/p) =Z/p,j = 0, 1. The operation b,‘,” factors
through K, (Cp), and K,(Cp) = 0. Thus b) = 0. What about 5{"? Since
b =p,B, and p, is an isomorphism in this case, we must study f,:
K\(Cpi Z/p) — Ko(Cp). But Ker B, = Im(p,: K,(Cp) — K/(Cp; Z/p)) =
0 since K,(Cp) = 0. Thus B, is an isomorphism. So the operation b{":
K\(Cp;Z/p) - K,(Cp;Z/p) is an isomorphism. Similar reasoning proves
that

by K\(8,:2/p) = Ko(€,.1:Z/p)

is an isomorphism, where 0, is the Cuntz algebra. Note that if x €

K, (Cp;Z/p) orif x € KO(GPH, Z/p), then the higher operations ,8 (x)
are inductively defined and contain zero, since x is the reduction of an
integral class.

4. The Bockstein spectral sequence. In the simplest cases, /,(A4) is
a free abelian group. However, one generally expects torsion in 4,( A), and
there is no reason in general not to expect higher ( p”) torsion for various
primes.

The Bockstein spectral sequence (one for each prime p) focuses
attention upon and sorts out p’-torsion. In the special case where every
element of k,(A) has order p” for some r and r is bounded, the spectral
sequence has E' = h,(A;Z/p) (which has elements only of order p if 4,
is good or p is odd) and E* is zero. Roughly, summands of order p die
going to E?, summands of order p? die going to E>, etc. If h,(A) has no
p'~torsion for i = r then E" = E™,

Here is a statement of the basic result. Fix a prime p. We assume 4, is
a cofibre homology theory such that the p-primary component of the
torsion subgroup 7h (A) of h (A) is finite for all 4 in the category, and
that either p is odd or 4, is good. (This is to avoid convergence difficul-
ties.)

THEOREM 4.1. There exists a spectral sequence {E',d": r =1} with
differentials d": E] — E|_| such that:
(DE =h (A Z/,D)
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(2) For each j there is a short exact sequence
0- Thj(A) +phj(A) - hj(A) - E* -0,
so, in particular,
E* =(h,(A4)/Th(A4)) ®Z/p.

(3) The spectral sequence is natural; that is, a map f: A — B induces
homomorphisms f". E'(A) - E'(B) (r = 1) which commute with differen-
tials, f' = f,: h(A;Z/p) > h(B;Z/p), and f* is induced by f,: h,(A)
- h(B).

(4) The spectral sequence is stable; that is, the suspension isomorphism o
induces an isomorphism of spectral sequences

E[(4) = E[_,(S4).

Proof. We have an exact triangle

p

hy(A) hy(A)
k h(4; Z/p) %

The associated exact couple is defined as follows:

Ej] :hj(A’Z/p)a

D! = h,(4);
i Dj1 - Dj1
is given by i'(x) = px,
j':D) - E!
is given by Pys and
a': Ejl - Djl_1

is given by 8,

The associated spectral sequence is the Bockstein spectral sequence.
Properties (1), (3) and (4) are immediate from the construction.

In order to verify (2) and for subsequent propositions, we examine the
terms more carefully. The first differential d' is easy to identify:

d'=j'9' for any exact couple

:pP’BP:bP'
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Recall that the differential d": E —» E/_, is induced by the map
pBL". In particular, if x € h(A4;Z/p) = E} is the reduction of an
integral class then d’x = 0 for all r; x is a permanent cycle. Thus p]l,:

h,(A4) - Ej' induces maps p,,: h,(A) - E. The E” term is given by

(4.2) E =B (p'h,_(A4))/p,(Kerp")
and
(4.3) D/ =p"'h,(4).

For r = 7 the map p: D" — D" is an injection, and this implies :3;5;) =0, so
E” = E*. In that case Kerp” ' = T,h(A) (where T, denotes p-primary
torsion) and

p,(Ker p™') = p,(Th,(4))
since h,(A; Z/p) has no torsion prime to p. Thus the sequence

(4.4) 0~ p,(Th;(4)) = B;'(p~'h;-\(4)) = Ef* = 0

is exact. An easy exact sequence argument yields (2). O

PROPOSITION 4.5. Let 0 #x € Ej’. Then there is an element w €
h,(A;Z/p") such that x = [k, ,w].

Proof. Represent x as x € B,'(p" 'h,_,(A4)). Thatis, x € h (4;Z/p)
with B (x) = p"~'y € p"~'h;_\(A4). Then B, . h(A;Z/p) ~
h,_(A;Z/p" ") Kkills x:

Bp"',p(x) — Pp"‘ﬁp(x) = pp,_|p’*1y =0.

Thus x € Ker(B,-1 ,) which coincides with the image of the map «, -
h,(A;Z/p") > h(A;Z/p). Hence x = k, ,w as required. OJ

PROPOSITION 4.6. If y generates a direct Z/p” summand in h (A) then
P(r)(Y) #0in Ejr+l'

Proof. The element p”~'y € p"~'h ( A) is non-zero, and p(p"~'y) = 0,
so there is some z € h,, (A;Z/p) with B,(z) =p~'y. Thus z €
,Bp"(p’_'h*(A)) represents y in E/, . Is p,(y) =[z] =0 in E],,? Sup-
pose that z € p,(Ker p’™ "), so that [z] = 0. Then there is an element

weEh  (A) with p”"'w = 0 and p,(w) = z. But then
Py =8,2)=B,0,(w)=0  (B,p,=0),
which is a contradiction. Thus p,,,(y) # 0. O
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COROLLARY 4.7. h(A) has no p'-torsion for i =r if and only if
EI‘ — Ew. D

THEOREM 4.8. The differentials in the spectral sequence are given by the
Bockstein operations .

Proof. Let x € p"'h,(A) be of the form x = p"~'y. Then p,,(x) is
the coset of p,(y), independent of the choice of y. If « € E” is represented
by z € h,(A4;Z/p), then B{”(a) = B,(z) € p’~ 'h,(A). Thus

d'(a) = o8y () = 3B, (2),
which is exactly the coset of ,Epr(x), as required. ]

REMARK 4.9. To illustrate the spectral sequence, take # = K and

A= (‘)p +; or A = Cp. Then K ,(A4) consists entirely of torsion elements,

and £* = 0. By Remark 3.4 we see that Ej1 =1Z/p for all j, so E' = E>.
Using Theorem 4.8 and Remark 3.4 we see that the differential

1. 1 i
d:E, - E, _,

is identically zero, whereas the differential
d': E211+1 - Ezlj

is an isomorphism. Thus E?> = H(E' d') =0, and E' = E* = E®. The
fact that there is no p*-torsion in K,(A4) corresponds by Corollary 4.7 to
the fact that E* = E>.

5. Cohomology. The situation in cohomology is so similar to that
in homology that very little need be said. Suppose h* is a cofibre
cohomology theory. Define

h"(A;Z/n) = h""(4 ® Cn).

The cone exact sequence
19i(8,) (8,)
0-S4 - A®Cn - SA-0

yields a long exact sequence

—> b/ (SA) ——> /(A ® Cn)—> k' (S?4) —> h/(SA) —>

S I

B "
—>  W(A) ——s W(A;Z/n) ——> W) — /T (A)—>
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with Bockstein and reduction maps as required. If #* is additive then
h*(®A,;Z/n) = h*((®4,) ® Cn) = h*(® (4, ® Cn))
=[Ir*(4,® Cn) =[[1*(A4,:Z/n).
] J

J
Thus h*(—; Z/n) is an additive cohomology theory.

Similarly the entire discussion of higher Bockstein operations and the
Bockstein spectral sequence goes through. We omit details, except to note
that d,: E/ > E/*! cgrres;?opds to o/, B¢, as in homology. The spectral
sequence converges, given finiteness assumptions, to

E] = (h/(A4)/Thi(A4)) ® Z/p.

6. Uniqueness of K,.(—;Z/n). The C*-algebra Cn is clearly not
the only C*-algebra which may be used to define A.(A4;Z/n). For
instance, Cn could be replaced by Cn @ D, where D is a contractible
C*-algebra, or (by adjusting the grading) Cn could be replaced by SCn.
Consider the problem from the opposite perspective. Let N be a nuclear
C*-algebra, and suppose there is a natural long exact Bockstein sequence
of the form

(6.1) —>hj(A)——>hj(A)—>hj,2(A®N)—»hj,,(A)—>
Then there is a natural short exact sequence
(62) 0->h(4)®Z/n—>h, ,(A®N) - Tor(h,_,(4),Z/n) - 0.

Suppose (6.2) splits unnaturally. Then there is an unnatural isomor-
phism
(6.3) h(A;Z/n) =h;,_,(A®N).

Can this result be improved to yield a natural isomorphism? Not
without more structure or more information.

In the special case of K-theory it turns out that much more can be
said. Let 9N be the smallest category of C*-algebras which contains the
separable Type I C*-algebras and is closed under the operations of taking
ideals, quotients, extensions, inductive limits, stable isomorphism, and

(reduced) crossed products by Z* and by R. The following theorem is
joint work with J. Cuntz.

THEOREM 6.4. Let N € i with K(N) =7Z/n and K,(N) = 0. Then
there is a natural equivalence of homology theories

K, (A;Z/n) =K, (A®N).
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Note that since N € 9t the Kinneth theorem [15] applies to
K.(A ® N) and yields the natural short exact sequence

(6.5) 0->K(4)®Z/n—>K(A®N) - Tor(K, ((4),Z/n) -0

for j € Z /2 which splits unnaturally, by Deutz [10]. Thus if one omits the
word “natural” then the theorem is true with no further proof required.

Let O, and O_ denote the Cuntz algebras [6], [7]. Recall that these lie
in N, that K(O,,,) =Z/n, K(O,, ) =0, and that 4 - 4 ® 0 defined
by a ~» a ® 1 induces an isomorphism K (A4) iKJ(A ®0,).

PROPOSITION 6.6 (J. Cuntz). Let N be a C*-algebra and let z € K (N)
be some element with nz = 0.

(a) If N is unital then there is a map f: O, ., = N ®OQ_ such that
£l =z

(b) If N is not unital then there is a map f: O, - N ®0_ such that

foll] =z

Proof. With no loss of generality we may assume N=N®(_.
Suppose N is unital. Given projections p, g, write p < q if there is some
projection ¢’ with p ~ g’ <g. Let & be the collection of projections
p EN=N®Q,_ with 1 ® 1 <p. Then [7, Theorem 1.4] every element of
K,(N) is represented by some projection in %. Two projections in &
define the same element in K (N) if and only if they are equivalent.
Moreover, for any sequence {z,} in K (B), there is a sequence {e,} of
pairwise orthogonal projections in & with [e,] = z,.

Suppose z € Ky(N) with nz = 0. Find pairwise orthogonal projec-

tions {e,,...,e,. } in ¥ with [e,] = z and with
n+1
e~ e =e.
1=1
Thus there are elements x,...,x,,, € N with x¥x = e and x xF =e,.
The map S, + x, (j = 1,...,n) extends to a homomorphism f: 0,.,,—>N

with f[1] = z.
If N is non-unital then the first part of the proof yields a homomor-
phism f: O,,, > N* ®0_ such that ¢,[1] = z. The map f, factors as

required as

fx
KO(®n+l)*—>KO(B+ ®6‘oo)

~
~
~
~

Sk, (B®O,)

since z € K((B ® O_), and this completes the proof. O



466 CLAUDE SCHOCHET

LEMMA 6.7. Let f: N, — N, be a map of C*-algebras in N such that f:
K.(N,) = K (N,) is an isomorphism. Then

(1®f),: K, (4®N,) > K (A®N,)

is a natural equivalence of theories for all C*-algebras A.
Proof. This is immediate from the Kiinneth theorem [15]. O

All the tools have been assembled to prove Theorem 6.4. Let N € N
be unital with K,(N) = Z/n, K,(N) = 0. There is a sequence of maps

h f £ f4
Cn>Cn®0O, <0, >N®O_ <N

and each f; induces an isomorphism on K-theory. The lemma implies that
there is a sequence of natural isomorphisms

(1®f 1)« (1®f)«

K (A;2/n) ————K,(A®Cn® 0, )«——— K, (4®0,,,)
Tl laen.
\\\\ K(A®N®O)
T (e,

TT>K (A ®N)

and the dotted composite is the required equivalence. The argument in the
non-unital case is essentially the same with the minor modification
required by the use of (6.6b) rather than (6.6a). O

REMARK 6.8. For some purposes it might be more natural to start with
0,., as the basic C*-algebra rather than with Cn, as this proof illustrates.
At this time our knowledge of Cn is more extensive than our knowledge of
0, but it may be that in a few years O, , will prove to be much more
convenient. The first real test is in the analysis of admissible multiplica-
tions [1].

Here is a generalization of Theorem 6.4 to the homology theories
generated by the Kasparov functors.

THEOREM 6.9. Fix C*-algebras D € 3t and N € NNt with K((N) = Z/n,
K(N)=20. Then for all separable nuclear C*-algebras A there is an
equivalence of theories

KK, (D, A® Cn)>KK, (D, A®N).
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Proof. The sequence of K ,-isomorphisms
Cn->Cn®0, <0, »N®O <N
induces a sequence of K ,-isomorphisms

(6.10) A®Cn-A®Cn®QO, «A®(,, »AON®O AN

for all C*-algebras 4, since O, ,, 0,, N, and Cn are in . The Universal
Coefficient Theorem for the KK-groups [13] asserts that there is a natural
short exact sequence

0 - Extl (K (D), K.(B)) » KK,(D, B) » Hom(K,(D), K,(B)) -0

for appropriate B. Feeding in the sequence (6.10) and applying the five
lemma yields the result. a

REMARK. An (additive) homology operation »: h — k is a natural
transformation of functors which commutes with suspension/boundary
homomorphisms. There are some very interesting cohomology operations
Y% on K*(X), called the Adams operations. These do not extend to
operations on K,. In fact there are no non-trivial operations K, — K.
Here is a proof, due to J. F. Adams. Let ¢: K, —» K, be an operation and
let x € Ky(A). Then x = f,y for some y € K,(C) and f: C - 4 ® K by

geometric realization [15]. Then Y(x) = Y(f(¥)) = foul(y) = fo(Ay) =
AXx for some integer A.
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