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MARILYN BREEN

Let S be a compact set in R>. Assume that for every finite set F in
bdry S there exist points s and ¢ (depending on F) such that every point
of Fis clearly visible via S from at least one of s or ¢. Then S is a union
of two starshaped sets. If “clearly visible” is replaced by the weaker term
“visible”, then the result fails.

1. Introduction. We begin with some preliminary definitions. Let S
be a set in R?. For points x and y in S, we say x sees y via S (x is visible
from y via §) if and only if the corresponding segment [x, y] lies in S.
Point x is clearly visible from y via S if and only if there is some
neighborhood N of x such that y sees each point of S N N via S. Set S is
starshaped if and only if there is some point p in S such that p sees each
point of S via S, and the set of all such points p is called the (convex)
kernel of S.

A well-known theorem of Krasnosel’skii [S] states that if S is a
nonempty compact set in R, then S is starshaped if and only if every
d + 1 points of S are visible via S from a common point. Moreover,
points of § may be replaced by boundary points of S to produce a
stronger result. Other Krasnosel'skii-type theorems have been obtained for
starshaped sets, and in several recent studies ([1], [3], [4]), a helpful tool
has been the concept of clearly visible.

Here we use the idea of clearly visible to examine a related problem,
that of obtaining a Krasnosel'skii-type characterization for unions of
starshaped sets. Although this kind of problem is mentioned in [8, Prob.
6.6, p. 178] and in [2], it is also closely related to work by Lawrence, Hare,
and Kenelly [6] concerning unions of convex sets, and their results will
play an important role.

Restricting our attention to unions of two starshaped sets in the
plane, we establish the following result: Let S be a compact set in R
Assume that for every finite set F in the boundary of S there exist points s
and ¢ (depending on F) such that every point of F is clearly visible via S
from at least one of s or . Then S is a union of two starshaped sets. If
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“clearly visible” is replaced by the weaker term “ visible”, then the result
fails. Finally, a general characterization theorem for compact unions of
starshaped sets is given.

The following terminology will be used throughout the paper: Conv S,
cl S, int S, and bdry S will denote the convex hull, closure, interior, and
boundary, respectively, for set S. For distinct points x and y, L(x, y) will
represent the line through x and y, and dist(x, y) will be the distance
from x to y. The reader is referred to Valentine [8] and to Lay [7] for a
discussion of these concepts.

2. The results. Before establishing the main result, we will present
a sequence of four preliminary lemmas adapted from a theorem by
Lawrence, Hare, and Kenelly [6, Theorem 1]. For simplicity of notation,
these results are stated for pairs of sets. However, each has an immediate
analogue for k-tuples of sets as well.

DEerINITION 1. Let T be a collection whose members are unordered
pairs of sets. We say that a collection M of ordered pairs is a pairing for T
if and only if the following hold:

(1) Forevery (C, D)in M, {C, D} isin T.

(2) For every {C, D} in T, exactly one of the ordered pairs (C, D),
(D,C)isin M.

LemMMA 1. Let 2 be a property meaningful for finite collections of ordered
pairs of sets, and let T be a collection of unordered pairs of sets. If every
finite subset of T has a pairing satisfying property P, then T has a pairing M
such that every finite subset of M satisfies property &.

Proof. The argument is adapted from [6, Theorem 1] and is included
for completeness. Let # be the family of all finite subsets of 7. Then for
every F in &%, there corresponds a suitable pairing. (That is, there
corresponds a pairing for F having property #.) We let P, denote the
collection of all suitable pairings for F. Observe that since F is finite, so is
P., and P, with the discrete topology is compact. By the Tychonoff
theorem, the product 7P is compact, too. For X in the product, let X,
denote its Fth coordinate, and for G in %, define A; = { X in 7P: if
H c G, then X, = X;|y}, where X, means X; restricted to H.

We assert that { A;: G in & } is a collection of compact sets having
the finite intersection property: It is not hard to show that each A4 is
closed (hence compact) and nonempty. To see that { A;: G in % } has the
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finite intersection property, observe that when Fy,...,F, € %, then 4, N
++ N Ap contains Ag .., * &. Hence N{ 45 Gin F} # &, and we
may select Z in this intersection. Notice that for every H and G in &% with
HCG,Zy=Zgly

Finally, for every pair {C, D} in T, let F(C, D) denote the member
of # consisting of {C, D} only. Then Zp ,, is a suitable pairing, say

(C, D), for F(C, D), and whenever F(C, D) C G for G in #, then Zg . p,
and Z; agree on F(C, D). Letting M be the set of ordered pairs (C, D)
such that {(C, D)} = Zg, p, for some pair {C, D} in 7, a standard
argument shows that M satisfies the lemma.

LEMMA 2. Let S be a compact set in R, Q a finite subset of S, and let
M = {(C, D,): 1 < i} be a family of ordered pairs of closed sets. Assume
that for every j there exists a partition {Q 1, Q ;,} of Q such that each point
of Q ;, sees via S a common point of {C;: 1 < i < j} and each point of Q ,
sees via S a common point of (\{D;: 1 < i <j}. Then there is a partition
{01, 0%} of Q such that each point of Q; sees via S a common point of
M C;: 1 <i} and each point of Q) sees via S a common point of
N{D;:1 < i}

Proof. Again the argument is adapted from [6, Theorem 1]. For every
J» let P, denote the set of all ordered pairs (Q 1, Q,), where {0, Q),} is
a partition of Q, @, sees a common point of Y C: 1 <i <}, and @,
sees a common point of N{ D;: 1 < i < j}. Using the fact that Q is finite,
we see that P, is finite, P, is compact with the discrete topology, and the
product 7P, is compact. Let X; denote the jth coordinate of X in 7P, and
for each k, define set 4, = { X in #P;: X, = X, for i < k}. Using an
argument like the one in Lemma 1, {4,: 1 < k} is a family of compact
sets having the finite intersection property, so we may select some Z in
N{A,: 1 <k}. Then for every i and j, Z = Z;, and we let (Qj, Q)
denote this common value.

We assert that { 0], 03} satisfies the lemma: For each j, select a point
¢, inN{C;: 1 <i<j} such that Qj sees c, via S. Since S is compact, the
sequence { ¢;: 1 < j} has a limit point ¢ in S. Moreover, it is easy to verify
that c € N{C;: 1 <} and that each point of Q; sees ¢ via S. Parallel
statements hold for Q) and some d € ({ D;: 1 <}, and the lemma is
established.

The next lemma is a slightly stronger version of [6, Theorem 1]. The
proofs are essentially the same.
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LemMMA 3 (Lawrence, Hare, Kenelly Lemma). Fori = 1,2, let P,be a
hereditary property of sets. Let B be a set such that for every finite subset
F C B, there is a partition { F;, F,} of F such that F, has property P,,
i = 1,2. Then there is a partition { B, B,} of B such that every finite subset
of B, has property P, i = 1,2.

LEMMA 4. Let S be a compact set in some linear topological space.
Suppose that every finite set F in bdry S may be partitioned into two sets F,
and F, such that each point of F is visible via S from a point in the closed set
C,, i = 1,2. Then bdry S may be partitioned into two sets S, and S, such that
each point in S is visible via S from a point in C,, i = 1, 2.

Proof. By the Lawrence, Hare, Kenelly Lemma, there is a partition
{S;, S,} of bdry S such that every finite subset of ; is visible via S from a
common point of C;, i = 1,2. For every finite subset G of S, let 4,
denote the subset of C; seeing G via S. Standard arguments yield a point
¢, €EMN{A4;: G finite, G € S} # I, and each point of S, is visible via §
from c;. A parallel argument holds for S,, and the lemma is proved.

We are ready to state our main theorem.

THEOREM 1. Let S be a compact set in R*. Assume that for every finite
set F in bdry S there exist points s and t (depending on F) such that every
point of F is clearly visible via S from at least one of s or t. Then S is a union
of two starshaped sets.

Proof. The proof will require an intermediate result concerning
bounded components of R? - S.

LEMMA 5. If J and K are bounded components of R* — S with convJ N
convK = @, thenclconvJ N clconvK = J.

Proof of Lemma 5. Suppose on the contrary that clconvJ N clconvK
# . Since these sets share no interior points, they may be separated by a
line L, and clearly

bdryconvJ N bdryconvK = clconvJ N clconvK C L.

Moreover, it is not hard to show that for an appropriate labeling of J and
K, bdryJ N bdryconvK # @. Let x be a point in this nonempty intersec-
tion. Clearly x € bdryS N L. Let L’ and L” be lines distinct from L and
parallel to L, with L’ supporting clconvJ and L” supporting clconv K.
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By standard arguments, L’ meets bdry convJ at some point y in bdryJ C
bdry S, and similarly L” meets bdry conv K at some z in bdry K C bdry S.
By our hypothesis in Theorem 1, two points from {x, y, z} must be
clearly visible from a common point of S. However, it is easy to show that
this cannot occur. Qur supposition is false, the sets are disjoint, and the
lemma is established.

We are ready to prove Theorem 1, and we begin by defining special
points ¢ and d in S which will satisfy the theorem. Assume for the moment
that R? — S has at least two bounded components A4 and B with conv4 N
convB = &. By Lemma 5, clconv4 N clconvB = &. Hence there are
distinct lines L( A, B) = L and N(A4, B) = N such that each line supports
both clconvA and clconv B, with A and B in opposite open halfplanes.
Standard arguments may be used to produce points a; € L N bdry4 C
bdryS and b, € L N bdry B C bdry S with dist(a;, b;) maximal. Simi-
larly, choose a, € N Nbdryd and b, € N N bdry B with dist(a,, b,)
maximal. Label the open halfplanes determined by L and N so that
b, € L, and a; € N,. It is easy to see that b, is clearly visible only from
point in cl L, a; only from points in cl L,, b, only from points in cl N,
and a, only from points in cl N,.

A simple geometric argument may be used to find point a, in
bdryA4 C bdry S not clearly visible from any point of cI N, N ¢l L, and
point b; in bdry B C bdry S not clearly visible from any point of ¢l N, N
cl L;: Precisely, let line H bisect the angles determined by ¢l L; N cl N,
and cl L, N cl N,. Let H and H” be lines parallel to H such that H’
supports convA4 at some a; € bdry4 and H” supports conv B at some
b, € bdry B. Then a, is not clearly visible via S from any point of
cl N, N cl L,, by is not clearly visible via S from any point of cl N, N ¢l L;,
and a, and b, are not clearly visible from any common point of S.

Finally, let Q(A4, B) = {a,, b : 1 <i < 3}. By hypothesis, there
exist points s and ¢ of S such that each point of Q( A4, B) is clearly visible
via S from one of s or . By comments above, s and ¢ must lie in opposite
closed halfplanes determined by each of L and N, neitherisincl N, N cl L,
orcl N, N cl L,, so for an appropriate labeling of sand ¢, s € cI N, N cl L,
and t €cl N, N cl L,. Define C(A4, B)y=clN, Nncl L, and D(A4, B) =
cl N, Ncl L. In the future we shall refer to C(A, B) and D(A4, B) as
opposite vertical angles associated with 4 and B.

For every pair of distinct components 4 and B in R? — § satisfying
convA N convB = &, define sets Q(A, B), C(A4, B), D(A, B) in the
manner described above, and let T be the set consisting of all unordered
pairs {C(A, B), D(A, B)}. Let Q be a fixed subset of bdry S, Q finite.
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Observe that if {{ C(4;, B;), D(A4;, B;)}: 1 <i < n} is any finite subset
of T, then Q"= QU Q(4,, B))V ---U Q(4,, B,) is finite. Hence by
hypothesis there exist points s” and ¢’ such that every point of Q’ is clearly
visible via S from one of s” or t’. Moreover, by comments above, for an
appropriate labeling of the corresponding sets C(A4,;, B;) and D(A,, B,),
s €MN{C(A4,,B,):1<i<n}and? €({D(4,, B):1<i<n}.

We define property & as follows: For 7" a finite subset of 7 and
M’ = {(C,, Dy),...,(C,, D,)} a pairing for T’, we say that M’ has prop-
erty Zif and only if there exists a partition { Q;, @, } of Q such that each
point of Q, sees via S a common point of N{C;: 1 <i < n} and each
point of Q, sees via S a common point of N{D;: 1 <i<n}. By
comments above, every finite subset of 7 has a pairing satisfying property
#. Therefore, we may use Lemma 1 to conclude that 7 has a pairing M
such that every finite subset of M satisfies property £. Since R?> — S has
at most countably many bounded components, M is countable, and we let
M = {(C, D;): 1 <i}. Furthermore, sets S, Q, and M satisfy the hy-
pothesis of Lemma 2, so there exists a partition { Q7, @5} of Q such that
each point of Q] sees via S a common point of N{C;: 1 < i} and each
point of Q) sees via S a common point of ({ D;: 1 < i}. Hence we may
apply Lemma 4 to conclude that there is a partition {S;, S,} for bdry S
such that each point of S is visible via S from a common point ¢ of
N{C;: 1 < i} and each point of S, is visible via § from a common point d
of {D;: 1 <i}.

We have defined points ¢ and d in case R*> — S contains two bounded
components A and B with conv4 N convB = . In case no such compo-
nents exist, then by Lemma 4 simply choose points ¢ and 4 in S such that
each point of bdry S sees via S either ¢ or d.

To complete the proof, we will show that every point of S sees via S
either c or d. Let x € § and suppose that neither ¢ nor d sees x, to reach a
contradiction. Clearly x must be an interior point of S. Choose the
segment at x in S N L(c, x) having maximal length, and let p and ¢
denote its endpoints, with ¢ < p < x < g. Then p, q € bdryS, ¢ sees
neither p nor g via S, so d must see both p and g via S. Observe that
d & L(c, x) since d cannot see x. Similarly, choose a segment at x in
S N L(d, x) having maximal length, and let » and s denote its endpoints,
d < r < x < 5. Then c sees via S both r and s. (See Figure 1)

Since d does not see x via S, there is a segment in (d, r) — S, and this
segment belongs to a bounded component K of R> - S, K C
intconv{ p, q, d }. Likewise, there is a segment in (¢, p) — S belonging to
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N‘

d

FIGURE 1

a bounded component J of R* — S, J C intconv{c, s, r}. Letting L(c, r)
N L(d, p) = {v}, it is easy to show that J and K lie in opposite open
halfplanes determined by L(v, x), so convJ N conv K = &. Hence points
¢ and d must have been selected according to the lengthy procedure
described in previous paragraphs.

Define lines L’ and N’ as follows: Clearly L(c,v)NJ = 2. If
L(c,v)N K= & as well, let L’ = L(c, v) and let L] be the open half-
plane determined by L’ and containing J. Then K C Lj. Otherwise,
L(c, v) meets K. In this case, let L, denote the open halfplane determined
by L(c,v) and containing J. Clearly d cannot see all the points of
(bdry K') N L,, so ¢ must see some of these points via S. Let L’ be the line
from ¢ which supports convK at a point of L,. It is easy to show that
L’ N (bdry conv K) contains some point ¢ of bdry K such that [c, ¢] C S.
Thus [c, t] N J = &, and J lies in the open halfplane L] determined by L’
and containing p. Of course K lies in the opposite halfplane L.

Using a similar argument, L(d,v) N K = &. If L(d,v) NJ = @ as
well, let N’ = L(d, v) and let N, denote the open halfplane determined by
N’ and containing K. Then J € N|. Otherwise, L(d, v) meets J. In this
case, let N, denote the open halfplane determined by L(d, v) and con-
taining K. Clearly d must see via S some points of (bdryJ) N N,. Let N’
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be the line from 4 which supports convJ at a point of N,. Then
N’ N (bdryconvJ) contains some point ¢’ of bdryJ such that [d, '] C S.
Thus [d, t'] " K = @ and K lies in the open halfplane N, determined by
N and containing r. Of course J lies in the opposite halfplane N;.

WehaveJ ¢ N/ N L; and K € N; N Lj. Observe that if line H meets
both cl J and cl K, then H N ¢l N] N ¢l L] is an infinite ray, as is H N
cl N; N cl L. Moreover, ¢ and d must lie in the same closed halfplane
determined by H.

Recall that since convJ N convK = &, we have associated with J
and K distinct lines L(J, K) and N(J, K) which support both clconvJ
and clconv K, with J and K in opposite closed halfplanes determined by
each line. Further, by our choice of c€N{C: 1 <i} and d€
N{D;: 1<i}, c and d belong to opposite vertical angles C(J, K) and
D(J, K) associated with J and K. However, our comments in the preced-
ing paragraph (concerning line H) imply that ¢ and d must lie in the same
vertical angle, either C(J, K) or D(J, K). The only way for both these
events to occur is for ¢ and d to be the same point, impossible since
d & L(c, x). Our supposition (that neither ¢ nor d sees x) must be false,
and S is indeed a union of two starshaped sets. This finishes the proof of
the theorem.

It is easy to find examples to show that the condition in Theorem 1
does not characterize unions of starshaped sets: Consider a W-shaped
polygonal path.

Furthermore, it is interesting to observe that if the words “clearly
visible” in Theorem 1 are replaced by the weaker term “visible”, then the
result fails, as the following example illustrates.

ExaMmPpLE 1. Let S be the compact set in Figure 2, with shaded regions
in R> — S and dotted segments in S. Then every boundary point of S is
visible via S from either c or d, yet S is not a union of two starshaped sets.

However, if in Theorem 1 we replace “clearly visible” by “ visible”
and require S to be simply connected, then the result holds. The easy
proof is a simplified version of our previous argument.

We close with a theorem concerning unions of starshaped sets which
follows easily from work by Lawrence, Hare, and Kenelly.

THEOREM 2. Let S be a compact set in some linear topological space.
Then S is a union of k starshaped sets if and only if for every finite set F in S
there exist points s,,...,s, (depending on F) such that each point of F sees
via S at least one of the s; points.
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FIGURE 2

Proof. The necessity is immediate. For the sufficiency, apply [6,

Theorem 1] to obtain a k-partition {S,,...,S,} of S such that each finite
subset of S, is visible from a common point of S, 1 < i < k. By standard
arguments, every point of S; is visible from a common point of S, and the
theorem is established.

(1
(2]
(3]
(4]
(5]
[6]
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