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We prove that any regularly closed semialgebraic set of R”, where R
is any real closed field and regularly closed means that it is the closure of
its interior, is the projection under a finite map of an irreducible
algebraic variety in some R”**. We apply this result to show that any
clopen subset of the space of orders of the field of rational functions
K= R(X,,...,X,) is the image of the space of orders of a finite
extension of XK.

1. Introduction. Motzkin shows in [M] that every semialgebraic
subset of R", R an arbitrary real closed field, is the projection of an
algebraic set of R""!. However, this algebraic set is in general reducible,
and we ask whether it can be found irreducible.

This turns out to be closely related to the following problem, pro-
posed in [E-L-W]: let K = R(X,...,X,), Xi,...,X, indeterminates, and
let X, be the space of orders of K with Harrison’s topology. If E|K is an
ordered extension of K, let e x be the restriction map between the space
of orders, e k! Xp = Xg: P — P N K. Which clopen subsets of Xy, that
is, closed and open in Harrison’s topology, are images of e x for suitable
finite extension of K ?.

In this note we prove that every regularly closed semialgebraic subset
S C R"— S is the closure in the order topology of its inner points — is
the projection of an irreducible algebraic set of R"** for some k > 1.
Actually we prove more: the central locus of the algebraic set, i.e., the
closure of its regular points, covers the whole semialgebraic S. This allows
us to prove that there exists an irreducible hypersurface in R”*! whose
central locus projects onto S. As a consequence we prove that for every
clopen subset Y C X, there is a finite extension E of K such that
im(egg) =Y.

2. In what follows R will be a real closed field and 7 will always
denote the canonical projection of some R"** onto the first n coordinates.

Let S be a semialgebraic closed subset of R”. Then S can be written in
the form (cf. [C-Cj [R]):

S = L’j {(xeR"fi(x)=0,...f,(x) 20}, f,€R[X,....X,].
i=1
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Now, since if f = g - h we have
{(f20}={h=0,820} U{—-h=>0, —g >0},

by decomposing each f,, in irreducible factors, we may assume that all of

the f, ; are irreducible. Finally, by the distributive law, we write

s= N [{f,z0)U - u(f, =0

For the sake of simplicity, we order the set of p-tuples (iy,...,i,) from
1 till m = r”?. Thus we have

(2.0.1) S=8n---NnS§,,

where
S={f=z0lU - U{f, =20}, i=1..m,

and f,  irreducible for allk = 1,...,p; i = 1,...,m.

2.1. PROPOSITION. Let f,....f, be irreducible polynomials in
R[X,,....X,]). Then there exists an irreducible polynomial F(T, X|,...,X,)
€ R[X,....X,, T]such thatif V.= {x € R""': F(x) = 0} then

a(V)={f,=0}uU ---U{f =0}.

2.2. REMARK. In particular if { f, > 0} # & for some j, then dim V' =
dim S = n and therefore R[ X},...,X,, T']/(F) is a real domain. Thus V'is
an irreducible hypersurface of R”*! which projects onto S.

Proof of 2.1. Set S = {f; 20} U --- U{ [ > 0}. The cases S = R",
S = @ and p = 1 are trivial. So, we assume S proper and p > 2. Also, if
for some f, we have { f; > 0} c U . {f, = 0}, we just omit it, so that we
may suppose the expression of S irredundant in this sense. To prove the
proposition we shall exhibit an irreducible polynomial F(7, X,,...,X,) €
R[X,,...,X,, T] such that the set F'= 0 projects onto S. Let us say a
single word about how this (rather messy) polynomial comes out. We first
seek an irreducible hypersurface in R”*! which projects over { X; > 0} U

-+ U{X, = 0}. The hypersurface defined by clearing denominators in

v - T -2%) , o, (1% - 2X, )
! T - X, T - X,
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verifies this property. Thus, we substitute the X;’s by the f;’s and we check
that we can modify a bit the equation above so that it keeps irreducible.

Precisely, consider the algebraic subset ¥ of R"*! defined by the
polynomial F(T, X,...,X,) obtained by clearing denominators in the
equation

T2(T —Alfl) - T(T2—2f)
Zfl l§2 ( f)

where A, A, € R, 0 < A, < A,. That is, if we set:
p—1

(T, X) = LIZ(TZ - £
0T, X)=0(T, X)/(T*~f) (i=2,....p—1)

Jp=

then

211)  F(T, X)=0,(T? - X\, /) — QT*(T? = N\, /1)
p—1

_(Tz - )‘2f1) Z Tz(Tz - Z-fl)Ql'
i=2

We claim that #(V) = S. Indeed, let a € S. If f,(q) = 0 for some
i=1,...,p — 1, then it is immediate that the point (a,0) € V. So we
restrict ourselves to the case f;(a) # 0 for alli = 1,...,p — 1. Now notice
that the graph of the functions (in the plane)

T*(T? - 2f,(a))
~ f(a)

Y = (i=2,....p—1)

as well as
_ TZ(TZ - }‘1f1(a))
T? - A2f1(a)

look like Figure 1 if f(a) <O (resp. fi(a) < 0) and like Figure 2 if
fi(a) > 0 (resp. f,(a) > 0, where we have to change 2f,(a) and |/f,(a)

by V)\lfl(a) and V)\2fl(a) )-

Thus, the range of the function
T ( ~ Mh(a)) (TZ — 2/,(a))
+
A, fi(a) i§2 T - f,(a)

is either the whole line R if f;(a) > 0 for some i =1,...,p —1,0or Y > 0
if f(a) <0 for all i = 1,...,p — 1. Since in this case we have f(a)=0

(0<A,<Ap)

(212) Y=
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(by the very definition of §), it is clear that for any a € S there exists
! € R such that (7, f,(a)) verifies (2.1.2). Obviously this means that the
point (a, t) € V and so a € «(V'). This shows S € 7 (V).

The converse is immediate, for, if a & S then f,(a) <0 for all
i=1,...,p. But, by the definition of V, (a,t)€ V and fi(a)<
0,....f,~1(a) < 0,imply f,(a) > 0,and so a & n(V) ifa & S.

Finally, the following Lemma 2.3 shows that there exist A;, A,,
0 < A, <Ay, such that F(T, X,,...,X,) is irreducible, what concludes the
proof of 2.1.

Y
T
FIGURE 1
| Y
|
: 7.(a) 27(a)

FIGURE 2



PROJECTIONS OF REAL ALGEBRAIC VARIETIES 5

2.3. LemMA. Let fy,....f,, p =2 be irreducible polynomials in
R[X),...,X,]), such that S = {f =0} U ---U{f, 20} is irredundant
(ie. {f,20} U, {f =0} for all i) and S is neither R" nor empty.
Then there exist A|, A\, € R, 0 < A, < A, such that the polynomial F(T, X)
defined in (2.1.1) is irreducible.

Proof. The result is a consequence of Bertini’s theoremt'. To see this,
we write F(T, X) in the form

F(T,X)=Py+ NP, +\,P,,

where

-1
P, = Qf,T* — QOT* - T“pz (T2 -2£)0Q,,
i=2

(2.3.1) P, = OfiT?,
p—1

P, =fT* Y (T* - 2£)0Q, — Ohf,.

i=2

Now, if C = R(Y—1), set
Z={(x,1)e C"": Py(x,1) = P(x,1) = P(x,1) = 0}
and consider ¢: C"*!1\ Z — P,(C) defined by
O(xp,..ox,,t) = (Py(x,t), P(x,1), Py(x,1)).

Let A be the set of points (A}, A,) € C? such that {P, + A\ P, +
A, P, = 0} is irreducible and non-singular (as a subvariety of C"*'\ Z).
Then Bertini’s theorem (cf. [H], pag. 275) assures that A contains a Zariski
open subset of C? provided that

(a) dim(im ¢) = 2.
Furthermore, if

(b) Py, P, and P, are relatively prime, then Z has codimension > 2,
hence { P, + A, P, + A, P, = 0} is irreducible in C"".

Thus since open intervals of R are Zariski-dense in C, the result
follows at once if we prove (a) and (b). Let us begin with the second:

(b) Assume that #( X, T') is an irreducible common factor of P;, P,
and P,.

Then h|P, and so, we have h = T, h = f; or h|Q. Since P,(0, X) =
(—1)2 12, f # 0, it follows that T + P,.

'We want to thank Professor J. P. Serre who called our attention to Bertini’s theorem in
order to prove 2.3.
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Now, suppose 7 = f;. Since h|P,, we have

1
f (pr _12%0 - 1Y (12~ 21)0,

i=2

In particular, setting 7 = 0, f,|((—1)?2I1~_, f,), which implies, since f; is
irreducible, that there exist a € R and j € {2,...,p} such that f; = af,.
But a > 0 means { f; = 0} = { f; = 0}, and S would not be irredundant,
while ¢ < 0 implies S = R". Therefore h # f;.

Finally, suppose /|Q. Then, we have h = T? — f, for some j = 2,...,
p — 1. Since h|P,, we deduce

p—1
h Z 0, '(T2 - Zfz)
i=2

But & divides Q; for all i # j. Thus h|Q (T 2 -2 f;) which is absurd. This
ends the proof of (b).

(a) It is enough to check that there is no homogeneous polynomial
H(Y,,Y.,Y,) € ClY,, Y, Y,] — {0} such that H(P,, P;, P,) = 0. Suppose
the opposite and assume that H is of degree d. Then

H(YO’ Y, Yz) = Z L3998 £y Ylbyz

at+b+c=d

We shall work on the lowest degree in T of the monomials P¢P/Ps. From
(2.3.1) we get

(2.3.3) PSPPPS =

n( f) ( 1)"f1b+cfpa+cT2(a+b)
+T2(a+b)+1G(X’ T)

(where in the case p = 2 the first product is taken to be 1).

We will prove that a,,, = 0 for all a, b, ¢. Set h = a + b. We work by
induction on 4.

If h =0, then a = b = 0 and we have to prove that e, , = 0. But the
independent term of H(P,, Py, P,) is g, - (17, f;)*. Then ag, , = 0.
Suppose a .. = 0 whenever a” + b’ < h. Then

H(Py, P, Py) = Y ey, POPIPS = TM(T, X).

Since we have seen that PyP/Pf = T*“*» . R(T, X), the term of degree
2h in H(P,, P;, P,) comes from those a, b, ¢ such that a + b = h and its
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coefficient is, after (2.3.3),

p—1 d
Z a(lbc(—l)d( I_If,) (—1)(flb+c pa+('.
atbrend =2

Thus, we obtain

h

—ifd- _
Z az,hAi,d—hfld lfp =0,
i=0

which implies

h .
Z az,h-z.d—h(fp/fl)[ = 0.
=0

But, ifa, ,_, ,, # O for some i, this means that f,/f, 1s algebraic over C,
hence /= A fi, A € C. Moreover, since f, f, € R[X,...,X,], we know
that A € R. Repeating a foregoing argument, A > 0 means { f; > 0} =
{f, 20} and A < 0 means § = R". Since both cases have been eliminated
it follows a,,. = 0 whenever a + b = 0 and the proof of the lemma is
complete.

3. The main result. From now on, given an algebraic set V, V, will
denote the set of central points of V, that is the closure of the regular
points of V. We start with:

3.1. DEFINITION. A semialgebraic subset S of R" is regularly closed if
S is the closure of its inner points.

We are now ready to prove the following:

3.2. THEOREM. Let S C R” be a closed semialgebraic set of dimension n.
There exists a positive integer m and an irreducible n-dimensional algebraic
set V. C R"*"™ such that

(1) w2 V — R" is finite,

2)S ca(V)cSs.

Moreover, if S is regularly closed then m(V,) = «(V') = S.

Proof. We may assume S written in the form (2.0.1), 1.e.

S=80 NS, withS ={f,=0}uU - U{f, >0
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and f,; € R[X,,...,X,] irreducible for every (i, k)€ {1,...,m} X

{1,...,p}. We will find ¥ € R"*". To do that we work by induction on
m.

For m =1, let ¥ c R""! be the hypersurface F(T, X) = 0 of Prop-
osition 2.1 if p > 1 and T? — f, = 0 if p = 1. Notice that the leading
coefficient of F(7, X) as polynomial in 7 is 1 — p (see 2.1.1) and
consequently 7: ¥ — R" is finite. Since 7(V') = S condition (2) is trivially
satisfied.

Assume now that there exists an irreducible algebraic set W’ C
R™*™~1 of dimension n verifying:

(1) 7: W — R"is finite

(3.2.1) .. s, ,
(i) Sca(w)cs,

where S’ = §; N --- N S,,_; (which has, of course, dimension 7).

Let #(W') C R[X,,...,X,, T},...,T,,_,] be the ideal of polynomials
vanishing on W’ and consider the variety W c R"*" defined by _#(W’) -
RIX,,....X,, Ty,...,T,_,, T, where T is a new variable. Obviously W is
irreducible and verifies the condition (ii) of (3.2.1).

Now let F(T, X)= P, + NP, +A,P, € R[X,,...,X,,T] be the
polynomial defined in (2.1.1) such that for any A;, A, € R, 0 < A, <A,,
the set V7 of zeros of F (in R"*') projects onto S,,. Let V, be the algebraic
set of R"*™ defined by F(T, X) considered as a polynomial in
Rl X,,....X,, Ty,...,T,_4, T]. We have

Scs, NS ca(V,nw)cSs.

Set Z = {(x,8,-.stp_1,1) ER"™™: Py(x,t) = Pi(x,1) = Py(x, 1)
= 0}. Since P,, P,, P, have no common factors (see proof of 2.3), it is
codim(7(Z)) = 1. Let H = Sing(W) U (Z N W). Then codim(7(H)) >
1, since by induction hypothesis dim W’ = n. Let C = R(Y—1) be the
algebraic closure of R and consider ¢: W\ H — P,(C) defined by

(X, 1y alyyoyn 1) = (Po(x, 1), Pi(x, 1), Py(x,1)).

Since W\ H is non-singular, Bertini’s theorem applies assuring that the
set of points (A}, A,) € C? such that

(WNH) N {(x, 8, stpors 1) Po(x,2) + M Pi(x, 1) + A, Py(x, ) = 0}

1s irreducible and non-singular (as a subvariety of W\ H) contains a
Zariski open subset of C?, provided that dim(im ¢) = 2.

Since 7( W) has non-empty interior, to prove that dim(im¢) = 2 it is
enough to show that P,, P, and P, do not verify any homogeneous
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polynomial. But this was shown in the proof of Lemma 2.3. Therefore
there exist A;, A\, € R, 0 < A, <Ay, such that V,, N (W\ H) is irreduci-
ble and nonsingular (in W\ H). Let V' be the irreducible component of
V., N W which coincides with ¥V, N (W \ H) on W\ H. Thus dimV < n
and from codim(w( H)) > 1 it followsdim V' = dim(W N V) = n.

Since the morphisms 7: W’ — R" and 7: V,, = R" are finite so is 7:
v, N W — R" which implies the finiteness of 7: ¥ — R". Whence 7(V")
is closed in R”. Obviously 7(V') C S. Let us see that Sc 7(V).Letx € S
and let U C S be a strong open neighborhood of x. Since codim(7( H)) >
1, we deduce that U N (S\ #(H)) # @.Takey € U N (S\ 7(H)). Then
y € m(W") Nna(V)). Pick (#,...,¢,_;) =t" € R" ! and ¢ € R such that
(y, )€ W and (y,t) € V,. We have (y,t,t)e(WnNnV,)\HCV.
Hence U N (V) # @ and since (V) is closed we conclude that S C
7(V'), what proves the first part of the theorem.

Finally, assume that S is regularly closed. First of all notice that, since
w is finite, 7(V,) is a closed semialgebraic subset of R" (see [B], page 170).
From S C 7( V) it follows that S 7(V.). For let x € S\'lT(VC) and let
U C S be a strong open neighborhood of x such that U N 7(V.)= &.
Thus U cC #(V\V,); but dim#(V\ V.) <n=dimU, contradiction.
Therefore we have S C m(V,) c m(V) C S. Taking into account once
more that both #(V,) and #(V") are closed and that S is regularly closed, it
follows at once by taking closures that #(V,) = #(}V') = S and Theorem
3.1 is complete.

3.3. COROLLARY. Let S C R" be a regularly closed semialgebraic set.
Then there exists an irreducible algebraic hypersurface V C R"*! such that
(V) = S.

Proof. Let V € R"*™ be the irreducible algebraic variety constructed
in 3.2, and let C = R[X;,...,X,, X,11,---»X,4 ] D€ its coordinate ring.
Then #(V,) =«(V) =S and C is integral over 4 = R[X,...,X,]. Let
t=MX,,t - +A,X,sm A, € R, be a primitive element of R(V')

over R(X,,...,X,) and let ¥ be the hypersurface of R"*! with coordinate
ring B = R[X,...,X,, t]. Then we have the following diagram,
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where all the morphisms are finite, 7 represents the projection on the first
n coordinates, and p induces a birational isomorphism. Therefore p(V,) =
V. (see [D-R], 2.9) and we get 7(V,) = S.

3.4. REMARK. We still do not know whether a regularly closed
semialgebraic subset of R” is the projection of an irreducible hypersurface
of R"*!. In case the answer is negative, is there a bound of the integer m
which does not depend on S (i.e. an universal bound for all regularly
closed semialgebraic subsets of R")?.

4. Application to Harrison’s topology. Throughout this section K =
R(X,...,X,) will be a pure transcendental extension of R of degree n,
and X(K) will denote its space of orders. If E is a formally real extension
of K, we will denote by &g, the induced morphism between X(E) and
X(K), namely

eg: X(E) > X(K): P> PNK.
A clopen subset Y of X(K) is a subset which is open and closed in the

Harrison’s topology of X(K), i.e. the topology whose basis consists of the
sets:

H(fi,....f,)={P€X(K):f,E€P,....f,e P},

f, € R[X;,...,X,] foralli.
Since X(K) with Harrison’s topology is compact ([P]), every clopen
set Y can be written as a finite union of open basic sets:

Y=H U ---UH, where H =H(f,,....f[,).

Theorem 3.2 will be used to prove the following:

4.1. THEOREM. Let Y be any clopen set of X(K). Then there exists a
finite extension E of K such that Y = im &g, .

Proof. Let Y =H U ---UH, H = H(f,. ...}[.), fii €
R[X,...,X,]) forall (k,i) € {1,...,r} X {1,...,p}. Define the semialge-
braic associated to Y by

Y=H,U---UH,

where H; = {x € R": f,(x)>0,....f,(x) > 0}. In [D-R] it is shown
that the correspondence Y — Y~ verifies that Y, = Y, if and only if Y
= Y, where Y denotes the closure of Y in the strong topology of R".
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Since Y is open, Y is a regularly closed semialgebraic subset of R”. Then
2.5 applies producing an n-dimensional irreducible algebraic set ¥ < R"*”
such that 7(V') = w(V,) = Y. In particular, TV() = Y’ Since dim V = n,
the function field £ of V is a finite extension of K and R[ X],....X,] =
R[V]is integral since 7: V' — R” is finite.

It follows immediately from [D-R] (Prop. 2.7) that im &, = Y.

4.2. REMARK. In [E-L-W] is suggested that the characterization of
those clopen subsets of the space of orders Xy of a field K which are the
image of &, for some finite extension E|K could depend on topological
properties of ¢ for finite extensions. However, since there are examples
([E-L-W]) of clopen sets which are not im(eg) for any E, and after
Theorem 4.1, it follows that such a characterization is not intrinsic to ¢ but
depends on the base field K.

Acknowledgment. The authors wish to thank the referee who pointed
out several mistakes in the original version of the paper.
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