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Our aim in this paper is to obtain sufficient conditions under which
certain functional differential equations have a “large” number of non-
oscillatory solutions. Using the characteristic equation of a “majorant”
delay differential equation with constant coefficients and Schauder’s
fixed point theorem, we obtain conditions under which the functional
differential equation in question has a nonoscillatory solution. Then a
known comparison theorem is employed as a tool to demonstrate that if
the functional differential equation has a nonoscillatory solution, then it
really has a “large” number of such solutions.

Our aim in this paper is to obtain sufficient conditions under which
the functional differential equation

1) Xﬁ%+§mUMU—EUD=0

has a “large” number of nonoscillatory solutions. It is to be noted that the
literature is scarce concerning conditions under which there exist nonoscil-
latory solutions. Using the characteristic equation of a “majorant” delay
differential equation with constant coefficients and Schauder’s fixed point
theorem, we obtain conditions under which (1) has a nonoscillatory
solution. Then we employ a known comparison theorem [see 1, p. 224,
also 4, Ch. 6] as a tool to demonstrate that if (1) has a nonoscillatory
solution then it really has a “large” number of such solutions.

As it is customary, a solution is said to be oscillatory if it has
arbitrarily large zeros. A differential equation is called oscillatory if all of
its solutions oscillate; otherwise, it is called nonoscillatory. In this paper
we restrict our attention to real valued solutions x(¢).

2. Non-oscillations.

THEOREM 1. Consider the differential equation

) ¥(0)+ % p(0x( = 7() =0
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where p;(t) and T/(t) are continuous functions such that |p,(t)| < P,
It < T, |p(t)| <A, and |7/(t)| < B;, i = 1,2,...,n, where P, T,, A,
and B, are positive constants. Assume that

n
(2) A=) Pe'\l

i=1
has a positive root. Then equation (1) has a nonoscillatory solution of the
form

(3) x(t)=exp(——fl:?\(s)ds)

where A(t) is a bounded continuous function.

Proof. Suppose that A, is a positive root of (2), i.e.,
n
Ao = D Perl,
i=1
We will prove that (1) has a nonoscillatory solution of the form (3).
Substituuting (3) into (1) we obtain

(@) A1) = élp,.mexp( [

It suffices to show that (4) has a bounded solution. We will employ
Schauder’s fixed point theorem. Define the sets

A(s) ds).

X = {A(¢): bounded continuous functions mapping R into R}
with sup-norm, which is a Banach space, and
M= {\(t) € X: A1) <Ay}
which is a closed and convex subset of X. Consider the mapping F on M

given by

FA(1) = 2 n(es( [

A(s) ds).
—1{1)

Observe that

IFA ()] <

e[ N

|

Hence ' M —» M.
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To show that (4) has a solution it suffices to show that the mapping F
has a fixed point. To this end it remains to show that F is continuous and
that FM is a relatively compact subset of X.

We will show that F is continuous by showing that each of the
mappings

FA(1) = exp(f‘ A(s) ds), i=1,2,....n,

-,

is continuous. Let A, — A where A,, A € M. Then

[EA(2) — FA(1)| = m(z)l%n(it_’)_) _ I

= FA(1) / [, (s) = A(s)] ds) - 1‘.

t—,

exp (

But

t

(X, (s) = A(s)] ds

<\, =A|-T >0 asn— .

[‘71(t)

and because F,A(¢) is bounded, it follows that F is continuous.

To prove that FM is a relatively compact subset of X it suffices to
prove that if K is a positive constant and A is a function in X such that
IIAll < K, then (FA(?)) is uniformly bounded. We have

CRN@) = Epew( [ Ms) ]

1=1 —7(1)

and therefore
[(FA(2))]< ) A,eX" + Y PKBeX".
i=1 =1
Therefore Schauder’s fixed point theorem applies and the proof is
complete.

Note that the r.h.s. of (2) is a positive convex function of A and so (2)
has either two real roots, one real root, or no real root. Except in the case
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that all the P, are zero, the roots are always positive. Thus (2) really just

means 13,...,7T,, P;,...,P;n are fairly small.
For the delay differential equation
n
(1) x(6)+ X px(t—1)=0
i=1

whose coefficients and delays are positive constants, it has been proved
[5], see also [3], that every solution oscillates if and only if the characteris-
tic equation

n
(2) A+ Y pe =0
i=1
has no real roots. This is equivalent to saying that (1)’ has a nonoscillatory

solution if and only if (2)" has a real root.
The following are immediate corollaries of Theorem 1.

COROLLARY 1. Egquation (1) is nonoscillatory provided that the
“majorant” delay differential equation

(5) x(1)+ X Px(t—T,) =0,
i=1
where P, and T, are as defined in Theorem 1, is nonocillatory.

COROLLARY 2. The functional differential equation with constant coeffi-
cients and constant arguments

(6 €(0)+ X pixla =7) =0

is nonoscillatory provided that the delay differential equation

(7) (1) + 3 plx(r —[n]) = 0

i=1

is nonoscillatory.

3. A comparison theorem and its applications. Next we will demon-
strate how the following comparison result [see 1, p. 224, also 4, Ch. 6]
may be used as a tool to establish that if a functional differential equation
has a nonoscillatory solution then it has a “large” number of such
solutions in a sense that will be made clear below.
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THEOREM 2. (Comparison Theorem.) Consider the delay differential
equation

h
(*) () + X p()x(t—7)=0, =20,n=1,

i=1
where 0 = 7y < < .-+ < T, =T are CONstants, p,, py,-..,p, are continu-
ous functions and p,(t), p,(t),...,p,(t) positive on [ 0,00). Let 0, 6:
[—7,0) = R be continuous and such that

(8) 6(t) <6(t) on|[—r,0) and  0(0)=6(0) >0

Let x and % be the unique solutions of (+) with initial functions 6 and 0
respectively. Assume that

(9) %(2)>0 on]0,c0).
Then
(10) x(t) > x(2) on (0, ).

REMARK 1. If we denote by x(¢, ,, §) the unique solution of (*) with
initial function 6 at ¢ = ¢, then x(¢, ¢y, —0) = —x(¢, t,, §). From this
observation we obtain a dual to the above theorem by simply reversing the
signs of the inequalities in (8), (9), and (10). That is, under the hypotheses
of Theorem 2 we have, on (0, o),

x(1,0,0) > %(¢,0,0) >0 and x(z,0,—6) < %(z,0 —8) <0.

Finally a close look at the proof of the comparison theorem [see 1, p.
224] shows that the functional arguments in (*) do not have to be
constants. The results is true if we assume tha 7,(¢) are continuous
function satisfiying the following condition

(i) (t)=0 and 7(z)=0 for j=1,2,...,n;

11
(11) (ii) 37 > 0 suchthat0 <7 (¢) <7, j=1,2,...,n

First we apply the comparison theorem to the delay differential
equation

1y t)+Ep, (t—7)=0

where p, and 7 are positive constants. As discussed above (1)’ has a
nonoscillatory solution provided that the characteristic equation

2y fA)=A+ Y pei=0

i=1



396 G. LADAS, Y. G. SFICAS AND I. P. STAVROULAKIS

has a real root. The condition, for example,

(12) (ZP,)PS% where 7 = max{m, 7,,...,7,}
=1

implies that f(0)f(—1/7) < 0 and therefore (2)" has a real (negative) root
in the interval (—1/7,0).

Now assume that (2)’ has a real root A,. Then (1)" has the nonoscilla-
tory solution

per’ foranyu € R, p # 0.

But then, by the comparison theorem, any solution of (1) with initial
function ¢(¢) satisfying

o(1) <p(0)er, —7<r<0 and ¢(0)>0
and any solution of (1)” with initial function ¢ /(¢) satisfying
Y(1) > y(0)er, —7<t<0 and ¢(0)<0

is nonoscillatory. In particular (and also when A is not known) we have
the following result.

COROLLARY 3. Assume that (2)' has a real root. Then any solution of
(1)" with initial function ¢ or { satisfying
¢(1) < ¢(0), —7<t<0 and ¢(0)>0
or
v(1) > ¢(0), —7<t<0 and ¢¥(0)<0

is nonoscillatory.

ExaMpLE 1. For the delay differential equation
(13) x(t)+ieVx(t—%) +ieVx(t—-31)=0
condition (12) is satisfied. Therefore its characteristic equation
(14) A+ e I/3AB 4 Lem /2702 =
has a real (negative) root in the interval (—2, 00). Observe that A = —1 is
a root of (14). Thus (13) has the nonoscillatory solution pe™ ' for any
r € R, p # 0. Also, using the comparison theorem, any solution of (13)
with initial function ¢ or  satisfying
o(t) <o(0)e ", —7<t<0 and ¢(0)>0
or
(1) >¢(0)e, —71<t<0 and ¥(0)<0

is nonoscillatory.
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In view of Theorems 1 and 2 and Remark 1, we obtain the following
result equation (1).

COROLLARY 4. Consider the differential equation (1) subject to the
hypotheses of Theorem 1 and in addition assume that p,(t)> 0, i =
1,2,...,n, and condition (11) is satisfied. Then, any solution of (1) with
initial function ¢ or { satisfying

o(1) < ¢(0), —7<t<0 and ¢(0)>0
or
(1) > ¢(0), —7<t<0 and ¢(0)<0

is nonoscillatory.

Finally we apply the comparison theorem to the delay differential
equation
(15) x(t)+p()x(t—7)=0, =1,
where 7 is a positive constant and p(¢) is a 7-periodic continuous function
with

(16) stt’_ pls)ds <.

With these hypotheses equation (15) has a nonoscillatory solution of the
form

(17) x(1) = exp(?\ft:p(s) ds)

with A < 0. In fact, substituting (17) into (15), we obtain
g(A) = XX+ 1 =0.
It suffices to show that g(A) has a negative root.

Case 1. K < 0. Then g(— o) = —oo and g(0) = 1. Therefore g(A)
has a root in (— 00, 0).

Case2. K = 0. Then A = —1is aroot

Case 3. K> 0. Then g(—1/K)=(Ke —1)/Ke <0 and g(0) = 1.
Therefore g(A) hasarootin|[ —1/K,0).

Thus in each case (15) has a nonoscillatory solution of the form given
by (17). If in addition to (16) we assume that p(¢) > 0 then the compari-
son theorem applies and we have the following result.
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COROLLARY 5. Consider the differential equation (15) under the assump-
tions that p(t) > 0 and (16) holds. Then the solution of (15) with initial
function ¢ and { satisfying

o(t) <o(ty), to—1<t<t, and ¢(t5)>0
or
V() > (L), to—r<t<ty and Y(t) <0

is nonoscillatory.

ExaMmPLE 2. Consider the differential equation
x'(t) +(sint)x(t —27) =0, ¢>0.

Observe that sin ¢ is a 27-periodic function and condition (15) is satisfied,
with K = 0. Note that e°*’ is a multiple of the nonoscillatory solution
given by (17).

REMARK 2. When p(¢) > 0 the condition K > 1/e implies, see [2],
that every solution of (15) oscillates. This is our motivation for the
following

Conjecture. If K > 1/e then (195) is oscillatory.
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