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We show, for n > m, the existence of non-trivial inner maps /:
Bn -> Bm with boundary values /*: Sn -+ Sm such that fi\A) has a
positive Haar measure for every Borel subset A of Sm which has a
positive Haar measure. Moreover, if n = m, the equality σ(f^ι(A)) =
σ(A) holds, where σ is the Haar measure of Sm.

In this paper Cn is an ^-dimensional complex space with inner
product defined by (z1, z2) = Σz}zf9 where zJ = (z{9 z{y... 9z

J

n) for j =
1,2, and the norm \z\ = (z9 z) 1 / 2 . Let us introduce some notation:

J ! " = { Z E C π : | z | < 1}, S" = dBn;

let d be the metric on Sn:

d{z, z*) = (1 - Re(z, z*)) 1 / 2 = - L | z - z*| forz, z* e 5 n ,

v2
and finally

B(z9r)= (z* e 5" : d(z,z*) < r) for z e S" and r > 0.

For every complex function A: X -> C we define Z(A) = A"1^). A
holomorphic map/: 5" -> 5 m is called inner if

/*(z) = lim f(rz) e Sm for almost every Z G S W

r-»l

with respect to the unique, rotation-invariant Borel measure σnon Sn such
that σn(Sn) = 1. If a continuous function g: Bn -> Cm, defined on the
closure of Bn, is holomorphic on B", we write g e Am(Bn) or g e ^4(5Λ)
when m = 1. The theorem stated below is a generalization of the result of
Aleksandrov [1]. Corollary 1 answers the problem given by Rudin [3].
Corollary 4 is a result of Aleksandrov obtained independently by the
author.

THEOREM. Let n > m and let g = (gi,...,gm) e Am(Bn)9 h e A(Bn)
be maps such that \g(z)\ + \h(z)\ < 1 and h(z) Φ 0 for some z e Bn. Then
there exists an inner map f = (fl9 f 2 9 . . . Jm): Bn -> 5 m such that f(z) =
g(z) /or eί ery z e Z(A) and f{(z) = gt{z) for every z ^ Bn and i =
l,2,...,m - 1.
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COROLLARY 1. For every n > m there exist inner maps f: Bn -> Bm

such that for every Borel subset A c Sm the inequality on(f~*ι(A)) > 0 holds
provided om(A) > 0. Moreover, if m = n, the equality on(f^}(A)) = on(A)
holds andf is not an automorphism of Bn.

COROLLARY 2. For every n>\ there exist inner maps /: Bn -> Bm,not
automorphisms of Bn, such that

L = / hdon

for every continuous function h on Sn.

Corollary 2 is an immediate consequence of Corollary 1. Let us
assume that n > m and n > 2. To deduce the assertion of Corollary 1
from the Theorem let us take a holomoφhic function k e A(Bι) and the
map g<ΞAm(Bn\ g{z) = p(z) + \z2

nr(zn), where p(z) = (z l9 z 2,...,
zm_ l 50), r(z) = (0,...,0, fc(zn))forz e JB". Define/z(z) = ^zxz

2. Then

|g(z)|+|AU)l^l^)l + ̂ | ol • l

By virtue of the Theorem there exists an inner map / = (fl9 / 2 ) . . .9fm):
Bn -* Bm such that

(1) fJ(z1,z2,...,zn) = zJ for/ = l , 2 , . . . , m - l ,

(2) L ( 0 , 0 , . . . , 0 , z j = τ z M z J ,

For any z e J β m " 1 and / > m let

^ V. J J )

S[= {z* e S ' : z * = Zjioτj = 1 , 2 , . . . , / w - l } ,

let σ/ be the rotation-invariant measure on the sphere 5/ such that
oj(Sz) = 1 and let fz9 f* be the restrictions of /, /* to the sets 2?̂  and 5"
respectively. From (1) it follows that fz: Bz

n -> 5z

m and (2) says that
fz(wι) = wi > where w1? w2 are the centers of the balls B", B™ respectively.
Since B™ is a one-dimensional complex ball, the equality σ/((/Γ*)~1(C))
= σz

m(C) holds for every Borel subset C of S™ and every z for which/, is
an inner map (see [4] p. 405). The function fz is inner for almost every
Z G J B W ~ 1 (with respect to the usual Lebesgue measure λ on Bm~ι)
because the map / is inner. Let us notice that there are positive functions
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sl9 s2: Bml -> R+ such that for all Borel subsets C 1 c Sn, C 2 c Sm we
have

Bm-\

s2(z)-σ?{C?)dλ(z),
- 1

where C\ = C1 n SM, Cz

2 = C2 Π Sm. Substituting Cx = (/*)~1(C2) and
using the equality o?{C}) = σz

m(C?) (which holds for almost every z), it is
easy to see that both of the above integrals are positive or equal to 0. If
n = m then sx = s2 and the equality holds. This ends the proof of
Corollary 1.

The following proof of the assertion of the Theorem is based on
Low's construction of inner functions [3]. Let g and h be maps satisfying
the assumptions of the Theorem. Then on(F) = 0, where F = Z(h) Π Sn.
(This fact can be proved by induction. For n = 1 it is well-known
theorem.) For δ > 0 let

F δ = {z*ΞSn:d{z,F)<δ} a n d \\\s\\\δ = s u p \s(z)\,
Z<ΞFδ

where s: Sn -» Cm is a continuous map. Observe that there exist constants
Al9 A2 such that for every 0 < r < \/2 ,

(4) Aλr
2n-1 <A(r)<A2r

2n-l

where A(r) = σn(B(z9 r)) for any z e Sn.
Let S c Sn be any closed subset of S"\ σn(S) > 0. Assume that for

some number r > 0,

(5) σ n (5 r )<2σ n (5) ,

where Sf = { z e S " : φ , 5 ) < r } . Let {fl(zΛ r)}^? be a maximal
family of disjoint balls with centers zJ e 5. Since 5 r 3 UylΊ' ̂ (z y, r) and
S c UyiV 5(z J, 2r), applying inequalities (4) and (5), we get

2σm(S) > σn(Sr) * oJ U ^ V ) =

= iV(/ ) A(r) > Axr
2"-1 • N(r)
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and

IN(r) \ N(r)

on(S)<on\ \jB(zJ,2r)\- Σ A(2r) = N(r) • A(2r)
W -i / y-i

< N(r) A2 •(2r)2""1 = N(r) • A2 • 22"'1 • r2""1.

So we have proved the existence of positive constants C1 and C2(Cι

\/22"-\ C2 = 2/Ax) such that

Let us assume now that r > 0, z e β", H s a natural number and Mk is
the maximal number of disjoint balls of radius r and with centers in
B(z,(k + l)r). Because these balls are included in B(z,(k + 2)r), an
argument similar to the above gives the estimate

(7) M
k

for some constant C3. Let φ: (0,1) —> i? be the continuous, positive
function defined by

V(a) = 4^ • C i ' ^ i • a r c c o s ( α ) [ l o§ ~J
2n-l)/2

LEMMA 1. Lei 0 < 2ε < α < ft, 0 < δ < 2C3 a, ε < C3e~2n, R < 1.
P be a closed subset of Fδ and let v be a continuous map v: S" -> C w

Λα/ |ϋ(z) | > α for z e P. ΓΛere ex/ ί̂5 ύf closed subset K of Fδ and a
holomorphic map u: Cn -» C m swcΛ

(a) Ilk + A w|||δ / 2 < max(l, III/IIU/2) + 3ε;

(b) ||w||Λ = sup \u(z)\ < ε;

\z\<R

(c) |ϋ(z) + A(z) u(z)\> a - 3ε forzeKUP;

(d) ί c F δ , ί n ? = 0 am/

σπ(^) > φ(a) •[log(4C3/δε)]-(2-1)/2 σ,(Fδ - P);

(e) | g ( z ) | < e forz^B"-Fδ/2;

(f) wy = 0

Proo/. If σn(P) = σπ(Fδ) then the map u = (0,0,...,0) and the set
K= 0 satisfy conditions (a)-(e). Let us assume that on(P) < σn(Fδ).
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There exists a positive number γ such that γ < 8/2 and

where S = S" - [(Sn - F8) U P]y.

Since υ9 h are uniformly continuous maps and S is a closed subset,
there exists a positive number γ* such that

(9) | g ( z ) - g ( z ' ) | < ε δ , | φ ) - ι ; ( z ' ) | < ε , σΛ(Sr) < 2 σπ(5)

forz, z' G 5",ί/(z, z') < γ* and r < γ*.

Let r, ra be positive numbers such that r < \ min(γ, γ*), m is an integer
and mr2 = log(2C3/δε). Moreover we assume m is large so that

(10) C2 m ( 2"~1 ) / 2

 e-
m{1~R) < ε.

Choose a maximal family {B(zJ\ r)}^ of pairwise disjoint balls with
centers zJ G S"\ Because of (9), condition (5) is satisfied, so inequalities
(6) also hold. For k = 1,2,... 9[ίf2/r] and z e S"7 let

Vk(z)= {zJ\kr <d{z,zJ) < {k + l)r)

and let Nk(z) be the number of elements of the set Vk. Since Vk(z) c
B(z,(k + l)r), from the definition of M ,̂ we have Nk(z) < Mk and (7)
gives us

(11) Nk(z) < C3k
2-\

Let g(z) = ΣyL1βje-mil-«z<zJ»\ where ^ = (0,0,... ,0, αy) G C W is de-
fined by ^ = (0,0,...,0,0) if | /(z y ) | > 6. If \f(zJ)\ < b9 then let βj be of
the previous form, such that

\f(zJ) + Λ(z) j8y | = b and |/(z y ) + α h(z) - βj\< b

for every a G C, |α| = 1. Let us notice that for everyy, | ^ | < l/\h(zJ)\ <
1/8 and that

N{r)

7 = 1

V A ]

Σ Σ \β}e-md2<' z% e-'
k = 0 zJ<=Vk(z)

for some real functions Qmj and k = (0,0,... ,0,1) G Cm.
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If V0(z) = 0 or z <Ξ B(zJ

9 r) with βj = 0 then, because of (11) and
the inequality mr1 > In, we have

(12) < Σ Σ \e-
] Ί

Σ τl
f 00

= ε.

This proves part (e) of Lemma l.If z

(13) | φ ) + Λ(z) κ(z)|

y, r) with )87 ^ 0 then

= I + II + III + IV.

Because of (9)

III < e and II <\h(z) - h{zj)\ \βj\ < δ e ^ = e.

By the same argument as in (12) we can prove that IV < ε. Moreover, we
have I < |ι>(z7')| + \h(zJ) βj\ = b. This altogether gives us

(14) \υ(z) + h(z) u{z)\<b+ 3ε.

Inequalities (12) and (14) prove part (a) of Lemma 1. Now we shall
determine a certain subset Voί W = U ^ B(zJ

9 r). To do this let us fixj,
1 <j < N(r), and let us take a = \v(Zj)\, s(z) = e'

mdl{-zJ\ Q(z) =
arg(ίΓw<1-«*•*'»>) = m Im(z, z^).

Let us assume at first that a < 1. We define

Vj= [z e ^(z y , r ) : j(z) > ^andcosβ(z) > α}.

Using the same notation as in (13) we can write

(15) \v(z) + h(z) w(z)| > I — II — III — IV.
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As before, II < ε, III < e and IV < e. Assuming z e Vp we have

(16) I = υ{zJ) + h(z') βj e - w ^ 2 ( z ^ y )

= /α 2 + 2α(l - α) s(z) cos β(z) + (1 - af > a

because of our assumption about s(z) and cos(?(z), the definition of βj

and simple geometry.

Combining (15) and (16) we get

(17) \ v ( z ) + h ( z ) u ( z ) \ > a-3e f o r z e Vj.

Let p > 0 be defined by mp2 = log(l/α). Then p < r because mr2 =

2C3/δε and 2C3/δ > I/a. So B(zJ, p) c B(zJ, r\ and if z e 5(z^ p)

then 5(z) > α. The set (z e 5(zy, p) :cosβ > «} consists of certain

strips in the ball B{zJ, p). An easy geometric argument shows that these

strips have a total area at least

-j— - arccosα σn(B(zj, p)) = γ~ arccosα

Moreover Ĵ  c 5(z7, r) c Fg. Using inequality (4) and the fact that the

above strips are included in Vp we get

(18) on(Vj) > γ~ arccosfl A(p) > y - Aλ arccosα ρ2n~ι.

If α > 1, we define Vj = B(zJ, p). Because βj = 0, it follows from (12)

that

( 1 9 ) \v(z) + h(z) u{z)\*\v(z')\-\v(z) - v(zJ)\-\h{z) - u ( z ) \

> a — ε —\u(z)\ > a — 2ε

forz G F;.

Finally, we define K = U ^ T ^ . We observe that inequality (17) holds

for z E i f . I f z G P , then V0(z) = 0 and inequality (12) gives us

\v(z) + h(z) u(z)\>\v(z)\-\u(z)\> a - ε.
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This altogether proves part (c) of Lemma 1. It is easy to check that
K n P = 0 . Inequalities (18), (6), (9) and the definitions of p and mr2

yield

/ N(r) \ N(r)

on(κ)>on[ u Vj\= Σ ^ )

> iV(r) y - 4̂χ arccosα p 2 *" 1

a r c c o s

> _L . c A . arccosα - ( m r 2 ) - ^ - ^ 2 -(mp 2 ) 2 "" 1 σ,(Fδ - P)
477"

= ψ(a) • log(4C3/(δε))-<2"-1)/2 σM(Fδ - P).

This proves part (d) of Lemma 1. Finally, if \z\ < R then Re(l — (z, zJ))
< I - R ΐorj = l,2,...,iV(r). Because of the inequalities mr2 > 1, (10)

and (6), we have

\u(z)\ < N(r) e " w ( 1 - Λ ) < C2 - ^ e

= C2 m^"- 1 ^ e-^ι-V \mr2)Λln

< C2 m ( 2 n~ 1 ) / 2

 e-
m{l~R) < ε .

This proves part (d) of Lemma 1 and ends the proof.

LEMMA 2. Let υ be a continuous map v: Sn -> C m ŵcΛ that \\\v\\\δ < b
< 1 for some δ < C 3 . L e i J > ε > 0 , Λ < 1 . ΓΛew ίΛere exists a holomor-

phic map u: Cn -> C m α«rf α closed set K c Fδ such that:

(a)' Ilk + A ulll* < b + ε;

(b) r ||u|U ^ « ;

(c)' | φ ) + λ ( z ) . n ( z ) | > * - e ;

(d)' on(K) > σn(Fδ) - e;

(ey |w(z)|<ε forzeSn-Fδ;

({)' Uj = 0 f o r j = l , 2 , . . . , m - 1 , where u = ( w x , w 2 , . . . , u m ) .

Proof. Let α = b - ^ε and choose a sequence (εy) satisfying the
assumptions of Lemma 1 and such that 6Σ^°=1ε7 < ε. We can assume
Ej = A - exp{-(τ j)2/ί2n~l)}, A = 2C3/δ and r is some large number.



CONSTRUCTION OF INNER MAPS 211

Apply Lemma 1 to the data a, εl9 R, υ9 P = 0 to produce a holomorphic

map uλ: C
n -> C m and a closed set Kλ c Fδ such that:

\υ(z) forz

for

( f)i u) = 0 fory = l ,2, . . . ,w - 1, where ux = (u{9 u\9...9u
ι

m).

Suppose that holomorphic maps uv u2,...,up_ι (uy. Cn -> C m for j =

1,2,...,/? — 1) have been chosen together with closed sets Kl9 K2,... >Kp-ι

such that if Wi = U } = 1 i ^ then Ki+ι D Wf = 0 and σπ( A',-) = ai9 Kt c JFβ.

A map M :̂ Crt -> C m and a closed set Kp is then obtained by applying

Lemma 1 to the data a - 3Σ/LY εi9 εp9 R9 v + h(z) - (uλ + u2 -f +
up-ι)> Wp-v This produces a sequence {ί;^} of holomorphic maps (vk:

QΠ _^ Qm £ o r ^ = 1 2 , . . . ) and a sequence { ^ } of disjoint closed sets

such that Kk c Fδ9 on(Kk) = α^ and:

p p

(d)p \\\υ + h - Σ uk\Wδ < b + 3 Σ εk < b + ε;

(b),

A: = l

P P

Σ IÎ L ̂  Σ <

> α - 3

> α - jε = Z> - ε forz<£W;

(d)p a =on{Kp)

(e)

> φ |

Σ «

•

Λ

—
p-l

3 Σ

1 A

log —

•1 A

l o g -

^ " l ) / 2 (C

/?

A: =

Ίι(^β) - Σ «*

My = 0 forfc = 1,2,. . . ,/? andy = l , 2 , . . . , m - 1,

where wλ = ( M ^ , w ^ ^ ί
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If Σf==ιak < σn(Fδ), (d) shows that there is a constant C4 such that for

every positive integer k,

This is impossible, because then Σ ^ = 1 0 : ^ = 0 0 and ap are the measures of

the disjoint sets. Hence, we may assume that Σ ^ = 1 ak = on(Fδ). It follows

that for/? sufficiently large and P = Wp we have σn(P) = Σ £ = 1 αΛ > 1 - ε,

which is part (d)' of Lemma 2. Letting Λ = Σp

k=xuk, parts (a)', (b)', (c)',

(e)', (f)' are just (a)^, (b)^, (c)^, (e)^, (ί)p. So we have proved the assertion

of Lemma 2.

Assume now that g and h satisfy the assumptions of the Theorem.

Then Illglllδ < 1 - δ. To prove the Theorem, take a sequence δv δ 2 , . . . of

positive numbers such that δr < C3 and δi+ι < 5/2 and let ax = bx = 1 -

^ δ l 5 εx = min(^, -Jδj), /?x = ^. Apply Lemma 2 to the data gλ = g, Z?1? δl9

Rλ to get a map uλ and a set Kλ c ^ such that, for/? = 1 and gx = g:

(iϊ)p \\up\\Rp<εp;

(w)p \gp(z) + h(z) up(z)\ > bp - εp for z

(v), 1 -

/ = 1

(vi)^ uf = 0 ΐoτj= l,2,...,m-l where up = (u{,uξ, . . . , < ) .

Inequality (v) follows from (e)' of Lemma 2, because for z e 5" - /^ , we
have|Mj(z)| < ε l5 so

1 -\v(z) + h(z) • Uι{z)\ > 1 -\v(z)\ -\Uι{z) • h(z)\

>\h(z)\-ει-\h(z)\=(l-ε1)-\h(z)\.

Since g t + h uλ is a continuous map on 5", there exists an /?2 such that

^ + \RX < R2 < 1 and, for/? = 1,

) + h(Rp+ι • z) • up{Rp+ι • z)\ >bp- 2εp

forz e Kp.
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S u p p o s e w e h a v e i n d u c t i v e l y f o u n d h o l o m o φ h i c m a p s ul9u2,...9up9

closed sets Kv K2, ,Kp, real numbers Rv R2,... ,Rp+v bv b2,.. .,bp,

εl9ε29...9ε such that \ + \Rt < Ri+V ε, > 0 for z = l,2,...,/? and

Σf=ιεi < 1/8. Let us assume gJ + ι = g + h Σj=ιui and conditions

(i)y—(vii)7 are satisfied fory = 1,2,...,/?. We also assume that 1 - 1// <

bj < bj + ε <l. If z & (F8 + ι - Fδ) then according to (v)^, we have

since \h(z)\ > δp+ι. This, together with (i)^, shows that Illg^+JIU^! < l
Take any bp+ι > 1 - l/(p + 1) and ε/7+1 satisfying the inequalities 1 >

V i + εp+i > ^ + i > 111^+illlVi a n d Σ ' f-+i l εi < V 8 . Since the map gp+ι

is continuous on Bn, we can find a number Λ^+2 such that \ + \Rp+ι <
Rp+2<\ and such that condition (vii)/7+1 is satisfied. Now we can apply
Lemma 2 to the data gp+v bp+l9 εp+l9 Rp+ι We get some map up+ι and a
set Kp+V It follows from Lemma 2 that conditions (i)/,+i-(iv)/ ? + 1 and
(vi)/ ? + 1 are satisfied. For z ^ Sn - F8 + i, by the virtue of (e)' and (v)^, we
have

h(z).Up(z)\-\h(z).up+ι{z)\

p + l

- Σ

So we have also proved that condition (v)p+ι is satisfied. Conditions (ii)^

(p = 1,2,3...) and the definition of gp say that the sequence {gp} is

convergent uniformly on every ball Rp - Bn

9 and since l i m ^ ^ Rp = 1, this

sequence is pointwise convergent to some holomoφhic map / on the ball

Bn. From conditions (i)^ and (v)^ it follows that each map gp is bounded

by 1 on Bn. So, also \\f ^ < 1. For 8 > 0 let Lp = Fδ Π f)J>p Ky Then,

for ήr large enough, Fδ c Fδ for p > q. We have

an(Fs) - an{Lq) = aj \J (Fδ -{FS n Kq))\
\j>q I
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Hence \img^O0σn(Lg) = σn(Fδ). It is obvious from (iii)^ and the equality
l i m ^ ^ ί ^ = 1 that lim/?_1/(/?z) = 1 for z e Lg, provided this limit
exists. Since 8 was arbitrary, this proves that the map / is inner, since
σn(Πp(Sn — Fδ)) = 0. Now it is easy to check that/satisfies the Theorem.

COROLLARY 3. Let m < n and let g e Am{Bm), HgĤ  < 1. There exists
an inner map /: Bn -> Bm such that

/(z 1,z 2,. . .,zw,0,0,.. .,0) = g(z l 9 z 2 , . . . ,z m ) .

Proof. Let Φ: Bm -> Bm be an automorphism of Bm such that
(0,...,0)) = ( 0 , . . . , 0 ) . T a k e g : ^ - ^ £ - , g ( z

h(z) = \ - z\. By virtue of Schwartz's lemma,

g ( z ) < φ 1 | 2 + | z 2 | 2 + •••+\zm

So we have

We can apply the Theorem for g and h to get an inner map /. The inner
map/ = Φ~ι(f) will satisfy Corollary 3.

COROLLARY 4. There exists an inner function f: Bn -> D such that

. Take m = 1 in Corollary 3 and a function g: 5 1 -> D, g(z) = z.

REMARK. The assumption g e ^4m(5m) in Corollary 3 is not neces-
sary: we can take any holomorphic map g: Bm -> Bm. Then the map g,
defined as before, can be prolonged to a continuous map on Bn — A,
where yί c Sn and σw(̂ 4) = 0. One can check that the Theorem is still
valid for such maps.
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