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The weak factorization theorem for real Hardy spaces H”(R"),
previously obtained by Coifman, Rochberg and Weiss, and by Uchiyama
for the case p > n/(n + 1), is extended to the case p < n/(n + 1).

1. Introduction. The purpose of this paper is to give an extension
of the following

THEOREM A. (Coifman-Rochberg-Weiss [3; Theorem 11], Uchiyama |7,
Corollary to Theorem 1), [8].) Let K be a homogeneous singular integral
operator of Calderon-Zygmund type on R* and K’ its conjugate. Suppose
p,q, r>0satisfy 1/p=1/q+ 1/r<1+1/n. () If h € L* N HYR"),
g € L*N H'(R") and

f= hKg — gK'h,
then f € HP(R") and

Ifllze = CillBllellg

(i1) Conversely, if, furthermore, K is not a constant multiple of the
identity operator and p < 1, every f € HP(R") can be written as

H

[ee]
f= 2 }\j(thgj - ng’hj)’
=1

j:
where X | are complex numbers, h; € L* N HYR"), g, € L* N H'(R") and

o0 » 1/p
“hj“[-ﬂ”g]“Hr S CZ’ ( 21 lle ) _<__ C3,
j‘_"
The constants C,, C, and C; depend only on p, q, r, K and n.

As for the definition of H”(R”"), see Fefferman-Stein [4]; as for the
operators K and K’, see the definitions given in the next section.

An extension of part (i) to the case 1/p =1+ 1/n is given in the
following

THEOREM B. (Miyachi [6].) Let K,,...,K, be homogeneous singular
integral operators of Calderon-Zygmund type on R" and K their conjugates.
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Set, forh € L*> N HY(R") and g € L* N H'(R"),

P(K,,....Ky; h,8) = 2 ( —1)"'{(/@11«) }{(jgjtlfj)g},

J

where the summation ranges over all subsets J of {1,...,N}, |J | denotes the
number of elements of J, J¢ is the complement of J, and 1l is the product of
operators; if J or J¢ is the empty set, the corresponding product 11 means the
identity operator. Then, if p, q,r > Osatisfy 1/p=1/q+ 1/r <1+ N/n,
there is a constant C depending only on K,,...,Ky, p, q, r and n such that,
forallh € L* N HY(R") and all g € L* N H'(R"),

[P(Kys....Ky; by )l ge = Clill gl 8ll -

In this paper, we shall extend part (ii) of Theorem A to the case
1/p =1 + 1/n by using the “product” given in Theorem B.
Throughout this paper, we use the following

NoOTATION. For x €R" and r >0, B(x,r) denotes the ball with
respect to the usual metric with center x and radius r. If «a,...,a, are
nonnegative integers and a« = («y,...,q,), the differential operator 9* is
defined by

o . 8 ay 8 a, "
o) = (| o (g ) s xer
and |a|by|a|= a; + - - - +a,. We shall also use the notation

(3/3x)"f(x) = 3°f(x).
If 5 is a real number, [s] denotes the largest integer not greater than s. ¥
denotes the Fourier transform.

2. The result. Before we state our theorem, we shall explain the
singular integral operators considered in this paper.

DErFINITION 1. We say that K is a homogeneous singular integral
operator of Calderon-Zygmund type if it is defined by

(1) Kf = (m%f)
with a bounded function m smooth in R"\{0} and homogeneous of
degree zero, i.e. satisfying

m(t&) =m(§), >0,£#0.
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We shall call m the multiplier corresponding to K.

DEfFINITION 2. If K is a homogeneous singular integral operator of
Calderon-Zygmund type defined by (1), the conjugate operator K’ is
defined by

K'f =& (mFf),

where mi(§) = m(—§).
By using the Fourier transform, the “product” of Theorem B can be
redefined by

FP(K,,...,Ky; b, 8)(§)

- f@h(n)@g(é - 1) I;[] (m;(§ —n) —m,(—n))dn,

where m is the multiplier corresponding to K.
The theorem of this paper reads as follows.

THEOREM. Let K ,,. . .,K, be homogeneous singular integral operators of
Calderon-Zygmund type and m , the multipliers corresponding to K . Suppose
P, q, r>0satisfy 1 <1/p=1/q+ 1/r<1+ N/n and the multipliers
m  satisfy the following condition: for any § # 0, there exists an 1 # 0 such
that

N
I (m;(&) = m(m)) % 0.
j=1
Then every f € HP(R") can be decomposed as
f=2NP(K,,...,Ky; h;, g,),
j=1

where X are complex numbers, h, € L> N HYR"), g, € L*> N H'(R") and

o0

c=c (Enr)" =aum

j=1

(GRS

with a constant C depending only on K ,...,Ky, p, q, r and n.

The rest of the paper will be devoted to the proof of this theorem.
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3. Proof of Theorem. The proof will be based on the following

LEMMA 1. If 0<p =1, every f € H?(R") can be decomposed as

follows:

= ZNf

j=1
where X, are complex numbers, f; are functions satisfying, for some balls
B(XJ, pj)y

support( f;) C B(x,, p,),
(2) “f;”L‘” = pjﬁn/p’
ffj(x)x“dx =0 for|a|<[n/p — n]

and
o » 1/p
(S 0] =i
j=1
The constant A depends only on p and n.
This lemma is given by Latter [S].
We shall introduce a class of functions: for p, ¢ > 0 and a nonnegative

integer M, we denote by @, ,,() the set of all functions f € L*(R") such
that

Ff(€) =0 for|§|= 1/t
and

02T fll 2 < #4—n/P*7/2 for|a|< M.

LeMMA 2. If 0 <p <2 and M > n/p — n/2, then @, ,,(t) C H?(R")
and there is a constant C depending only on n and p such that

IAlzr<C forall fER,,(¢), t>0.

Proof. We may assume M = [n/p — n/2] + 1. We shall prove that
| (mFf)|r<C forall fER, (1), >0,
whenever m is a bounded function satisfying

|a*m(¢)|=<|¢| 7 for|a|< M.
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This will prove the lemma by the singular integral characterization of
H?(R") (see Fefferman-Stein [4; §8] or Coifman-Dahlberg [2]).

Now suppose f € @p’M(t), t>0, and m is as above; we set g =
%~ Y(m%f). Then

[3°Fgl 2 =< =/ P2 al= M,
and hence, by Plancherel’s theorem,
|1 Fg(x)| 2 < Cekmm/ptn/2 k=0,1,...,M.

From this we can derive the desired estimate by using Holder’s inequality.
Infact,if 0<p=2and 1/p =1/2 + 1/q, we have

1/q

( [ Jsr dx) = ugan( [ qux) =¥e

and
» 1/p /9
(/ 1g(x)] dx) slllleg(x)an(f lerqu) <c,
x>t x>
where we used the fact that Mg > n; thus ||g{|,» = C. This completes the

proof.

LEMMA 3. IfO0<p=<1land M >n/p — n/2, every f € H?(R") can be
decomposed as follows:
f: E }\jfj('—xj)5
1

j:

where X ; are complex numbers, S @p’ m(2;) with some t; >0, x; € R" and

0 1/p
( 2 lkjl”) <A\ fllpr
j=1

with a constant A’ depending only on M, p and n.
Proof. We shall prove that if f satisfies

support(f) C B(xq, p),
(3) 1 fll = <p~""7,

ff(x)x"‘dx =0 for|a|<[n/p — n],
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then we can take a constant A” depending only on M, p and n and a
function g € &, ,(¢), t > 0, such that

(4) “f_ A"g(- _xo)“m =1/24,

where A4 is the constant in Lemma 1.

For the moment we assume the approximation (3)—(4) and derive
Lemma 3 from Lemma 1. Let f be an arbitrary element of H”(R"). Apply
Lemma 1 to f to obtain

o
f= 2N\
j=1
with f; satisfying (2) and A satisfying

0 » i/p
(EIA,I) < A|l f1l o

j=1

then apply the approximation (3)-(4) to each f, to obtain

f= 2 }‘,A”gj(' _xj) +f(1)
=1

Jj=

withg, € & \(¢),¢,> 0, and
”f(l)”Hp = 2—1”f”H”'

Next apply the same process to f, to obtain a smaller error f,), and then
again apply the same process to f, to obtain f;),...; repeating this
process, we obtain, for each N,
N o
/= k§0 j§| N;A”gjl‘((' —x/l'() + fivey

where gf € @, ,,(¢f), ¢} >0, and

0 » l/p
(ElAﬁl) <27%A| fll o
j=1

v+ vllge = 27V S Ml e

Now the decomposition of Lemma 3 can be obtained by letting N — o
since

0 » 1/p o l/p
(2 Elk’j—A”l) S(Eoz"‘f’) A" ANl = A fl-

k=0 j=1
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Now we shall prove the approximation (3)—(4). We may assume
X, = 0; suppose f satisfies (3) with x, = 0.

First observe that the Fourier transform of f has the following
estimates:

(5) 134G ] 2 < CpH"/P /2,
(6) laagf(g)' < Cwoin/pHl—n/p,ﬂ[n/p]—n—lv‘l+l if|§|5 p—l,

where the constant C, depends only on p, n and a. Estimate (5) follows
from

lbef (e )llpz = G 7vnr2

via Plancherel’s theorem. Estimate (6) follows, if |a|<[n/p — n], from
the estimates

0P3°Ff(0) =0 for|BI=[n/p — n] — o,
19235 ] 1 < Col"/21*1=n/> for |B|=[n/p — n] —|a| +1

via Taylor’s formula; if |a|>[n/p — n], (6) is a consequence of the
stronger estimate

”aagﬂ{Lw < Cap[oq—n p+n.
For T > 2, consider the function
he =9 '(¥(Tp -)F1(-)),

where ¢ is a fixed smooth function on R” such that ¢(§) =1 for [{]|=2
and (&) = 0 for |£|= 1. From (5) and (6) we shall derive the estimates

(7) “aaghT”Lz = C‘;]""Iplal-n/p+n/2’
®) = ol < CT-U8/P1 475,

where C, and C do not depend on f, p and 7. Once these estimates are
proved, the approximation (4) can be obtained by setting

g=A""'h; € @p,M(Tp)
with A” and T sufficiently large; A” and T can be taken depending only
on M, p and n.

Thus the proof is reduced to that of (7) and (8). (7) follows directly
from (5). In order to prove (8), decompose f — A, as

f—hp= g%’"(x(z% Ff(+) = i}fﬁ-s
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where x(§) = ¥(2§) — (). As for f,, we have
support(@]}) C{&27 =2/Tp|¢)= 2},
and, from (6),
0751 = C.rT) O T gt e,
and, hence, by Lemma 2,
Il e = CIT) IR,
Thus

'} » \/p
If = bl e < ( S ||]j||Hp) < CT \n/P1-1+n/p.
j=0

This proves (8) and completes the proof of Lemma 3.

Proof of Theorem. Since 1/p = 1/q + 1/r =1, either g or r is less
than or equal to 2; we assume r < 2.

We shall prove that, for any f € & \(¢), t >0, M = [n/p — n/2} +
2, we can take h, € L?> N HYR"), g € L?> N H'(R") and complex num-
bers A so that we have

24"

“f_ S AP(Ky. . Ky h, g)
J=1 H

00 1/p
sl zc. [Enr) =c

where A’ is the constant in Lemma 3 corresponding to M = [n/p — n/2]
+ 2 and C is a constant depending only on K|,...,Ky, p, ¢, r and n.
Once this is proved, the Theorem is derived from Lemma 3 by the same
argument as Lemma 3 was derived from Lemma 1.

Firstly, observe that our assumption on the multipliers means, via a
compactness argument, that there exist a finite open covering {V}; k =
1,2,...,m} of S""'={¢ €R" |£|= 1}, points {n,; k= 1,2,...,m} C
S~ and a positive number ¢ such that, for each k,

N

) inf | I (m,(£) = m,(—m))|=c.

(v, j=1
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Let {@,; k=1,2,...,m} be a smooth partition of unity on $”~' sub-
ordinate to the covering {V,; k= 1,2,...,m}. Take an arbitrary f €
@, u(0), t >0, M = [n/p — n/2] + 2. Decompose f as

f: 2 fk’ fk = 6‘}-—l(qbkgff)’
k=1

where ¢,(£) = @ (§/1€)). It is sufficient to show that for each k we can
take h, € L* N HYR") and g, € L* N H'(R") such that

(10) {”fk = P(Kypso o K s 8o = m™'/7(24) 7,
Wil rall gl - = €.

In order to prove (10), we set

&k = g—l(( ﬁ (mj() - mj(*ﬂk))) Ff,

As a candidate for &,, we consider the following function. Take a smooth
function @ satisfying support(§) C B(0,1) and [ 6(x) dx = 1, and set

Bese=F '((e7'0)"0(e (- —6¢7m,))),

where & and ¢ are small positive numbers satisfying ¢ < /2 and § + ¢ <
1/2. We shall prove the following estimates:

(11) gl sr = CE2/27077,

(12) 1 o.lle =< Ce™'0)™",

(13) Ife = P(Kys - Ky s 8i)lar =< C(8 + 87 1),

where C is a constant depending only on K,...,K,, p, q, r and n. If these

estimates are established, (10) can be obtained by taking , = h, 5 , with §
and ¢ sufficiently small; § and ¢ can be taken depending only on
K,....Ky,p,q,randn.

Proof of (11). By (9) and by the homogeneity of m , the function

-1

6(6) = | 1T (m(6) = m,(~n0)

satisfies

0°G(§)| = C,|§17
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in an appropriate neighborhood of support(%f,). Hence the well-known
multiplier theorem for H? spaces (see [4; Theorem 12] or [1; Theorems 4.6
and 4.7]) gives

gl = Cllfidlyr = ClAlr = Comn/25077,

where the last inequality is due to Lemma 2.
Proof of (12). If g > 2, we have
1745l e ~his.ell o
=|F'0(et™" )| o = Cler™ )Y,
if g = 2, then (12) is obtained by using Lemma 2 since
[3Fhy 5.6l 2 =< Cle™ )2
and Fh, 5 (§) = 0 for |§|<er™.
Proof of (13). We shall again appeal to Lemma 2. We have
F(f — P(Ky,- - K5 by e g))(€)
= [Fhe o 0)(F1(8) — FF(& —n)) dn

+ [Fhe s (M)Ffls 1)

| — ﬁ mj(g —n) — m,(—n)
j=1 mj(g —1) — mj(_nk)
= 1(¢) + II(¢).

Supports of the functions I and II are contained in

{¢ € R7; dist(¢, support(Ff,)) < (8 + &)1 '}
and, hence, in {|£|> (2¢)"'}. As for the function I, we have, if [a|< M —
1=[n/p—n/21 +1,

1312 <l grad 8°F /.| 2 [ 1T o..(n)] Inl

< Cst{al—n/p-Fn/Z.

X

dn

In order to estimate II, observe the following inequalities: if § —n €
support(%f,) and { € B(8t 'y, et™ "),

i(i)“ﬁ m;(§—n) —m,(={)
a¢; \ 0¢ j=1 mj(é-n)—mj(—m)

~led

= Caavlzlg - 7l| s
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and, hence, if £ — n € support(%f,) and n € support(Fh, s ,),

9 \" l mj(g_n)_mj(—n)
(55) (1 —jI:]I mj(g— n) — mj(_nk))
o\« XN mj(§~n)—mj(_§) o
(52 jl;Il m (&—n) —mj(—nk)L:W]m [ Ji=n
= Cplelg — | " = 5 e

Using this inequality, we obtain, for |a|< M,

“aaII”Lz < C§ legfdd—n/ptn/2

Now we can utilize Lemma 2 to obtain

”g_II”Hp ‘+‘”@—1H“11n =Cé + C8_1£,

which implies (13).

(1]
(2]

(8]

This completes the proof of the Theorem.
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