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Let G be a connected reductive linear algebraic group over the field
of complex numbers, and B a fixed Borel subgroup of G. The study of
the homological properties of G/B can be carried out by two well-known
methods. The first of these methods is due to A. Borel and involves the
identification of the cohomology ring of G/B with the quotient ring of
the ring of polynomials on the Lie algebra f) of the Cartan subgroup
H C G by the ideal generated by the W-invariant polynomials (where W
is the Weyl group of G). The second method is classical, and based on
the calculation of the homology with the aid of the partition of G/B into
cells, the so-called Schubert cells. The correspondence between these
approaches has been studied in the paper by Bernstein, Gel'fand and
Gel'fand, where in the quotient ring of the polynomial ring figuring in
Borel’s model of the cohomology, the authors have found a symmetrical
basis dual to the Schubert cells. Moreover, they have given a formula
(Intersection formula) which expresses the intersection of any Schubert
cell with a cell of codimension one. In the same paper, the authors have
also generalized these results, except the intersection formula, to the
case when B is replaced by an arbitrary parabolic subgroup P C G.

On the other hand, for any parabolic subgroup P C G containing B,
the cohomology Gysin homomorphism of 7: G/B — G/P has been
studied by Akyildiz and Carrell, where an explicit formula has been
obtained between the rings figuring in Borel’s model of the cohomolo-
gies. This formula also enables one to obtain some of the results
mentioned above for G/P from the corresponding results on G/B. In
this note, we consider the case where G = GL(n + 1) and G/P is the
Grassmann manifold. By using the explicit description of the Gysin
homomorphism and the intersection formula given in the cohomology
ring of G/B we obtain three main theorems of the symbolic formalism,
known as Schubert Calculus, concerning the cohomology ring structure
of the Grassmann manifold. Although there are several different ap-
proaches for proving these theorems (see Kleiman and Laksov),
it seems that none of them uses the cohomology ring structure of
GL(n + 1)/B, where B is the group of upper tfriangular matrices in
GL(n + 1). We thus hope that this alternative point of view may
be used to understand the generalized Schubert Calculus.

1. Gysin homomorphism of 7: G/B - G/P. In this section we
first give the rings figuring in Borel’s model of the cohomologies of G/ B,
G /P, and then we write the formula for the cohomology Gysin homomor-
phism of m: G/B — G/P between these rings. Here G is a connected
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reductive linear algebraic group over the field of complex numbers, B is a
fixed Borel subgroup of G, and P is a parabolic subgroup of G containing
B. We adopt the following notation: B, the unipotent radical of B, H a
fixed maximal torus contained in B, g the Lie algebra of G, §) and b, the
Lie algebras of H and B, respectively, A C h* the root system of b in g,
A, the set of positive roots, namely the set of roots of hin b, = C A, the
set of simple roots, W the Weyl group of G, © is the subset of 2 such that
the parabolic subgroup Pg corresponding to © is equal to P, W the
subgroup of W generated by the reflections o,, « € ©, Ag the subset of
A, consisting of linear combinations of the elements of ®, Wy the set of
w € Wsuch that w® C A .

Let X( H) be the group of characters of H, and R = Sym(C ® , X(H)),
the symmetric algebra of C ® , X(H). We denote by the same symbol an
element of X( H) and the corresponding element of A when it can be done
without any ambiguity. For the basic facts about algebraic groups and the
Borel model of the cohomologies of homogeneous spaces, the reader is
referred to [6] and [1], [3], [S] respectively. Since W acts on X(H) we get
an action of W on R in the usual way. Let R" be the ring of invariants of
W, and I = { f € R": f(0) = 0}. For any character a of H, let L, be the
associated homogeneous line bundle on G/B: L, =G X C/~ , (g, z) ~
(g’, z’) if and only if g’ = gb for some b in B and z’ = a(b™ ')z, where a
is extended on B with a(u) =1 for u in B,. It is shown in [1] that the
characteristic homomorphism c¢: R - H*(G/B, C) determined by c(a) =
¢;(L,), the first Chern class of L, for any @ € X( H), induces an isomor-
phism of graded algebras ¢: R/IR > H*(G/B, C) (see also [5]). More-
over, if Re is the ring of invariants of W, then one also has the following
commutative diagram between the graded algebras (cf. [1]):

¢: R/IR >  H*(G/B,C)

( J
& R%/IR% 5  H*(G/P,C),

where 7* is the cohomology map of #: G/B — G/P. This is the Borel
model of the cohomologies of G/B and G/P.

For the cohomology Gysin homomorphism of #: G/B — G/P, we
first recall the operators 4,: R — R for w € W (cf. [3], [4], [5]). For each
a € A the element f — o, - fis divisible by « for any f € R, where o, is the
reflection corresponding to a. Thus 4,: R > R, A, f=(f— 0, -f)/a,is
a well-defined R"-linear operator on R. Let ay,...,a, € Z, and let w =
0, *** 0, be any element of W. Then
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(i) if the length /(w) of wis less than /, then 4, --- 4, =0,

(ii) if /(w) = I, then the operator 4, --- A, depends only on w and
not on the representation of « in the form w = ¢, --- 0,. In this case we
putd, =4, --- 4,

We note that the operator A,: R — R preserves the ideal /R, and
thus induces an operator A4_: R/IR — R/IR of homogeneous degree
—I(w). Moreover for w;, w, € W, one has 4, A Aw o, If H(wwy) =
(w)+ lw,), 4, A = (0 otherwise (cf. [4], [5]) It 1s shown in [2] that the
cohomology Gysm homomorphism 7y. H*(G/B,C) —> H*(G/P,C) of
the natural map #: G/B — G/P is given by the following commutative
diagram:

¢: R/IR - H*(G/B,C)
(1) I, L
¢ R"/IR% - H*(G/P,C),

where 7y is the unique element of W of maximal length. Moreover, one
has the following formula for A4, (cf. [2]):

(2) A, =Y de(r)r-1/ T]

= W® QEAQ

This is the explicit description of the cohomology Gysin homomorphism
of#: G/B — G/P.

2. Schubert calculus. The correspondence between the Borel’s
model of the cohomology of G/P and the calculation of the homology
with the aid of partition of G/P into Schubert cells has been studied in
[3]. In the case of G/B, the authors have also given a formula (intersection
formula) in R/IR which expresses the intersection of any Schubert cell
with a cell of codimension one. In this section, we first give this corre-
spondence. Then we write the intersection formula only for the case
G = GL(n + 1). Later, by using this formula and the results of §1. We
obtain three main theorems, known as Schubert Calculus, concerning the
cohomology ring structure of Grassmannians.

We keep the notation of §1. Let w, be the unique element of W of
maximal length, and P, = (1/|W ]Il cs, @ (mod IR), where |[W] is the
order of W. For each w € W, let P, = A,-1, (P, ). It is shown in [3] that
(P, w€ W} is a free Z-basis of R/IR which is dual to the Schubert
cells. Namely, for each w € W, let X denote the cycle class of the closure
of B(wyw)x, in H(G/B, Z), x, = B € G/B. Then under the Poincare
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duality map £, #(X,) = ¢(P,). Similarly, for the parabolic subgroup
P = Py of G containing B, one has the following: For each ¢ € Wy let Y,
be the cycle class of the closure of B(wy0)7(x,) in H4(G/P, Z), where =:
G/B — G/P is the natural map. Then the Poincare dual #(Y,) of Y,
o € Wy, is equal to ¢ (P, (mod IR"s)). Moreover { P, (mod IR"e):
o € Wg'} is a free Z-basis of R"e/IR"e. Although the proof of this fact is
given in [3], for the sake of completeness of our approach we will give a
different proof by using the Gysin homomorphism (cf. [2]). Let 7y be the
unique element of Wy of maximal length. Since /(o7) = [(0) + I(T) for
any o € Wy and v € Wy, we have

A_-re(Pa) A, A‘T lg- w( ) 6797A0 1w( )_STQTPO

This shows that { P, (mod IR"®): ¢ € Wy} is a basis of R"®/IRe,
because the Gysin homomorphism A_T8 is surjective and any element w of
W can be written uniquely in the form w = o7 for some o € Wg and
T € Wy. On the other hand, it is clear that for 0 € Wy , the cycle class
X,., goes under the homology Gysin homomorphism of #: G/B - G/P
to the cycle class Y, in H,(G/P, Z). Thus from the commutativity of the
diagram (1) and &(P,, ) = #(X,, ), we get &(P, (mod IR"®)) = #(¥,) for
any o € Wy .

There is a formula (intersection formula) given in R/IR which
expresses the product P, - P, in terms of P,, where o, is the reflection
corresponding to the simple root a € X (cf. [3]). We will now write this
formula for the group of invertible matrices GL(n + 1). Let G be GL(n +
1), B the group of upper triangular matrices in G, and H the group of
diagonal matrices in B. Then

R =Sym(C ®,X(H)) = C[x,,...,%,],
A+= {a, , =x,—x;:0=<i<j<n},
={a;;;1:0<i<n—-1}.
Let S,,, be the symmetric group in 0,1,...,n, and for ¢ € S, let o(])
be the permutation matrix obtained from (n+1)X(n+ 1) identity
matrix /. The homomorphism o~ ! — ¢(I) gives an isomorphism between
S,.; and the Weyl group W of G. Moreover it can be checked that the

n

action of W on R is given by
o(I) f(xgs..rX,) = 0f(Xgs...,%,)
= f(X405---+%,,), foranyoc €S,
Thus IR is the ideal generated by the elementary symmetric functions of

xo,- - . ,xn-
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We will now write the operators 4, and the elements P, of R/IR in
terms of the elements of S,,;. Let 0 = (g, --- a,) be any element of
S, .1, namely oi = a, for i = 0,1,...,n. Then the reflection o, corre-

sponding to the root a, | is given by Ty, = (i, j)(I), where (i, j) e S, 18
the transposition obtamed by changing i with j. Let 4, ,,,, = 4, , and

P, =P, foro €S,,,. Then foranyo € §,,, we get
A=Ay, and P, =4, (P,),
where w, = (nn —1 --- 10), and

1
oy = ——(n Y 0<l]:Ln(x, —x,) (mod IR).

The intersection formula given in [3] can now be written as follows:

THEOREM ( Intersection formula, cf. [3, p. 17]). For any r = 0,1,...,
n—1ando = (a, - a,) €S,,,, we have

P(r r+l)P Z (1,7)0°

where the summation is over all 0 < i < j < n such that
(@i<r<j,
(b)a, <a,
(©) ifi <k <, then either a, < a,ora, > a,.

We are now ready to discuss the cohomology ring structure of
Grassmannians. For any ¢ = 0,1,...,n — 1, let ® = 2\ {«a, ,;}. Then
the parabolic subgroup P = Py of G corresponding to © consists of all
matrices of the form ({ %), where 4 € GL(¢ + 1), and B € GL(n — g).
Thus G/P is the Grassmann manifold G,, of (¢ + 1)-planes in C"*'.
Moreover it is easy to see that corresponding to ©, we have

Wo=1{(ag - a,a,, - a,)€S8,,,:0< Ags. .50, < g,
g+tl<a,,,....a,<nj},
and
Wo = {(ao ey @) E 8,180 < <A, a,, < <an}‘
A sequence of integers 0 < a, < -+ < a, < n corresponds to a unique
element (a, --- a,a,,, --- a,) of Wy, and we denote this element by
o(ay,...,a,). For any sequence of integers 0 < a, < --- <a, <n, let

. aq) in H*(Gq,n’ Z) C

C). Q(ay,...,a,) is called the Schubert cycle corresponding to

Q(ao,...,aq) denote the Poincare dual of Yc(a
H*(G

q.n’
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0 <a,<--- <a,<n. The Schubert cycle corresponding to 0 <1 <
<g—-1<g+k<n for k=0,1,...,n — q is called the special
Schubert cycle, and it is denoted by (k).

THEOREM (The basis theorem). The Schubert cycles Q(a,,...,a,),
0<a,<:--- <a, < n,formabasis of HXG, ,, Z).

Proof. 1t follows from the above observations because $(a,...,a,)
= Pya.....a, (mod IR%e) for any sequence of integers 0 < a, < -+ <a
< n.

We will now compute £(ay,...,a,) = Py, ., (mod IR"). Let
0, ={a,;,1: 0<i<qg—1}, and P, = Py be the corresponding para-

bolic subgroup of G. Then we have

q

W61={(a0"'aqq+1" )€S+10<a0,,,,ang},
W®l1={(a0-'-aq a,) € S,,:ay< - <a,),
and,=(¢gq—1--- 0g+1 --- n)is the unique element of Wy of

maximal length. Since Wy C Wg , we can also use the Gysin homomor-
phism A of m: G/B — G/P; to compute P, for any 0 € Wy . Namely,
for 0 € W@ we have P, = A4, o Pro)- Although that it is possible to
compute P,, 0 € Wy, by using the Gysin homomorphism ATG, P =
A,@(P ), it is much simpler to do this by using A For that, we need to
compute P, , for any o € Wy .

PROPOSITION. Let 0 = (a, -+ a, -+ a,) € Wg . Then we have P, ,
0
= xp¢ - -+ xg°(mod IR).

Proof. Let 190 = (a, -+ aga .y "+ a,)=(by -+ b,) € S,,;. Since
by>by > .- >b,and b, < --- <D, it is easy to see that from the
intersection formula one gets the following:

@) Py g+ P = L Pl g+ kyno» Where the summation is all over 0 <
<qgandl <k <n-—gsuchthatd,  , , <b <b, 4,

(i) Pry—1.9)Pric = L P g4 rynyo» Where the summation is all over 0 < j
<g—landl <r<n—gqsuchthath,,, , <b <b,,, . Thus

(P(q,qﬂ) - P(q-l.q))PToo

P(q7q+k)700’
= Suchthatbq+k 1Sb <b+k’

0 (mod IR), otherwise.

if thereexistsl <k <n—gq
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We note that the fundamental dominant weight x, corresponding to
the simple root «, ., is given by x, = x, + --- + x,. By [3, p. 18], since
P, .11y = X, (mod IR), we have P, .,y — P,_; ,) = x, (mod IR) for r =
0,1,....,n — 1.

We prove the proposition by induction on q. If ¢ = 0, then 7,0 =
(by --- b,), by < --- < b,. In this case we can have either 7o = e (the
identity) or o = w(p +1)=(p+10 --- pp+2 --- n) for some
p=0,1,...,n — 1. If 1,0 = e, then the claim follows from the formula
2), P, = A_wO(Pwo) =1 (modIR). If 70 =w(p +1) for some p=
0,1,...,n — 1, then we claim that P, = xg*! (mod IR). We prove
this by induction on p. If p = 0, then w(1) = (0, 1). Since P, = X, = X,
(mod IR), we have the claim for p = 0. We now assume P, ,) = x§
(mod IR). But by the intersection formula we have Py, P, =
Po.p+1yeip- Since (0, p + Dw(p) = w(p + 1), by the induction hy-
pothesis we have P, ;) = xox§ = xg*! (mod IR). This finishes the
induction argument for ¢ = 0. We now assume the claim for ¢ — 1. Let

0 = (a, - apa,., - a,)=(by -+ b,). Ifa, = b, = 0, then the claim
follows from the induction hypothesis for ¢ — 1 because b, > --- > b,_;,
0=b,<--- <b,. If b,>0, then we claim that P, , = x¢° -~ x

(mod IR). This will be proved by induction on b,. If b, =1, then
b,s1 = 0. In this case w = (¢, ¢+ 1)70 = (b - -~ b,_1 01 b, -+ b,),
and thus (by the induction hypothesis for ¢ — 1) P, = xb --- x;’tf
(mod IR). Since P, , .1y = P4-1,4 = X, (mod IR), we have from above

(P, Py 1.0)Po=Pygine=Po=xb - xkcix, (mod IR).

g.9+1) ~ L(g-1,9) 00

We now assume the claim for b, — 1 > 0. If b, > 1, then b,,; = 0 and
b,—1€{b,s...,b,}. Let b, =1 = b, for some s = 0,1,....,n — g
— 2. Consider

q

w=1(q,g+2+s)10

= (bO e bq—l bq -1 bq+1 t bq+1+s bqbq+3+s t bn)

Since by> -+ >b,— 1, by <+ <b, <b, <b 3.  <- <
b,, by the induction hypothesis we have P, = x{ - - - x2%~* (mod IR). But
from above and the induction hypothesis, we get

(P(q,q+1) - P(q—lyQ))Pw = P(q,q+2+s)w = P'l'oo

—3 ... b_l == b . o o b
=X, X(° " X xg -+ x2 (mod IR)

which is the claim. This completes the proof of the proposition.
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COROLLARY. For any sequence of integers 0 < ay < --- <a, < n, we
have

P =| - : (mod IR),

o(ao,...,aq)

h(.aq) .......... h(aq.— q)

where h(m) is the mth complete homogeneous symmetric function of
Xgs X155 X 4. In particular Py, .y 44 = h(k) (mod IR) for any k =
0,1,...,n — q.

Proof. By the proposition we have P, ,, ., = x§* - -+ xg°(mod IR).
On the other hand, from formula (2) we get

Pa(aO,A adyg) = A‘ro( P‘rou(ao, .. ,aq))

T, e det(T)xs - x4
= : ! (mod IR).
HOSK}sq(xi - xj)
But this bialternant is equal to (cf. [8, p. 92))
Ma,=q) e ha))| [hap) e hay — g)
h(ag—q) - h(a,) h(aq) """ h(aq - 4q)

which gives the claim.

THEOREM (The determinantal formula). For all sequence of integers

O0<ay<:--<a g < n the following formula holds in the cohomology ring
H*(G,,, Z):
Q(ag) - - Q(a, - q)
Q(ag,...,a,)=| ,
Q(a,) e Q(a, ~ q)

where we agree to put (k) = 0 fork > n — qork < 0.

Proof. 1t follows from the Corollary above the fact that; if k > n — ¢,

then the kth complete homogeneous symmetric function of x,...,x,



GYSIN HOMOMORPHISM AND SCHUBERT CALCULUS 265

(being equal to £ the kth elementary symmetric function of x ., 4,...,x
(mod IR)) is equal to zero (mod IR7e), (cf. [8]).

This theorem, together with the basis theorem, implies that the special
Schubert cycles generate the cohomology ring H*(G, ,, Z) as a Z-algebra.
Moreover, it reduces the problem of determining the product of two
arbitrary Schubert cycles to the case where one (or for that matter, each)

is a special Schubert cycle. This case is handled by the following theorem.

n

THEOREM ( Pieri’s formula). For all sequences of integers 0 < a, < - - -
<a,<n and k=0,1,...,n — g, the following formula holds in the
cohomology ring H*(G, ,, Z):

Q(k)Q(ag,...,a,) = 2. Q(by,....b,),

where the sum ranges over all sequences of integers by < - -+ < b, satisfying
0<ay<by<ay <b <---<a,<b <nand¥i o(b;—a)=k
Proof. For any sequence of integers 0 < a, < :-+ <a, < n and for

k=0,1,...,n — g, by the proposition and it’s corollary we have
P oy =Xge -+ xg0 (mod IR)

700(ag,....a, q

and P,g;  ,o1.44% = (k) =Zxg -+ x (mod IR), where the sum
ranges over all integers /;, > 0 such that Z ol; = k. Thus we have

(3) Po(O,l """" q—l,q+k)P'roa(a0,., Zxa oL Zo‘*’lo
=f(xo,---,x ) (mod IR)

where the sum ranges over all integers /; > 0 such that X7_,/, = k. We
will now apply the operator ATO to equation (3). Since ATO is R"e-linear
and h(k) € R" (where R is the ring of invariants of the group W),
we have

(4) A ( o(0,1,..., q— 1q+k)P700(a0,..‘,aq)) =Po(0,1 ..... qvl,q“'k)g;o(P‘TOU(aO,...,[lq))

= Poo1...g-1.9+0) Poap... ag:

Let Jo (8) = ,EW det(7)7g for g € R. Since Jg (78) = det(7)Jg,(g) for
any 7 € W@) , We have in particular

(i) Jo (Xm0 - Xme) = det(r)Jo (Xg™ -+ X)) forany 7 € W,
(ii) Jel(X(;"O c-+ X)) = 0if m; = m, for some i # j.
By using (i), (i), and the fact that X7 ™' = 0 (mod IR), it is to see that
Jo (f(x0s--3x,)) = Lo (xge7e -+ x20Tho),
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where the sum ranges over all integers A; > 0 satisfyinga, + Ay < --- <
a,+A,<nand X{_, A; = k. This gives by the proposition

Jo (f) = Zfe,( 70 (bo.. b))

where f = f(x,,...,x ;) (mod IR), and the sum ranges over all sequences
of integers b0<b < .-+ <b, satisfying 0 <a,<by<a <b <---
<a,<b,<nandX? (b, — g, ) = k. Thus from formula (2) we get

(5) fTTO(f) = Z/I_‘IO(PTOU(I)O,...,bq)) Z a(by,..

where the sum is as above. By comparing (3), (4) and (5) we obtain

(6) Po(O,l,...,q‘l,quk) a(ag,.. Z o(bg,. .
where the sum ranges over all sequences of integers b, < b; < -+ <,
satisfying 0 < ag < by <a; <b; < -+ <a,< b, <nand L7 (b —a)

= k. By considering equation (6) (mod IR"®), we get the claim, because ¢
is a graded algebra isomorphism and &(P y (mod IR"e)) =
Q(ags.--,a,).

o(ag,. .
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