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NONCOINCIDENCE INDEX OF MANIFOLDS

MICHAEL HOFFMAN

For a connected topological manifold M we define the noncoinci-
dence index of M, a topological invariant reflecting the abundance of
fixed-point-free self-maps of M. We give some theorems on noncoinci-
dence index and compute the noncoincidence index of the homogeneous
manifold U(n)/H, where H is conjugate to U(1)* X U(n — k).

1. Introduction. Let M be a manifold (connected locally Euclidean
Hausdorff space). We define the noncoincidence index of M, #M, as
follows. If M admits k fixed-point-free self-maps, no pair of which has a
coincidence, set #M > k + 1. If #M > i for all i, put #M = oo; other-
wise, #M is the greatest number i with #M > i. (This definition is
inspired by [5].)

Evidently a manifold has noncoincidence index 1 if and only if it has
the fixed-point property. On the other hand, if a group G acts freely on M,
then #M > card G if G is finite and #M = oo if G is infinite. In
particular, any connected nontrivial Lie group has noncoincidence index
0.

As we see in §2, many manifolds besides Lie groups have noncoinci-
dence index 0. In §3 we show how the Lefschetz coincidence theorem can
be used to put a finite upper bound on #M for certain compact oriented
manifolds M. These results are used in §4 to compute the noncoincidence
index of the homogeneous space U(n)/H for H conjugate to U(1)* X
U(n — k). Section 5 is devoted to proving a classification theorem for
endomorphisms of H*(U(n)/H; Q) which is needed in §4.

I thank my colleague W. Homer for greatly improving Lemma 5.3,
and I thank A. Dold for some helpful observations.

2. Sufficient conditions for #M = oo. In this section we give some
sufficient conditions for a manifold M to have #M = . The following
result gives some easily checked homological conditions.

THEOREM 2.1. Let M be a compact manifold. Then #M = oo if either
of the following is true:

1. M has nonzero first Betti number, or

2.x(M)=0.
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Proof. For (1), see Corollary 5.1 of [S]. Now suppose x(M) = 0. By
[4], there is a map s: [0,1] X M — M with s(0,-) = id,, and s(¢, -):
M — M fixed-point-free for ¢ > 0. Let d be a metric for M, and set
N(z) = inf d(s(z,x),x), F(r) = sup d(s(z,x), x).
xeEM xEM
Then F(t) > N(¢t) > 0 for t > 0, and F(¢), N(t) = 0 as t = 0. Choose
0<t,<t,_,<--- <t <1sothat F(z,) < N(¢t,_;): then

x—s(t,x), 1<ic<k,

is a set of k fixed-point-free, noncoincident maps. Since we can do this for
any k, #M = 0.

From the preceding result, we see that any odd-dimensional compact
manifold has noncoincidence index co. It also follows that #M = oo for
any compact surface M, except M = §? and M = RP? (of course #RP?
= 1, and we see in the next section that #S2 = 2).

The next result gives another useful sufficient condition for #M = .

THEOREM 2.2. Let M be a compact manifold which admits a fixed-
point-free nonsurjective self-map. Then #M = co.

Proof. Let f: M — M be fixed-point-free and nonsurjective. By Theo-
rem 1.11 of [3], there is a path field nonsingular on the image of f, i.e. a
map s: [0,1] X M — M such that s(0, -) = id,, and s(¢, -) fixes no point
of f(M) for t > 0. Let d be a metric for M and take ¢ > 0 so that
d(f(x), x) = € for x € M. Then there is some ¢, > 0 so that

sup d(s(t,x),x) <e
xeEM

for ¢ < t;,. Now proceed as in the proof of 2.1; set

N(¢)= inf d(s(z,x),x), F(t)= sup d(s(z,x),x)
xE€f(M) xEf(M)

(note f(M) is compact) and choose 0 < ¢, <¢,_; < --- <{ <{¢, such
that F(t;) < N(¢,_,). Then there are k fixed-point-free noncoincident
self-maps of M given by

x - s(t, f(x)), 1<ic<k.
Since k is arbitrary, #M = oo.
3. The Lefschetz coincidence theorem. In this section we show how

the Lefschetz coincidence theorem can be used to put a finite upper
bound on the noncoincidence index in some cases. As we see in the next
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section, such an upper bound combined with constructions of fixed-
point-free maps often gives the noncoincidence index exactly.

Throughout this section, M will be a compact oriented n-manifold.
We shall use the following version of the Lefschetz coincidence theorem:
for a more general statement, see [9].

THEOREM 3.1. For maps f, g: M — M, set

n

L(f.g)= X (-1)'Tr(®'g4®,f*),

1=0

where ®.: H'(M; Q) —» H,_,(M; Q) is the Poincaré duality isomorphism. If
L(f, g)+ 0, then f and g have a coincidence.

REMARKS. 1. It is immediate that L(f,id) = L(f), the ordinary
Lefschetz number of f, so this result implies the Lefschetz fixed-point

theorem for M.
2. It follows from properties of trace that L(f, g) = (-1)"L(g, f).

Let g be a self-map of M. We define the degree of g by g [M] =
(deg g)[M], where [M] € H,(M; Q) is the fundamental class of M. The
following result is useful in computing the Lefschetz coincidence number.

PrOPOSITION 3.2. If g is a self-map of M with deg g + 0, then g*:
H*(M; Q) » H*(M; Q) has an inverse g* and

L(f, g) = (degg)L(g*f*)
for any other self-map f of M.

Proof. 1f deg g # 0, it follows from consideration of Poincaré duality
that g* is injective. Then g* is an automorphism, since each vector space
H'(M; Q) is finite-dimensional. For u € H'(M; Q),

(I)flg*q)zf*(“) = q)ivlg*(g*g*f*(“) ﬂ[M])

= O (g *(u) N g [M]) = (deg g)g*/*(u),

and the conclusion follows from the definition of L( f, g).

By Theorem 3.1, any fixed-point-free self-map f of M must have
L(f) =0, and any pair f, g of self-maps without a coincidence must have
L(f, g)=0.Weput

LZ(M) = {f*|f: M —> Mand L(f) = 0}
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and say f*, g* € LZ(M) are compatible if L(f, g) = 0.1f x(M) # 0 and
LZ(M) consists of automorphisms of H*(M; Q), we call M L-rigid. We
then have the following result.

PROPOSITION 3.3. Suppose M is L-rigid. If #M > k + 1, then LZ( M)
contains a subset of k pairwise compatible elements.

Proof. By the hypothesis, there is a set S of k pairwise noncoincident
fixed-point-free self-maps of M. Let f, g€ S. Then f* and g* are
compatible elements of LZ(M). We have f* # g*, since otherwise

L(f,g)=L(f,f) = (deg f)L(id) = (deg /) x(M) # 0.
Thus, { f*|f € S} 1s a set of k pairwise compatible elements of LZ(M ).

ReMARK. Note that if M is L-rigid, then any pair f*, g* € LZ(M) is
compatible if and only if L(g*f*) = 0.

It follows immediately from 3.3 that
(1) #M < card LZ(M) + 1

when M is L-rigid and LZ( M) is finite. Thus we have, e.g., #5°" < 2 for
any even sphere S (and in fact #S" = 2, since the antipodal map is
fixed-point-free). As we see in the next section, however, 3.3 sometimes
gives a sharper upper bound than (1).

4. Noncoincidence index of some flag manifolds. Let F(1%, n) de-
note the homogeneous space U(n + k)/H, where H is conjugate to
U(D)* X U(n). (We can assume n = 0 or n > 2: in the former case we
write F(1%) instead of F(1%,0).) It is proved in [7] that #F(1*) = k!. In
this section we compute #F(1%, n) for all k and n.

The manifold F(1*, n) can be thought of as in the space of k-tuples of
orthogonal lines in C"**. Thus, there are maps

m: F(1%,n) - CP"* 571, 1<i<k,
given by picking out the ith line. If we let t € H*(CP"**~1; Q) be the
first Chern class of the canonical line bundle over CP"**~! and put
t, = m*(t), we have the following description of H*( F(1%, n); Q) [1].
H*(F(1*,n);Q) = Q[t, ty,.. .ot ] /{hn + 1 <i<n+k},
where £, is the ith complete symmetric function in ¢,, ¢,,...,, i.€.
h~ = Z t{’ltgz . t[l(’k'

3
Pt A=
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There is a free action of the symmetric group =, on F(1%, n) by permuta-
tion of lines, and this action evidently permutes the ¢, in cohomology.
For any m € Q and o € 2,, let k), denote the endomorphism of
H*(F(1%, n); Q) given by
ho(t) = mt .
The following classification theorem for endomorphisms of
H*(F(1%, n); Q) is proved in §5.

THEOREM 4.1. Unless k =2 and n is a positive even number, all
endomorphisms of H*( F(1%, n); Q) are of the form h?, for some m € Q and
o €2,.If k=2andn > 2 is even, the only additional endomorphisms are

= (-)'me, i=1,2,
forqge {1,2} andm € Q.

The next result gives a formula for L(A3,).

THEOREM 4.2. Let \| > A, > - - - be the cycle-type of 6 € Z, (50 A, is
the length of the longest cycle in o, N, is the length of the next longest cycle,
etc.). Then h°;: H*(F(1%, n); Q) » H*(F(1%, n); Q) has Lefschetz number
(1 _ mn+l)(1 __ mn+2) (1 _ mn+k)

(1 - mM)(1 — m*2) - '

(1) L(hy,) =

Proof. For hi: H*(F(1%, n); Q) —» H*(F(1%, n); Q), let P, (o, m)
denote L(#;,). From [7] we have the formula
1-m)1—-m?)---(1—m")

(1 — m}‘l)(l - m}‘2) o e
Now the spectral sequence of the fibration

F(1*) - F(1*, n) = G (C"**),

where G,(C"**) is the Grassmannian of k-planes in C"**, collapses for
degree reasons. Thus

H*(F(1*, n); Q) = H*(F(1*); Q) ® H*(G,(C"**); Q)
additively. Now H*(G,(C"**); Q) can be regarded as the invariant sub-
ring of H*(F(1%, n); Q) under the =,-action, and H*(F(1¥); Q) is a

quotient of H*(F(1%, n); Q) (the projection is the obvious map sending
t, € HX(F(1*, n); Q) to t, € H*(F(1*); Q)). Any endomorphism A, of

(2) Pyo(o, m) =
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H*(F(1%, n); Q) restricts to the endomorphism of H*(G,(C"**); Q) which
multiplies dimension 2 by m’, and gives rise to the corresponding 47, on
H*(F(1%); Q). Since trace is multiplicative on tensor products,
(3) P, ,(0,m) =P (o, m) Y, m'dim H¥(G,(C"*); Q).
i20
It is well known (see e.g. [1]) that
o ] 1 — mn+1)(1 _ mn+2) . (1 _ mn+k)

m'dim H*(G,(C""*); Q) = (
Z (Ger): Q) (1= m)(1~m?) - (1—m)
and this together with (2) and (3) implies the conclusion.

We can use Theorems 4.1 and 4.2 to show that many of the manifolds
F(1*, n) are L-rigid.

s

PROPOSITION 4.3. Suppose k + 2, n is odd, or n = 0. Then F(1%, n) is
L-rigid. Further, if U is the set of products of [ k /2] disjoint transpositions in
2, then
{hflo #id} U{h% o € 2, }, knodd,

{(h{lo #id} U{h% o € T},  kn even.

Proof. By 4.1, an element of LZ( F(1*, n)) must be an endomorphism
he of H*(F(1%,n); Q) with L(hS%)=0. The above list follows from
consideration of (1) (it is easy to see that any A7, m = +1, is induced by
a self-map of F(1%, n)). Now

n+ k)

x(F(1%, n)) = k!( :

and clearly 49, is an automorphism for m # 0 (in fact deg 4%, = m?sgn o,
where d = dim F(1%, n)), so F(1*, n) is L-rigid.

Now we can give an upper bound for #F(1*, n) when n and k satisfy
the hypothesis of the preceding result.

LZ(F(1*, n)) = {

PROPOSITION 4.4. Suppose k # 2, n is odd, or n = 0. Then #F(1*, n)
< k'if kn is even, and #F(1*, n) < 2k if kn is odd.

Proof. The statement about #F(1%,n) for kn odd follows im-
mediately from 3.3, since LZ(F(1%, n)) has 2k! — 1 elements by 4.3.
Again by 3.3, to prove the statement about #F(1%, n) for kn even it
suffices to show that any set of pairwise compatible elements of
LZ(F(1%, n)) has at most k! — 1 elements in this case. Suppose kn even
and let S € LZ(F(1%, n)) be a set of compatible elements. Let

H={oe€Z|hfes}ulid},
K={o€3|h’ €S}
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Then card S = card H + card K — 1. Since
L(h7y, hy) = (deg h{)L(h{"h7,) = +L{h%)"7),
we must have 01 & T for 7 € K and 0 € H (here T is as in 4.3). But

then, if we take p € T', we have op & K for every 0 € H: hence card H +
card K < k!, and the conclusion follows.

Next we show that the inequalities of 4.4 are equalities. To do this, we
construct fixed-point-free, noncoincident maps. For any even number 27,
define J: C** - C*" by

J(21, 23503200215 23,) = (<235 215 o 0225 230 1).
Then J is a conjugate-linear map of C?” with J2 = —id. Under the evident
identification C*” = H’, we can regard J as multiplication by the quater-
nion j. Any subspace of C*” invariant under J can be given the structure

of a quaternionic vector space, and thus must be even-dimensional (cf. the
proof of Theorem 1 of [6]). Further, if { , ) denotes inner product,

(4) {(Jv, Jw)y={(w,v) forv,we C¥.

Thus J preserves orthogonality.

THEOREM 4.5. Unless k = 2 and n is a positive even number,

2k, knodd,

k =
#F(1% n) {k!, kn even.

Proof. Since there is a free =,-action on F(1*, n) (i.e., permutation of
lines), we have #F(1%, n) > k!; together with 4.4, this disposes of the case
kn even. Now suppose kn is odd. Then n + k is even, and we have the
map J: C"** > C"** defined above. Consider the 2k! — 1 self-maps of
F(1*%, n) defined by

(5) (hly,. ) = (l-rr(l)’ lw(Z)""’lw(k))’ 7€ 2, —{id}
and
(6) (Il Lyoee b)) = (T Toyse - T lny)s T € 24

We claim these maps are fixed-point-free and pairwise noncoincident.
Clearly the maps in (5) are fixed-point-free and pairwise noncoincident,
and the maps in (6) are pairwise noncoincident. Suppose now we have a
fixed point of a map in (6) or a coincidence between a map in (5) and one
in (6), i.e., an element (/,, [,,...,/,) of F(1*, n) with

Loty = oy s 1<i<k,
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for some 7,0 € 2. Then J fixes [, ® [, ® --- & /,. But this is impossi-
ble, since J cannot fix an odd-dimensional subspace of C"**.
Finally, we dispose of the case k = 2 and n > 2 even.

THEOREM 4.6. If n > 2 is even, then #F(1%, n) = 0.

Proof. Let J: C"*? —> C"*2 be as defined above. Note that for
= Cn+2,

(Jv,v) = (Jv, J2) = ~(Jv, v)

by (4) above; thus (Jv, v) = 0, and JI is orthogonal to / for any line /.
Define y: F(1%, n) = F(1%, n) by ¢(l;, 1,) = (J1,, I): then ¢ is fixed-
point-free and nonsurjective, and the conclusion follows by 2.2.

5. Proof of the endomorphism theorem. This section is devoted to a
proof of Theorem 4.1. We use the notation of the previous section.

Since t; € H*(F(1*%, n); Q) is pulled back from H*(CP"**71; Q), we
have ¢"** = 0. The next result gives a converse: it is proved in [8] for
k < n, and in [2] without restriction.

THEOREM 5.1. If u € H*(F(1*, n); Q) and u"** = 0, then u is of the
form at, for somea € Qand1 <i < k.

Now suppose f is an endomorphism of H*(F(1%, n); Q). Then
fe)r = f(ar**) = 0for1 < i < k, and it follows from 5.1 that

f(ti)zmitp(,)5 1 SlSk,

for some function p: {1,2,...,k} — {1,2,...,k} and rational numbers
m,. We shall prove that p is a permutation and all the m; are equal unless
k = 2 and n is even.

First we prove a technical lemma. The expression A,(x;, x,,...,X,)
denotes the ith complete symmetric function in x;, x,,...,X,.

LeMMA 5.2. Let n > 0 be an integer, a,, a,,...,a, real numbers, and
suppose
h,.(a,a,,...,a,)=0, 1<i<r-1.
Then unlessr = 2 and n is even,a, = a, = --- =a,=0.Ifr=2andn is
€Uel'l, az = _‘al.

Proof. Suppose first that » = 2. Then we have

(1) hn+1(a1, a2)=a1”“ + aja, + --- + a,a; -+—a£’Jrl = (.
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If a; = a,, this evidently implies a;, = a, = 0. If a; # a,, then (1) is

n+2 _ n+2
a; a =
S22 o,

from which it follows that a, = —a, and n is even.
Now suppose r = 3. We have

h,oi(ay, ay,a5) =h,.,(a, Qs a;) =0.
Then from the relations
hn+2(“1’ a, a3) = afn + alnﬂhl(az» a3) + -t alhn+1(a2’ a3)

+hn+2(a2’ a3)

and
ah,i(ay, ay, a5) = af*? + at " hy(ay, a3) + -+ ayhy, o (ay, as)
we get
(2) h,ia(ay, as) = 0.
Similarly,
(3) hyiolay, a3) =0
and
(4) hyia(ay, ay) = 0.

By the argument of the preceding paragraph, these equations imply
a, =a, =a; =0 unless n is odd. In this case, (2) gives a; = —a,, (4)
gives a, = —a,, and (3) gives a, = —a;: but then a; = a, =a; = 0. It is
now clear how to prove the result by induction for any » > 3.

As noted in the previous section, H*( F(1*, n); Q) is the quotient of
Ql#,...,t,] by the ideal generated by R, R,,...,R,, where

R =h, (t;,t5,....0,), 1<i<k.

!

For f to be a well-defined endomorphism of H*(F(1*, n); Q) there must
be relations

(5) f(R)=NR,+ ) NYR,_,, 1=<is<k,
1<|af<i
m Qfz,...,t,], where the sum is over multi-indices a = (qa;, a,,...,a;)
with|a|=a; + @, + -+ + a;, and
1* = [1“1[5‘2 NN t;:k-

Then we have the following result.
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LeMMA 5.3. If r of the elements t,, t,,...,t, are missing from the image
of f,then f(R;,) = 0in Qt;,...,t, )] for1 <i <r.

Proof. Permuting the ¢, if necessary, we can assume that ¢, 7,,...,¢
are missing from the image of f. Define 7: F(1¥, n) — F(1*"", n + r) by
a(l, by, ) = (L, 0,).

Then 7* sends ¢, € H*(F(1*"",n + r); Q) to ¢,,, € H*(F(1*, n); Q) for
1 < i < k — r, and is injective since the spectral sequence of the fibration

F(1',n) =» F(1*,n) 5> F(A* ", n + r)

r

collapses for degree reasons. Now ¢,...,¢, are missing from im f, so
im f C im7* in H*(F(1%, n); Q). Hence f = 7*g for

g = (7*)'f: H*(F(1*, n); Q) » H*(F(1* ", n + r); Q).

But the first nontrivial relation in H*(F(1*~’, n + r); Q) is in dimension
2n+r+1),s0g(R,)=0in Q[¢,...,t,_,]for1 <i < r and the conclu-
sion follows.

Suppose n > 2. For each i from 1 to k, we define the weight of i to be
the cardinality of {r|p(r) =i and m, # 0}, i.e., the number of ¢, that f
maps to ¢, with nonzero coefficient. The following result is the key to the
proof of Theorem 4.1.

PROPOSITION 5.4. Let n > 2. Then i has weight at most 1 for1 <i <k
unless k = 2 and n is even. If k = 2, n is even, and q € {1,2} has weight 2,
then f has the form

f@)=(D'm, i=1,2.

Proof. Suppose g has weight w > 1. Then at least w — 1 of the ¢, are
missing from the image of f, and by 5.3

(6) f(R)=0, 1<i<w-1,

in Qfz,...,1,]. We can assume f, f,,...,f, map to 7, with nonzero

coefficient. Examine the coefficient of ¢ in (6) to get
h(my,my,....m,)=0, 1<i<w-1.

Then unless w =2 and n is even, m; =m, = --- =m, =0 by 5.2, a

contradiction. If w = 2 and n is even, 5.2 gives m, = -m; # 0. In this
case, f(Ry) =0 and f(R,) # 0 in Q[#,...,7.]: but then no i can have
weight 1 and no more than one ¢, can be missing from the image of f,
from which follows k = 2.
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REMARK. The case n = 0 is disposed of in [7], where it is proved that
all endomorphisms of H*( F(1*); Q) have the form 4.

By the preceding result, the function p of {1,2,...,k} can be assumed
a permutation if k # 2 or n is odd. To finish the proof of 4.1, we need
only show all the m, are equal in this case. Now in f( R,) the coefficient of
17+ is m?*!, where p(s) = r. The coefficient of ¢#**' on the right-hand
side of (5) (with i = 1) is N;. Thus m”*! = N, for 1 < s < k. For n even,
this shows all the m_ are equal. For n odd, it is also necessary to inspect
the coefficients of terms ¢'t_, r # s, in equation (5) with i = 1.

rvs?
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