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Let § be an upper semi continuous decomposition of the three-sphere
S3. The purpose of this note is to describe two conditions under which
we can identify the quotient space X = §°/8, without assuming either
that § is cell like or that X is finite dimensional.

1. Introduction. The following two theorems are our main results.

THEOREM A. Suppose each element of G has the shape of the circle S’
and that X is an ANR. Then X = S? if and only if each decomposition
element is linked by some other element.

THEOREM B. Suppose the quotient map f: S° — X is a (non-constant)
approximate fibration whose fiber is a pointed FANR. Then f factors as a

. [ 5 . . x
composition S> > X Z X where p is a covering map and f is either cell like or

can be approximated by maps topologically equivalent to the Hopf fibration
h: S* - S2.If f is monotone, p is the identity.

Note that Theorems A and B do not assume that X is finite dimen-
sional. In the cases covered by Theorem B, we can draw the following
conclusions about X = S3 /8. If f can be approximated by fibrations onto
S2, then X = S? or the projective plane. For the other case, if fis cell-like
and in addition the decomposition of S* into point inverses of f is
shrinkable, then X = §° [B2] and X is a 3-manifold with finite fundamen-
tal group. More generally if f is cell-like, then X and X are generalized
3-manifolds (that is 3-dimensional ANRs with H(X, X — {*}) =
H(R? R®— {0)}) for every x € X) [KW], [L2]. Also X has the homotopy
type of §° [L1] and 7, X is a finite group whose order is the number of
components of the fiber of f.

Through this paper, f: S* —» X will be the quotient map of an upper
semicontinuous decomposition of S>. The definitions of these terms are
standard: see [HY] for example. It is known that X must be a locally
connected, compact, metric space. For a subset 4 C X, A will denote
f7!(A). Likewise for p € X, F,=f !(p). The n-sphere will be denoted
S"; the unit interval [0, 1], 7; and the integers, Z. The symbols H,, H' and
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. (respectively H,, H', ;) denote the singular integral homology and
cohomology groups and the homotopy groups (respectively Cech groups).
We suggest [Bo] or [DS] as a reference for shape theoretic notions
including FANR. When we say X is a FANR, we mean that (X, x) is a
pointed FANR (ANSR in [DS]) for each x € X. If =, and Z, are circle
shaped compacta (i.e. Sh=, = ShS'), we say that =, links =, if the
inclusion induced homomorphism H,(Z,) - H (S? — Z,) is non-trivial. A
map is an approximate fibration if it has the approximate homotopy lifting
property for all spaces. See [C] or [CD1] for these definitions. A mapping
is circle-shaped if every point invese has the shape of a circle.

2. Three lemmas. In this section, we present three lemmas which
will be needed in the proofs of the main results. We begin by giving a
brief summary of the theory of winding functions for the special case of
circle-shaped mappings defined on S°. For further details see [CD3],
[CD4], and [CDS5].

Let f: S°® - X be a map with circle-shaped point inverses. Given a
point b € X, there is a neighborhood V of b and a shape retract r:
V- F,. For c €V, (r|F,),: m(F,) - 7(F,) is multiplication by an
integer n which is well-defined (up to sign). We set a,(¢) =|n| and refer to
a,(c) as the winding number of F, about F. If for each neighborhood U of
b, there is a point ¢ € U such that a,(c) = 0, we say that b is a degenerate
point and denote the set of degenerate points by K. If » € X is a point
such that for each neighborhood U of b, there is a point ¢ € U such that
a,(c) # 1, b is said to be an exceptional point. If b is not an exceptional
point, we say that b is a regular point. It should be clear that the notion of
degenerate, exceptional, and regular point are well-defined. If the excep-
tional point b € X has a neighborhood U such that each point in U — {b}
is regular, we say that b is an isolated exceptional point. If b is an isolated
exceptional point, it follows from [CD3] that «,(x) is constantly equal to
some integer d in a neighborhood of b, x # b. We then say that b has
degree d. We summarize the facts about winding numbers for later use.

LEMMA 2.1. Let f: S° - X be a circle shaped mapping. If X is an ANR,
then
(1) K is closed and nowhere dense;
(i) If ay(c) is defined, there is a neighborhood V of ¢ such that a,(x)
and a (x) are defined whenever x € V and a,(x) = a,(c)a(x);
(ii1) There is a dense open set C C X such that each point in C is a
regular point;
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(iv) for any open set U C X, f| U is an approximate fibration if and only
if each point of U is a regular point; and
(V) the set of nondegenerate exceptional points is countable.

Proof. The five parts are proven in [CDS5, L.3.1], [CDS5, L.3.2], [CD3,
L.3], [CD3, L.4] and [CD3, L.6] respectively.

LEMMA 2.2. Let f: S® > X be a circle-shaped mapping which is an
approximate fibration over an open set C. If A is an arc with endpoints ¢ and
d such that A — {d} C C, then

(a) The inclusion F,, — A is a shape equivalence, and

(b) the restriction H'A — H'F, is multiplication by «,(e), where e is any
point on A such that a,(e) is defined. In particular, if d is an isolated
exceptional point, o (e) is the degree of d.

Proof. The proof of Lemma 5 of [CD3] applies almost verbatim, with
the obvious modification when d is a degenerate point.

LEMMA 2.3. Suppose f: S° - X is a circle-shaped mapping which is an
approximate fibration over all but a finite subset of X. Then X is homeomor-
phic to S*.

Proof. We use Bing’s Kline Sphere Theorem [B1]. Clearly, X is locally
connected, connected, and metric. No pair of points can separate X since
no pair of circle-shaped sets can separate S°. To complete the argument,
we must show that each simple closed curve J in X separates X. Let C be
the set over which f is an approximate fibration. If J C C, write J as the
union of two arcs meeting in their endpoints. It is easy to see, using 2.2
and a Mayer-Vietoris argument, that H*(J) = Z. Hence Hy(S* —J) =Z
by duality so J separates S°. Since fis monotone, J separates X.

If J 1s not contained in C, the spirit of the argument is the same, but
the algebra is more complicated. Let / — C = {b,,...,b,}. By (i), the
degrees p, of the exceptional points b, are relatively prime in pairs. In
particular, if some p, = 0, then J — C is a singleton. In any case where
J — C is a singleton {b}, add a “dummy” b, with p, = 1. Let the b, be
indexed consecutively around J with indices reduced modulo n, and
choose points ¢, between b, and b,,, on J. Finally, let 4,,, be the arc
between ¢, and c,,,, F =f !c,), and G,=f '(b,). Then G, C 4, is a
shape equivalence and H'd, — H'F, and H'A,,, — H'F, are multiplication
by p, and p, ., respectively.
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If i < n we prove inductively that
H'(A, U~ Ud)=2, H4U---U4)=0

and H'(A, U --- UA4,) - H'F, is multiplication by p,p, - - - p,. This is
true for i = 1, so we assume it for i — 1. Now consider the Mayer-Vietoris
sequence where B, = 4, U --- UA,:

0 HB « HELH'B_ & H'A L H'B, 0.

We have

HF_=HB_,=H'A,=7 and ¢(s,t)=(p,p, - p,_.5, —p;t).

Since p, p, - - p,_, is relatively prime to p,, ¢ is onto and H>B, = 0. Also
H'B,=imy =ker¢ = {(s,1)|p,p, - p,_\s=pt} =Z.

Finally ¢(r) = (p,r,p, - p,_,r), so H'B - H'A, -~ H'F, is multipli-
cationbyp,p, - - - p,.

Now consider the effect of adding the last arc 4,, thus closing J.
Again the Mayer-Vietoris sequence yields

Voo~ v v b v
0O HY «HF,_ ®©HF,<H'B,_,®H'A,.

Here
H'F,_,=H'F,=H'B, |=H'A,=Z7
and

¢(5,2) = (P1P2 " PaciS = Pals Pt " P2 P1S — Put)-
Hence H%/ = Z. As before, this means J separates X. We therefore
conclude that X = S2.

3. Proof of Theorem A. Suppose f: S>— X is a circle-shaped
mapping, X is an ANR, and each point inverse of f is linked by some
other point inverse. To see that X = S?, it suffices, by Lemma 2.3, to
show that f is an approximate fibration over the complement of a finite
set.

Case 1. Suppose there are no degenerate points for f. By Lemma 2.1
(11) and (v) if we write X = C U D, where D is the set of exceptional
points and C the regular points, then C is open and D is countable. Now
suppose that D has a limit point d. Let U be a connected neighborhood of
d on which «, is defined. It follows from Lemma 2.1 (ii) that «, is
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constant on C N U, say a, =p. If d’ € D N U, and x € C is sufficiently
close to d’, then a,(d’) - a;(x) = ay(x) =p by Lemma 2.1 (ii) again.
Thus a, is bounded by p on U, and we have p>1 since d is an
exceptional point. Furthermore, if a,(x) = p for some x € U, x must be a
regular point (since Lemma 2.1 (ii) implies that «, would be constantly 1
on some neighborhood of x). Therefore, there are two points d’, d” in
D N U such that a,(d’) = ay(d”’) = q<p. Let A be an arc with end-
points d" and d” such that A — {d’,d”} CUN C. If we write 4 = 4, U
A,, where 4, and 4, are arcs meeting in a common endpoint, if follows
from Lemma 2.2 and a Mayer-Vietoris argument that H?(A) has torsion,
contradicting Alexander duality. This contradiction completes the proof
in Case I. Note that the linking assumption was not needed in this case.

Case 1. There are degenerate points of f. In this case, let C denote the
regular points, E the non-degenerate exceptional points, and K the degen-
erate points. By Lemma 2.1 (v), (iii) and (i), £ is countable and C is open
and dense. Suppose first that K contains more than one point. Then a
simple point-set argument gives points d, and 4, in K, a point ¢ € C, and
arcs A, and A, such that 4; has endpoints ¢ and d;, 4, — {d;} C C, and
A, N A, = {c}. By the linking hypothesis, there is a point ¢’ such that F,,
links F.. We may assume that ¢’ # d, and thus ¢’ & A4,. According to
Lemma 2.2, the restriction H'(A,) - H'(F,) is the zero homomorphism.
Then we have the commutative diagram

ﬁl(E‘) [—’ HI(S3_1‘11) i H](S3—F'c)
i )
A(4) > H(E)

where the vertical arrows are duality isomorphisms and the horizontal
arrows are inclusion induced. Tracing the composition H,( F,) - H\(F)
gives a contradiction, since ¢i, is non-zero and ¢ is the zero map. It
follows that K is the singleton set {d,}. We may now assume that if E is
non-empty, E contains an isolated exceptional point e of degree p > 1. We
can then construct an arc A, with endpoints d, and e such that 4, —
{d,, e} C C and conclude as above that H%( 4;) has torsion. Thus X — C
= {d,} and the proof is complete in Case II.

For the converse, suppose that f: S* - §? is a circle-shaped map,
p € S% A simple modification of the proof of Theorem 2 of [L3] shows
that for some g € S?, F, links F,. (Lacher’s argument is given for the case
where F,, F, are Qomeomorphic to S'. One need only make the obvious
translation using Cech cohomology.)
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4. Proof of Theorem B. Let f: S* > X be a nonconstant approxi-
mate fibration. It follows from [CD6] that X is LC” for all n, and from
[CD3] that any two fibers of f have the same shape.

PROPOSITION 4.1. For each x € X and y € F,, there is a long exact
sequence

—)'ﬁi(Ec’ y) '_)7Ti(S3’ y) —')771(X’x) A

Proof. The argument in [CD1] applies directly.
PROPOSITION 4.2. 7,( F,) is abelian for each x € X.
Proof. Proposition 4.1 implies that #,( F,) = 7,( X).
PROPOSITION 4.3. H%(F,) =0 for all x € X.

Proof. If H*(F.) =0, then F, separates S> by duality. Since f is a
proper map, x is a cut point of X. Since all fibers have the same shape,
this contradicts the classical fact that every nondegenerate continuum
must have at least two non-cut points.

Suppose, until further notice, that f is monotone. Fix x and let
F=F,.

PROPOSITION 4.4. For each neighborhood U of F, there is a compact
connected manifold N, F C int N C N C U, such that

(a) the boundary of N is connected,

(b) HX(N) =H?*(S*— (intN)) =0

(©m(N)=0,i=2.

Proof. Since HX(F) = 0, F does not separate U. A standard argument
joining the boundary components of a simplicial neighborhood of F in U
yields a manifold neighborhood N of F in U satisfying (a). A simple
Mayer-Vietoris argument shows that N satisfies (b). Suppose that m,(N)
# 0. According to the Sphere Theorem [P], there is a tame 2-sphere
2 C N which does not bound a 3-ball in N. But 2 bounds 3-balls 4 and B
in S* and if neither is contained in N, the fact that S* — (int N) is
connected would imply that = does not separate S°. Since m,(N) =0, (c)
follows by applying the Hurewicz and Whitehead Theorems to the univer-
sal cover of N.
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PROPOSITION 4.5. The fiber F of f has the shape of either a point or S'.

Proof. Since Fis a FANR, F has the shape of a CW complex [EG], so
that we may appeal to standard algebraic topology. Thus #,(F) = ﬁl(F )
by the Hurewicz Theorem and Proposition 4.2. Since the Universal
Coefficient Theorem injects the torsion of H (F) into H*(F) =0, a,(F)
is free abelian. By the finiteness theorem of [EG], F has the shape of a
finite complex K. By (c) of Proposition 4.4, K is an Eilenberg-Mac Lane
K(Z",1) space. Hence K is homotopy equivalent to the product of n circle
and the conclusion is immediate from the fact that H*(K) = 0.

PROPOSITION 4.6. If the quotient map f: S° — X is a (nonconstant)
monotone approximate fibration whose fiber is an FANR, then either f is a
cell-like map or X = S? and f can be approximated by maps topologically
equivalent to the Hopf fibration.

Proof. If f is not cell-like, it follows from Proposition 4.5 and Lemma
2.3 that X = S2. The conclusion follows from [CD3].

To complete the proof of Theorem B, suppose that f: S°> - X is a
nonconstant approximate fibration with non-connected, FANR point
inverses. Let p: X — X be the universal cover of X. Since S° is simply
connected, f lifts to a map f: S° — X. It is not difficult to show, using path
lifting, that fis surjective.

PROPOSITION 4.7. The fibers of f are connected FANR’s.

Proof. Suppose that for some x, f~ '(x) has at least two distinct
components P and Q. Let 4 C S? be an arc with one endpoint in each of
P and Q with int A C S — f!(x). Since X is simply connected, f(A)
must be homotopic rel p(x) to a constant map. By the regular lifting
property of approximate fibrations [CD], 4 can be homotoped into an
arbitrarily small neighborhood of f~'(x) holding the endpoints of A fixed.
This gives a contradiction. Thus the fibers of f are connected. Since the
fibers of f are components of the fibers of f, each fiber of fis an FANR.

LEMMA 4.8. Let p: X — X be a finite sheeted covering space and ¢ be an
open cover of X. There exists an open cover 8 of X such that if F:
ZX1- Xand G: Z X I - X are maps such that F|Z X {0} = G|Z X
{0} and pF is 8-close to pG, then F is e-close to G.
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Proof. Let n be an open cover of X by evenly covered sets such that
the components of p~!(n) refine . Since X is LC"' there is an open cover 8
of X such that 8-close paths in X are n-homotopic [H]. Now given F and G
as in the hypothesis, fix z € Z and consider paths ¢ and y defined by
o(t) = F(z,t) and y(¢) = G(z, t). Note ¢(0) = y(0) and p¢ is d-close to
pY- Hence there exists a homotopy H: I X I - X such that H(z,0) =
po(2), H(z, 1) = py(1), HQO, s) = p$(0) = py(0) and H({s} X I) is con-
tained in some element of n for each t € I, s € I. Choose a subdivision
0=1¢,<t; <---<t,= lsuchthat H([¢;, t,,,] X I)is contained in some
element U, of u. Since p is a covering projection, there is a lifting H:
IX1I-X of H such that H(z,0) = ¢(¢) and H(z,1) = y(¢). Since
H([t,, t,,,] X I) C U and H(t,, t,,,] X I) is connected, H([¢,, t,,,] X I)
is contained in a component of U, Therefore ¢ is e-close to y and since z
was arbitrary F is e-close to G.

PROPOSITION 4.9. The map f is an approximate fibration.

Proof. Given a space Z, a map h: Z X {0} - S°, a homotopy H:
Z X I - X and an open cover ¢ of X such that H|Z X {0} = fh, choose
an open cover § of X satisfying Proposition 4.8. Since fis an approximate
fibration, there exists a homotopy H: Z X I — S* which extends 4 and for
which fH is 8-close to pH. Since f= pf, pfH is dé-close to pH and
fH|Z X (0} = fh = H|Z X {0}. By Lemma 4.8, fH is e-close to H which
proves f is an approximate fibration.

Theorem B now follows by applying Proposition 4.6 to the map f. If f
is monotone, then X is simply connected so X = X and p is the identity.
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