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The existence of bounded positive solutions of semilinear elliptic
boundary value problems of the type

(1.1) Lu=Af(x,u), x€Q,
(1.2) u(x) =0, x € 3,

will be proved in unbounded domains Q& C R”, n > 2, with boundary
30 € C?7%,0 < a < 1, where A is a positive constant and

13) Lu=- Y D,[a,/(x)D]u] +m(x)u, xe€q,
ij=1

D, = 3/9x;,i = 1,...,n. The existence of a bounded positive solution of
(1.1) in the entire space R" is proved also by the same procedure. The
regularity and additional hypotheses H1-HS to be imposed on L and f
are stated in §2. In particular, the assumption f(x,0) = 0 for all x € {
implies that the boundary value problem (1.1), (1.2) always has the trivial
solution.

1. Introduction. Generally a positive solution of (1.1), (1.2) in £
exists only if A is sufficiently large, as might be expected from known
results for bounded domains, see e.g. Rabinowitz [23]. In fact, under the
extra hypotheses H8 and H9, we prove the Uniqueness Theorem 5.1:
There exists a positive interval (0, A,] such that (1.1), (1.2) has no
nontrivial solution u(x, A) for any A in this interval. However, under
different conditions H6 and H7, Theorems 4.4 and 4.6 yield bounded
positive solutions of, respectively, the boundary value problem (1.1), (1.2)
and the differential equation (1.1) in all of R" for arbitrary positive A.

The physically important case [9, 25]

(1.4) —Au+m(x)u=p(x)u’ —qg(x)u?, xe€Q,

is included, where 1 < y < B and p, ¢, m are nonnegative functions in §2.
Solutions u(x) of (1.4) provide stationary states e’“’u(x) of the corre-
sponding wave equation, often called the Klein-Gordon equation. In the
case of constants p, g, m, the existence of positive solutions of (1.4) in the
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entire space R" which decay exponentially at co (if m > 0) has been
proved by Berestycki and Lions [7], Berestycki, Lions, and Peletier [8],
Berger [9], and Strauss [25]. These results of course are not concerned with
boundary conditions on 9. Our method establishes, in particular, the
existence of positive solutions of the Dirichlet problem for (1.4) in
unbounded domains £ without the requirement of any symmetry condi-
tions on either € or the coefficients. The earlier methods cited, depending
critically on the radial symmetry of the coefficients, could not be extended
to solve the present problems.

However, we are unable to prove in general that the solution has limit
zero at co. This is proved in §5 only in cases for which the nonlinear terms
in (1.4) have limit zero at oo.

Existence theorems for boundary value problems on bounded domains
are contained in papers by Ako [1], Amann [2], Amann and Crandall [3],
Bandle [4], Keller [16], Nagumo [18], Rabinowitz {23], and Schmitt [24].
Extensive bibliographies appear in [23] and [24]. For unbounded domains,
the existence theorems of Benci and Fortunato [5, 6], Berger and Schechter
[10], Bose [11], Edmunds and Evans [13], Edmunds and Webb [14],
Noussair [19] and Ogata [21] either apply only to special cases of our
problem, or do not guarantee nontrivial solutions, or both. The complex
theory of weighted Sobolev spaces, as developed and exploited in [5, 6, 10,
13, 14], requires restrictions on the “size” of the domain £ at oo and does
not aim at positivity or asymptotic behavior of the solutions.

Section 2 describes the notation and principal hypotheses. In §3 some
results of Rabinowitz [23] for bounded domains are adapted to our
structure. The main Theorem 4.3 establishes the existence of a bounded
positive solution of (1.1), (1.2) in € for all sufficiently large A if H1-H5
hold. The modifications in Theorem 4.5 and 4.6 yield bounded positive
solutions of (1.1) in R”. Section 5 concerns the existence of positive
solutions u(x, A) of (1.1), (1.2) which have limit 0 as |x| = co. This is
proved in two cases: (i) m(x) is uniformly positive and f(x,t) = 0 as
|x| — o0; and (ii) in dimensions n > 3, f(x, t) satisfies a Dini condition of
the Meyers and Serrin type [17]. Section 6 contains modifications for
m(x) < 0.

The case of nonnegative functions f(x, ) for all x, u is not being
considered here. We solve (1.1), (1.2) in this case elsewhere by completely
different methods.

2. Preliminaries. Let |x| denote the Euclidean norm of a point
X = (Xy,...,x,) in real Euclidean n-space R", n > 2. The notation below
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will be used throughout:

S,={x€R" |x|=1t}, t>0,
G, = {x € R": x| > 1}, t>0,
G,={xeR:s<[x|<t}, O0<s<iu,
Q={xe€Q:|x|<t}, t>0.

An exterior domain € C R" has the property that G; C § for some § > 0,
fixed in the sequel.

For a bounded domain M C @, C""%(M) denotes the usual Holder
space, with norm || - ||, 057, 0 < a <1, m = 0,1,2,.... The abbreviation
Crr*(Q) is used for the set of all u € C™**(M) for every bounded

subdomain M of Q. The space W) (M) is defined to be the completion of
C3°(M) in the norm

Jull = [f I |ptu(s )lzdx]m

where multi-index notation has been used.
The conditions below will be imposed on the functions a
in (1.1), (1.3):

m, and f

1]

H1. Each q,; € Cit®(Q), m € CE.(R), m(x) = 0 in Q, and (a;;(x))
is symmetric and uniformly positive definite in every bounded subdomain
of ©, where a € (0, 1) is fixed throughout.

H2. f is locally Lipschitz continuous on (2 U 92) X R*, where R =
[0, 0) , and f(x,0) = O for all x € Q.

H3. There exists a positive number 7 such that f(x, ¢) <0 for all
t > T and for all x € Q.

H4. There exist x, € @ and T, € [0, T) such that F(x,, T,) > 0,
where

(2.1) F(x, 1) =f0’f(x, r)dr, 0<t<co.

HS. For every bounded domain M < Q and for every ¢, > 0, there
corresponds a positive constant K = K(M, t,) such that Af(x, t) + Kt is
a nondecreasing function of 7 on 0 < ¢ < ¢, for each fixed x € M.
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HS5 is satisfied, for example, if f(x, #) is continuously differentiable
with respect to ¢ at every (x, ) € @ X R*. In particular H2 implies that
fe Cg.(2 X RY).

These hypotheses are all satisfied in the case that (1.1) is specialized
to equation (1.4) under the following conditions: (i) 1 <y < 8; (ii) p, g,
m are locally Lipschitz continuous, nonnegative, and bounded; and (iii)
p/q is bounded and bounded away from zero in {.

3. Construction of subsolutions. Let 7 be as in H3 and let f;:
£ X R — R be defined by

0 if 1 <0,
(3.1) fr(x,0)={f(x,t) if0<t<T,
f(x,T) ife>T.
Also define F by
(32) Er(x,0) = [ fr(x,7) dr
0

Then, by (2.1) and (3.2), Fr(x,t) = F(x,t)for0 <t < T, x € . Associ-
ated with (1.1), consider the following boundary value problem on bounded
domains Q:

(3.3)

Lu=?\f(x,u), erRa
u(x) =0, x € 0Q.

Let I(¢, M) be the functional on W, (£y) defined by

(3-4) IR(‘P, }\) = Il,R(¢) - AIz,zz(‘P),

where

(3.5) I x(¢ —%/ﬂ [ " au(x D,¢D;¢ + m(x)¢*(x)| dx
(3.6) L 4( fﬂ x)) dx.

THEOREM 3.1 (Rabinowitz). If H1-H4 hold, there exist positive con-
stants R and N* = A*(R) such that the boundary value problem (3.3) has a
positive solution ug = ug(x, N) in Q@ for all A = N*. Furthermore, the
functional Ig(¢, \) on ﬁ’zl(QR) attains its minimum at ¢ = ug(-, X) for
A=A
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H4 implies that R can be chosen large enough (and fixed in the
sequel) so that there exists a point x, € £ with F(x,, T;) > 0. Then
Theorem 3.1 follows from a theorem of Rabinowitz [23, p. 177] applied to
the bounded domain .

Theorem 3.1 is strengthened to the result below under the following

additional hypotheses:

Hé. Each g, ,(x) and f(x, t) are bounded in & for each fixed ¢ > 0,
and m(x) = 0 identically.

H7. There exists a positive constant C such that

limsupRl_"f F(x,C)dx = + o0,

R— o0 Qr

where F(x, t) is defined by (2.1).

THeOREM 3.2. If H1-H3, H6, and H7 hold, there exists R > 0 such
that (3.3) has a nontrivial nonnegative solution ug(x, X) in S for all A > 0.

Proof. H7 implies that H4 holds for some x in a domain £ for some
R > 0. The proof given by Rabinowitz [23, pp. 176-177] shows on the
basis of H1-H4 in @ that I,(¢, A) attains its minimum on WX Q) ata
point ¢ = ug(-, A) which is a nonnegative classical solution of (3.3) in §2.
To show that u is nontrivial, consider the piecewise C* function on Qg
defined by

0 ifxeq,,
e (x) = C(lx|—a) ifax<|x|<a+1,
® C ifa+1<|x<R-1,

C(R-|x]) ifR—-1<|x|<R,

where a> 0 is chosen so that G, € @, and R > a + 2 without loss of
generality. Since wy = 0 on 9Qg, wg € Wy (Rp). Each a,(x) and F(x, 1)
are bounded in Q for each fixed 1 > 0 by H6, (3.1), and (3.2). Then one
sees easily from (3.5) and (3.6) that there exist positive constants K, and
K, such that

Il,R(WR) = Kan_l

IZ,R(WR)Z _Kan_1+ FT()C,C) dx,

Ga+1,R*1
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for R > a + 2. Since C < T by H3 and H7, F;(x,C) = F(x,C). Then
H7 and (3.4) show that I (wg, A) <O for some sufficiently large R.
However, I3(0, A) = 0 from H2, (3.2), (3.4)—(3.6) and hence uy is nontriv-
ial from the minimum property of u.

REMARK. The boundedness hypothesis H6 can be relaxed to allow
unbounded functions q; (x) and f(x, -) provided H7 is modified. This
can be accomplished by a different choice of wg(x) in the proof of
Theorem 3.2.

4. Existence of positive solutions. A solution of (1.1), (1.2) in an
unbounded domain £ C R” is understood to be a function u = u(-, A) €
CE*(Q) such that u satisfies (1.1), (1.2) identically.

Let ui(x, A) be a nontrivial nonnegative solution of the boundary
value problem (3.3) in a bounded domain ;. If H1-H4 are satisfied,
Theorem 3.1 shows that u(x, A) exists for some R > 0 (fixed) and for all
A>A*>0. If HI-H3, H6, and H7 hold, Theorem 3.2 shows that
ug(x,A) exists for all A > 0. Let wy(x, A) denote the extension of

ugz(x, A) to all of R” defined by
(4.1) wo(x, ) = {”R(XJ\) if x € Qp,
0 otherwise.

The Lemma below concerns functions v € CZI*(Q) (to be found
later) which satisfy

(4.2) Lv > Af(x,v) inQ, ©v=>0 ondQ.

LEMMA 4.1. Under hypotheses H1, H2, and H5, suppose there exist
non-trivial functions u, € C***(Qg) and v € CL}*(Q) satisfying (3.3) and
(4.2), respectively, such that 0 < ug(x, \) < v(x, A) for all x € Qz, R > 0,
A > 0. Then there exists a sequence of functions w; € C e Qn, ;) satisfying

Lw; < Af(x,w;) inQg,, =0 ondQg,;

such that wy(x, A) < w,(x, A) < v(x, A) throughout QR+j, where wy(x, A)
is defined by (4.1).

Proof. Define

sup v(x), j=1,2,....

x€8Qp.y;

T
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By H5, we can choose a positive constant K, depending on v, such that
Af(x, 1)+ Kt is a nondecreasing function of ton0<r<T, for each
fixed x € SZR +,- Define w, = w;(x, A) to be the unique soluuon of the
linear boundary value problem

(L + K )w; = Af(x,wy(x)) + Kwy(x) inQg,,

43
(43) w,(x)=0 on 9Q U Sg., .

We now verify that w; has all the properties stated in Lemma 4.1. Since A
is fixed, we delete the A dependence from the notation w,(x, A), etc.

First let Fi(x) = Af(x, wy(x)) + Kwy(x), x € QRH Then F, €
C*(Qp, ,) by H2, and the standard Schauder estimate for the solut1on of
(4.3) [12, p. 335] shows thatw, € C“"(SZ,H]) j=12,.

It follows from (4.2) and (4.3) that

(L+K)(v-w)= [}\f(x, v) + Kjv] —[}\f(x,wo) + Kjwo]

in Q.. Since v > u, in @ by hypothesis, so also v > w, in Qg
(L+ K)wv—w)=0 in Q, . Furthermore, v —w, =0v =0 on 9Q U
Sg, and therefore v — w; > 0 throughout Qr. ; by the maximum principle
[22].
Similarly, (L + K)w; >0 in g, and hence w, > 0 throughout

g, From (3.3) and (4.3) we obtain

(L+K,)(w —ug) =0 inQp,

W= Up = 0 on 0%,

wj—uR=wij on Sg,
from which w; > uy throughout Q by the maximum principle, and hence

w, = w, throughout £ U 9% by (4.1).
Finally, from (4.3),

Lw, — Af(x,w)) = [}\f(x,wo) + KJWOJ ~[)\f(x,wj) + Kjw}] <0
in SZR+J.,j =1,2,....

LEMMA 4.2. Under the hypotheses of Lemma 4.1, there exists a sequence
of functions u in & U %2 with the following properties:

(A, € C2 Ry,

B)u,(x,A\)=0ifx €9Q U S, U Gg_;;

(@) Lu =Af(x, ui(x,N) if x € Qg ;

(D) wo(x A) < w(x A) <u(x,A) <o(x, ?\) in QR+I,

(B)u; 1 (x, A) = u(x, }\)mQUBQJ 1,2,.
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Proof. By Lemma 4.1, w; is a subsolution and v is a supersolution of
the boundary value problem

Lu= }\f(x, u), X € QR+j,

4.4
(44) u(x) =0, x € Qg

with w,(x, A) < v(x, A) throughout Qz. ;- Then a theorem of Amann [2,
p. 283] shows that (4.4) has a minimal solution u = U, € C*>"*(Qy, )
satisfying wy < w, < U; < v throughout Q¢ , i.e. W; > U, on {2z, for any
solution W, of (4.4) satisfyingw, < W, < v on {2z, . The extension u (x, A)
of U(x, A) to £ U 9% defined to be 0 for |[x| > R + j then has properties
(A)—(D) of the Lemma.

To prove (E), notice from (A)—(D) that u,, is a supersolution of (4.4)
in Q. ;. By Amann’s Theorem [2] again, there exists a solution W, of (4.4)
satisfying wy < w; < W, < u;, in g, ;. The minimality of U; then im-
plies that W, > U, and hence u,,, > u; in @, ;. Since the same inequal-
ity holds if |[x| > R + j by (B), (D), property (E) has been proved.

In'the first main theorem we specialize Lemma 4.2 to the case of the
constant function v(x, A) = T, which evidently satisfies (4.2) if H3 holds.

THEOREM 4.3. If H1-HS are satisfied, there exists A* > 0 such that the
boundary value problem (1.1), (1.2) has a bounded positive solution u(x, \)
in  satisfying wy(x, \) < u(x,\) < T for all x € QLU 0Q and for all
A= A%

Proof. Since H1-H4 hold, Theorem 3.1 guarantees a positive solution
ug(x, A) of (3.3) in @ for all A > A* > 0, as required for Lemma 4.2. We
need to check first that the constant solution v(x, A) = T of (4.2) satisfies
ug(x, \) < T for all x € Q. Suppose to the contrary that ug(xy, A) > T
is a (necessarily positive) maximum of ugz(x, A) in €. Then, in ap-
propriate coordinates, 0 < Lug(xy, A) = Af(xq, ug(x,, A)), contradicting
H3. Accordingly it follows from (4.1) that wy(x, A) < T for all x € Q.

Therefore the sequence {u,(x,A)} in Lemma 4.2 exists. The next
(crucial) step is to prove, for every positive integer i, that there exists a
positive constant K(i), independent of j > i, such that

Il s gy, < K(i) forallj>i.

This can be accomplished by L7-estimates, Sobolev embedding, and
Schauder estimales as in [20, Lemma 3.2]. Then the compactness of the
injection C?**(Qg,,) = C?*(Qg,,) enables us to define a subsequence
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{u!} of {u!”'} inductively which converges in the C*(Q,,) norm to a
function u' € CZ(S—ZRH), i=2,3,..., where u} =u, The proof given in
[20, p. 126] shows that the diagonal sequence {u/} converges to a solution
u of (1.1), (1.2). By property (D) of Lemma 4.2, the solution satisfies
wo(x, A) < u(x, A) < T'in Q, and so is bounded.

The pointwise limit of {u,(x, A)} exists by the monotone property
(E), and the limit can only be the function u(x, A) constructed above. To
prove that u(x, A) > 0 for all x € @, let M be any bounded domain with
M C € and choose an integer i such that M C Q. ,. By Lemma 4.1, w, is
nontrivial and satisfies

(L+K)w,>20 inQg,,, w=0 ondQ,,

for K; > 0. Then the strong maximum principle {22] shows that w, > 0
throughout ;.. By properties (D) and (E) of Lemma 4.2, u, > u, > w,
throughout Qg forallj > i, and therefore u(x, A) = lim,_,  u,(x,A) > 0
on M. Since M is arbitrary, u(x, A) is a positive solution of (1.1), (1.2) in
Q forall A = A*.

The following analogue of Theorem 4.3 is proved in the same way by
using Theorem 3.2 instead of Theorem 3.1.

THEOREM 4.4. Suppose that H1-H3 and H5-H7 are satisfied. Then the
boundary value problem (1.1), (1.2) has a bounded positive solution u(x, \)
in § satisfying wo(x, A) < u(x,A\) < T for all x € @ U 0Q and for all
A> 0.

The existence of a bounded positive solution of (1.1) in the entire
space R" is proved by exactly the same method. An analogue of Lemma
4.2, with @ replaced by R” and 92 deleted, follows from Theorem 3.1 or
Theorem 3.2 without essential change. The hypotheses H'1-H'7 are form-
ally the same as H1-H7 with R” replacing £ and 9€ deleted.

THEOREM 4.5. If H'1-H'5 hold, there exists A* > 0 such that (1.1) has
a bounded positive solution u(-,\) € CLI*(R") satisfying wy(x, A) <
u(x,\) < Tforall x € R" and for all A = A\*.

THEOREM 4.6. If H'1-H'3 and H'5-H'7 are satisfied, then (1.1) has a
bounded positive solution u(x, ) satisfying wy(x, A) < u(x, A) < T for all
X € R" and for all A\ > 0.

S. Behavior of solutions as |x| — co. In this section we consider the
case that (1.1) is the Schrodinger equation. Then the boundary value
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problem (1.1), (1.2) reduces to

(5.1) —Au+ m(x)u=Af(x,u), xeQ,
(5.2) u(x)=0, x € 93Q.
We prove in particular, under hypotheses selected from the list below, that

(5.1), (5.2) has an exponentially decaying positive solution u(x, A) in £ as
|x| = oo, provided A is sufficiently large.

H8. There exists m, > 0 such that m(x) > m, > 0 for all x € §.

H9. f(x, t)/t is bounded in Q X (0, T}, and lim,_,.(f(x,?)/t) =0
for all x € €.

H10. lim, _, ., supy ., r(f(x, 1)/2) = O.

H11. There exists r, > 0 such that

8(r)

sup ¢(x) < —= forallr = r,,
lx|=r r

where

¢(x) = sup f(x,?)

0<t<T

and 8(r) denotes a Dini function, i.e. the improper integral [* r~'8(r) dr
exists and is finite.

UNIQUENESS THEOREM 5.1. If H1-H4, H8, and HY hold, then there
exists Ay > 0 such that the only nonnegative bounded solution u(x, \) of
(5.1), (5.2) is identically zero in  for0 < XA < A,.

Proof. Define h(x,t) = f(x,t)/t if t > 0, h(x,0) = 0 for all x € Q,
and
"
2py

KLy = SUp h(-x9 t), }\*

Thus p, is positive and finite by H4 and HY, so A, > 0. For any
nonnegative bounded solution u(x, A) of (5.1), (5.2), define

(5.3) M(x,\) =m(x)— Ah(x,u(x,A)), xeQ.
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IfO <A <Agand 0 < u(x, A) < Tit follows that
A(x,u(x,A)) < Aypy =my/2, x€Q,

and hence by H8 that

(5.4) M(x,\)2m(x)—my/2=2my/2>0, xeQ.

However by H3, h(x, u(x,A)) <0 for all x € @ such that u(x,A) > T,
and for all A >0, and so M(x,A) > m(x) > m, at all such points.
Therefore (5.4) is satisfied for all x € £ and for all A in 0 < A < A,.

By (5.1) and (5.3), u(x, A) is a solution of the linear differential
equation

(5.5) —Au+M(x,N)u=0, xeQ.

Since u(x, A) is bounded, a theorem of Kato [15, p. 415] shows in view of
(5.4) that there exists a positive constant C(A) such that

0<u(x,\)<C(A) exp[—‘/mo/Z |xl], x € Q,

for 0 < A < A,. Because of the boundary condition (5.2) on 9%, u(x, A)
must have a local positive maximum at some point x, € { unless u(x, A)
is identically zero in 2. The conclusion of Theorem 5.1 then follows from
the maximum principle for (5.5).

THEOREM 5.2. Suppose H1-HS, H8, and H10 are satisfied. Then there
exists A\* > 0 such that, for all N > N*, the boundary value problem
(5.1), (5.2) has a positive solution u(x,A) in @ satisfying u(x, A) <
C(A) exp[ — ym/2 |x|] for some constant C(A) > 0.

Proof. Let u(x,A) be the solution of (5.1), (5.2) constructed in
Theorem 4.3: 0 < u(x,A) < T for all x € £, A > A* A* as in Theorem
4.3. Define

H(x)= sup h(x,t), h(x,t)=f(x,1)/t.

0<t<T

By H10 there exists p(A) > 0 such that AH(x) < m,/2 for all x € @ with
|x| = p(A). Since 0 < u(x, A) < T for all x € £, it follows that

Ar(x,u(x, X)) <my/2 for|x|= p(A), A = A*.
Then H8 and (5.3) imply that
(5.6) M(x,A) = my/2 for|x|=p(N),A = A*.

Since u(x, A) is a solution of the linear equation (5.5) with (5.6) holding in

G, Kato’s Theorem [15, p. 415] implies that there exists a constant
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Co(A) > 0 for A > A* such that

0 < u(x,A) < G(N) exp[ = fmo/Z Ixl],  Ixl= p(A).
The estimate in Theorem 5.2 then follows, where C(A) = max[Cy(A), T'].
A version of the Dirichlet problem for unbounded domains is
—Au+m(x)u=Nf(x,u), x€Q,
(5.7) u(x) =0, x € 99,
u(x) -0 as |x| = co.
Under the hypotheses of Theorem 5.2, a positive solution u(x, A) of (5.7)
in { exists for all A > A*.
We now obtain an analogue of Theorem 5.2 without the uniform

positivity hypothesis H8 on the coefficient m(x) in (5.1). In particular,
m(x) is allowed to be identically zero.

THEOREM 5.3. If H1-H5 and H11 hold, and n > 3, then there exists
A* > 0 such that (5.1), (5.2) has a positive solution u(x, A) in § such that
u(x,\) = OQas|x| = oo forall A > \*.

Proof. With ¢(x) as in H11, consider the linear boundary value
problem

(5.8) {—Av+m(x)v=}\¢(x), xeq,

v(x) =0, x € 99.
In view of H11, a theorem of Meyers and Serrin [17, Theorem 10, p. 527]
shows, if n > 3, that (5.8) has a nontrivial solution v = v(x, A) in @ such
that v(x, A) = 0 as|x| — co.

Let up = ug(x, A) be the solution of (5.1) in the bounded domain £,
guaranteed by Theorem 3.1, for A > A*:

—Aug + m(x)ug = Af(x, ug(x,N)), x € Q,
(59) {uR(x,?\)=O, x € 0Q,.
For x € {2, (5.8) and (5.9) give
(510)  (=A+m(x))(0 — ug) = \[6(x) = 1(x, ug(x, M),

Since ug(x, A) < T for all x € Q by the proof of Theorem 4.3, it follows
from (5.8)-(5.10) and H11 that

(—A+m(x))(v—ug) =0 inQ,
v—up=20 on 0%,
U—uRZO OnSR.
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Then the maximum principle implies that
0 <up(x,A\)<v(x,A), x€QA=A*>0.

The sequence {u (x,A): j=1,2,...} constructed in Lemma 4.2
satisfies, in particular,
(D) 0 <wy(x,A) <u;(x, ) <v(x,A)
for all x € QU 0Q, A > A*, j=1,2,..., where w,(x, A) is defined by
(4.1). The proof of monotone convergence of the sequence {u,;(x, A)} to a
solution u(x, A) of (5.1), (5.2) is exactly the same as in Theorem 4.3. It
also follows from (D) that u(x, A) — 0 as |x| — oo since v(x, A) — 0 and
the convergence of {u,(x,A)} to u(x, A) holds pointwise in £ for all
A= A%

For example, the results of this section apply to the equation

—Au+ m(x)u=Ap(x)(u? — euf),
xeEQ1<y<B,e>0,A>0.

Hypotheses H3—H5 hold automatically, and the other hypotheses of this
section reduce to the following:

H1-H2. m and p are nonnegative, m, p € Cy; (£2), and p is not
identically zero.

HS8. m is uniformly positive.

H9. p(x) is bounded.

H10. lim,,_, , p(x) = 0.

H1l. max,,,_, p(x) < 8(r)/r, r = ry > 0, where 8(r) is a Dini function.

Results parallel to Theorems 5.2 and 5.3 hold in the entire space R” if
Hypotheses Hj are replaced by formally identical Hypotheses H’j with R”"
replacing { and 0% deleted.

THEOREM 5.4. Suppose that H'1-H'S, H'8, and H'10 are satisfied. Then
there exists A* > 0 such that, for all X > \*, equation (5.1) has a positive
solution u(x, \) in R" satisfying

u(x,\) < C(N) exp[—1/m0/2 |x|], x € R",

for some constant C(A\) > 0.
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THEOREM 5.5. Suppose that n = 3, and H'1-H'5 and H'11 are satisfied.
Then there exists A\* > 0 such that, for all A > N*, equation (5.1) has a
positive solution u(x, \) in R" such that u(x, A) = 0 as |x| = oo.

Theorem 5.4 is proved from the solution constructed in Theorem 4.5
by application of Kato’s theorem. The method used for Theorem 5.3 also
proves Theorem 5.5.

6. Existence theorems in the case of negative m(x). It will now be
proved, under modified hypotheses, that the existence theorems of §4
remain valid when m( x) has negative values in 2. Although m(x) will be
allowed to change sign for arbitrarily large |x|, the set { x € R": m(x) < 0}
will be required to have sufficiently large measure so that the linear
operator L in (1.3) is nodally oscillatory in £, i.e. for arbitrary R > 0 there
exists a nonempty bounded domain M C G N & such that the Dirichlet
problem

(6.1) Lu=0 inM, u=0 onoM

has a nontrivial nonnegative solution u,,. Many explicit nodal oscillation
criteria are known [26]; for example, L is nodally oscillatory in R? if the
entries of the matrix (a,;(x)) are bounded and

fm(x)dx=—oo, n=2.
Q

Hypotheses H2 and H5 will be retained while H1 and H3 need to be
slightly modified:

H*1. The a,; are as in H1, m € C{(R), and L is nodally oscillatory in £.

H*3. There exists 7 > 0 such that f(x,T) =0, f(x,1) > 0if 0 << T,
and f(x,t) < 0if ¢z > Tforall x € .

By H*1 and the linearity of L, (6.1) has a nontrivial nonnegative
solution u,, in some nonempty bounded domain M C € satisfying u,,(x)
< Tfor all x € M. Then H*3 implies that

(6.2) f(x,up(x))=0 forallx € M.

Let R be a positive number such that M C Q. By HS there exists a
positive constant K J» for eachj = 1,2,..., such that both

(D) m(x)+ K; > 0 forallx € Q. ; and

(ii) Af(x, ) + Kt is a nondecreasing function of ¢ in [0, T'] for each
fixed x € @, ..
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The lemma below is then easily established by the procedure used for
Lemmas 4.1 and 4.2.

LemMma 6.1. Suppose that H*1, H2, H*3, and H5 are satisfied. Let
U, € C***(M) be a nontrivial nonnegative solution of (6.1) chosen so that
Uy (x) < T for all x € M, and suppose that M C Q. Then there exists a
sequence of functions u; in Q& U 9Q with properties (A), (B), (C), (E) of
Lemma 4.2 and

(D*) wo(x) <u(x,A)<T forallx QU3 j=12,.,1>0,

where wy(x) = u,,(x) if x € M and wy(x) = O otherwise.

THEOREM 6.2. If H*1, H2, H*3, and HS hold, then the boundary value
problem (1.1), (1.2) has a bounded positive solution u(x, ) in § such that
Wo(x) < u(x,A) < T for all x € & VU 08 and for all A > 0, where wy(x) is
defined in Lemma 6.1.

THEOREM 6.3. Suppose that the hypotheses of Theorem 6.2 hold in the
entire space R" (with 0 deleted). Then equation (1.1) has a bounded
positive solution satisfying wy(x) < u(x, \) < T for all x € R" and for all
A>0.

The proofs on the basis of Lemma 6.1 are essentially the same as the
proof of Theorem 4.3.
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