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WHEN THE CONTINUUM HAS COFINALITY w,

ARNOLD W. MILLER AND KAREL PRIKRY

In this paper we consider models of set theory in which the
continuum has cofinality w,. We show that it is consistent with —CH that
for any complete boolean algebra B of cardinality less than or equal to ¢
(continuum) there exists an w;-generated ideal J in P(w) (power set of
w) such that B is isomorphic to P(w)mod /. We also show that the
existence of generalized Luzin sets for every w,-saturated ideal in the
Borel sets does not imply Martin’s axiom.

Introduction. In §1 we prove our main result that it is consistent
with —CH that every complete boolean algebra of cardinality < ¢ is
1somorphic to P(w)mod J for some J w,-generated. We think of this as
generalizing Kunen’s theorem that it is consistent with —CH that there is
an w, generated nonprincipal ultrafilter on w.

For I an ideal in the Borel subsets of the reals we say that a set of
reals X is a k-I-Luzin set iff X has cardinality x and for every 4 in [,
A N X has cardinality less than k. If ¢ is regular, then it follows easily
from Martin-Solovay [9] that MA is equivalent to the statement “for every
w,-saturated o-ideal I in the Borels there is a ¢-I-Luzin set”. In §2 we show
that the regularity of ¢ is necessary. This answers a question of Fremlin
(5]

We also show that it is consistent with —CH that for every such 7
there exists an w;-/-Luzin set. These results can be thought of as a weak
form of the following conjecture.

Conjecture. 1t is consistent with —CH that for every c.c.c partial order
P of cardinality < c there exist (G,: a < w;) an w;-sequence of P-filters
such that for every dense D C P all but countably many G, meet D.

Note that this is a trivial consequence of CH.

Next we give a result of Kunen that some restriction of the cardinality
of P (e.g. (2“1)™) is necessary in our conjecture. We also show that for
every c.c.c. P of cardinality < w, we can force (without adding reals) the

existence of P-filters (G,: a < w,) eventually meeting each dense subset
of P.
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400 ARNOLD W. MILLER AND KAREL PRIKRY

1. w,-generated ideals in P(w). Sikorski [12] showed that every
complete boolean algebra of cardinality < ¢ is isomorphic to P(w)/J for
some ideal J. Kunen (see [7], p. 289) showed it is consistent with —~CH
that there exists a nonprincipal w,-generated ultrafilter U on w, i.e.
P(w) mod the dual of U is the two element boolean algebra.

THEOREM 1. It is consistent with ZFC + —CH that for every complete
boolean algebra B of cardinality < c there exists an w, generated nonprin-
cipal ideal I such that B is isomorphic to P(w) /1.

Proof. We begin by describing the model which will be used here and
in the next section. Let M, be a countable transitive model of ZFC +
GCH. Using the usual finite support forcing do an w, iteration where at
step a < w, obtain M, ; a model of MA + ¢ =N __,. Fora < w, a limit,
M, just models ¢ = 8, but not MA. Finally M, models that ¢ = 8
and is an w, limit of models of MA. This model (or one very similar to it)
was used by Steprans [13] and Bell and Kunen [2]. A similar w,-iteration
(without increasing ¢) was done by van Douwen and Fleissner [4] and also
Roitman [10].

We will need the following two lemmas of Sikorski:

LemMa 1.1. (Sikorski [12] 33.1, p. 141). Suppose B is a complete
boolean algebra, and C, is a subalgebra of a boolean algebra C (neither of
which need be complete). Then any homomorphism from C, into B can be
extended to a homomorphism of C into B.

LEMMA 1.2. (Sikorski [12] 12.2, p. 36). Suppose A, generates a Boolean
algebra A and h: A, — B is an arbitrary map into a boolean algebra B.
Then h extends to a homomorphism from A into B iff for every sequence a,
a,,...,a, from A, and sequence €, €,,. .., of signs +, —;

ga, A - ANga,=0=gh(a) Ae,h(a,) A -+ Ag,h(a,) = 0.

We will be using the proof of the following lemma so we include it
here.

LeMMA 1.3. (Sikorski) If B is any complete boolean algebra of cardinal-
ity < c, then there exists an ideal J in P(w) such that B is isomorphic to
P(w)/J.



WHEN THE CONTINUUM HAS COFINALITY w; 401

Proof. Let # be a family of ¢ independent subsets of w (see Kunen
[7], p. 257). that is given any finite sequences 4,, 4,,...,4, and B,, B,,
B,,...,B, of distinct elements of #

A NA,N ---NnA4,N(o\B) N(w\B,)N ---N(w\B,)

1s infinite. Let 4 be any map from #onto B. By Lemma 1.2 4 extends to
the subalgebra of P(w) generated by # and by Lemma 1.1, 4 extends to
P(w). J is just the kernel of this extension. O

LemMA 1.4. (Martin-Solovay, Sikorski) Every c.c.c. complete boolean
algebra of cardinality < c is isomorphic to F/I where F is a o-subfield of the
Borel subsets of 2“ and I is a c.c.c. o-ideal.

Proof. Theorem 2.3, page 155 of Martin Solovay [9] states that every
c.c.c. complete boolean algebra of cardinality < ¢ is a complete subalge-
bra of a countably generated complete boolean algebra satisfying the c.c.c.
According to Sikorski [12], 31.6 page 136, every countably generated
o-boolean algebra is isomorphic to Borel (2¢) /I for some o-ideal I. So the
given algebra B is isomorphic to a subalgebra of Borel (2¢) /1 for some / a
c.c.c. o-ideal. Now let F be a o-subfield of Borel(2“) so that B is
isomorphic to F/I. a

Note that in the model M, , 21 > ¢ and so any complete boolean
algebra of cardinality < ¢ must have the c.c.c.. For @ < w, let I, denote
the forcing which has the ground model M, and as the generic extension
M,, . Let B be any complete boolean algebra of cardinality < ¢ in M,, and
suppose

I-o“B = F/I where F is a o-subfield of Borel (2*) and
I is a c.c.c. o-ideal in Borel (2°).

b2

For a < w, define (in M)
F, = {A € Borel (2¢): - “4 e F”}

and

I, = {A € Borel (2°)": I-,“4 € I”}.

LemMmA 1.5. (Kunen) (In M) F, /1, is complete and I, has the c.c.c.
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Proof. Clearly F, is a o-field and I, is a o-ideal so it suffices to show
I, has the c.c.c.. Suppose (Ag: B < w;) € M, and forall B # v, 4y N 4,
€ I,. Then since

-, “I1sc.c.c.”,

I, C I, and I+ is c.c.c. forcing, for all but countably many
l}—a“AB el”
and thus 4; € I,. a

Working in M,, we build a sequence of functions
h,:P(w) "M, > F,

with h, € M, and such that for « < B, h, is an extension of #,. They also
have the following properties:
(i) the map h,: P(w) N M, — F,/I, defined h,(A) = [h,(A)], is a

homomorphism;

(i1) for successor ordinals, « + 1, &, , is onto F, . ;; and

(iii) for successor ordinals, @ + 1, there exists X, in the kernel of 4, ,
such that for all 4 € kernel(h,) 4 € * X, (i.e. A \ X, is finite).

Now suppose we already had the /4, and X, as above and let us finish
the proof of Theorem 1. Working in M,, define

P(w) > F

byh=U,., h,andlet h: P(w) — F/I be defined by h(A) = [h(A4)],. It
follows from (1) that h is a homomorphlsm Since F = Umw1 F, it follows
from (ii) that % is onto. Since kernel & = U<, kernel(h,) and by (iii) it is
w,-generated. Hence F/I is isomorphic to P(w)/J for J w,-generated.
Now we indicate how to construct the s,. Let A, by any map from
P(w) N M, into F; such that ito is a homomorphism from P(w) N M, into
F,/I, and the kernel of %, contains the finite sets. E. g. let U be any
nonprincipal ultrafilter in M, and define h,(A4)=2“ if 4 € U and
ho(A) = @ if A & U. Suppose a < w, is a limit ordinal and (/4;: 8 < @)
€M, Let Q= UBAQ(P(w) N Mg) and let h: Q — F, be defined by
h=Ug . hB. Let h: Q — F,/I, be defined by h(A) = [4];. Since
Ug<alp € I, the I, are increasing, and the h/, are homomorphism, £ is
also a homomorphism.
Working in M, we see that by Lemma 1.5, F, /I, is complete, and by
Lemma 1.1 there exists (in M, ) a homomorphism % ,: P(w) N M, — F, /I,

which extends 4. Since the I, equivalence classes are bigger than the I for
B < a we can pick a representing function s, P(w) N M, — F, for h,
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which extends 4. This does the limit case. Now we do the successor case.
Suppose we have 4 ,: P(w) N M, — F, with h, € M. Note that |P(w) N
M,|=8,,, and M, is a model of MA and ¢ =8 _,,. Let P be the
kernel of 4, i.e. P = h,'(I,). Let Q = (P(w) N M,)\ P. Note that for
any B € Q and finite K C P we have that B N (UK) is infinite. By
Solovay’s almost disjoint forcing (see Rudin [11]) in M, , there exists
Y C w such that for all B € Q, BN Y is infinite and for all B € P,
B N Y is finite. Let X, = « \ Y. Note that for all 4 in the kernel of 7,
A C *X_ and for all B not in the kernel B\ X, is infinite. Define h:
(P(0) " M) U {X,} > F,/I, by extending &, and letting #(X,) = 0.
Let us use Lemma 1.2 to check that / extends to a homomorphism from
# = smallest boolean algebra generated by (P(w) N M,) U { X,} into
F./1,. Since P(w) N M, is a boolean algebra it is enough to check for
each4 € P(w) N M
()if 4 N X, = @, thenh (A) A0 = 0; and
(i) if 4 N (w\ X,) = @, then & (A) A 1= 0.

But (i) is trivial and (ii) follows from the choice of X,. Next we use the
method of independent sets to make &, ,, onto F, /I, .. Using MA, in
M, ., there exists a family & of cardinality ¢ = §_,, of independent
mod Q subsets of w. That is, for any infinite 4 € Q and distinct
Y.Y,..Y,.Z,2Z,...,Z,from%F

s Lno

Anynyrn - ---nY,n(e\Z)N(w\Z)N ---N(w\Z,)

1s infinite. Construct the family #by induction using the easy consequence
of MA that for any family H of infinite subsets of w with |H| < ¢ there
exists X C w such that forall 4 € H, 4 N X and 4 \ X are both infinite.
Choose h: # — F, so that h(A) = [#(A)], and h extends k,. Let k:
#BUF— F, , extend h and take F onto F, . ,. by Lemmas 1.1 and 1.2
there exists h,.,: P(w)NM,,, - F,,, which extends k and h,_.:
P(wyNnM,, , — F, /I, 1s a homomorphism. This concludes the con-
struction of the 4 ’s and thus the proof of Theorem 1. a

One question we were unable to answer with this method is the
following: Is it consistent with ZFC that there exists an w,-generated ideal
J in P(w) such that P(w,) is isomorphic to P(w)/J?

Finally, we remark that in M, the measure algebra (the Borel sets
modulo the sets of Lebesgue measure zero) has density w,, i.e. there is a
collection D of w, sets of positive measure such that every set of positive
measure contains one from D. This follows from the fact that under MA
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given any collection F of sets of positive measure such that |F| < ¢, there
exists a countable collection { C,: n < w} of sets of positive measure such
that for every 4 € F there exists n < w such that C, C 4. Thus in the
model M, there exists an atomless finitely additive measure p on P(w)
and a family F C P(w) of cardinality w, such that forall X C wande > 0
there exists X, X; € Fsuch that X, € X € X, and

p(X\ Xo) <e.

2. Luzin sets. Recall that for an ideal I in the Borel sets and a
cardinal k, a set of reals X is called k-I-Luzin iff X has cardinality x and
every set in / meets X in a set of cardinality strictly less than .

THEOREM 2.1. In the model of ZFC, M,, of 81 (in which the continuum,
¢, is 8, ), for any nontrivial c.c.c. o-ideal I in the Borel sets there are both
c-1-Luzin sets and w,-I1-Luzin sets.

Proof. Letting B, = Borel™= and as before I, = {4 € B: - 4 €
I} we know by Lemma 1.5 that in M, B, /I, has the c.c.c.. Since each
M, ., is a model of MA, by Martin-Solovay {9] the union U I, cannot

cover the reals of M, _, (since I, C I, a c.c.c. ideal of M, ). Conse-
quently we can find X, of cardinality 8, in M, with

X,NnUI =2.
Then X = U, ., X,is c-I-Luzinin M, . O

For P a partial order define (G,: a < w;) a sequence of P-filters to be
an w;-generic sequence for P iff for all dense D C P all but countably
many G, meet D. This is motivated by van Douwen and Fleissner [4].

Question. In the model M,, is it true that for all P c.c.c. of cardinality
< c there exists an w,;-generic sequence for P?

Note that by a result of Martin and Solovary [9] it is enough to prove
the above for P of the form Borel /I for I a c.c.c. o-ideal. The difficulty
with the above arguments is that filters on B, /I, may not lift to filters on
B /I since elements of B, /I, may turn out to be in /. When we were first
considering this question it was not clear to us that any restriction of the
cardinality of P is necessary. The following theorem of Kunen shows that
there is. FIN(k) is the partial order of functions whose domain is a finite
subset of k and whose range is {0,1}.
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THEOREM 2.2. (Kunen) If k > (2“1) ™ there is no w,-generic sequence for
FIN(k).

Proof. Suppose (G,: a < w,) is given with each G,: k — 2. For each
A < k define H,: w; — 2 by H,(a) = G,()). Since k > (2“1)™ there exists
an infinite £ C k such that H, = H,, for each A, A’ € 2. Now choose
i € {0,1} and an uncountable I C w, so that for each A € 2, H, [ T is
constantly i. But this means that for each a« € I', G, |' 2 is constant. But
then the G, do not eventually meet the dense set D = { p € FIN(k):
INE Zp(A) #i}.

It is clear from the above proof that all we need is that

(8= (&),

to see that there are no w,-generic sequences for FIN(«). This partition
relation is known to be consistent with GCH for k = w, (see Laver [8])
assuming the consistency of a huge cardinal.

Theorem 2.2 can be strengthened to: if kK > 2“1 there is no family (G,:
a < w,) of filters in FIN(x) such that every dense set meets some G,. This
was pointed out by D. H. Fremlin. To see how to prove this let

G= U G,.

a<w;

If for every p € FIN(k) there is some g < p with g # G, then G misses
some dense set. Consequently there is some condition in FIN(k) such that
G contains everything beneath it. But it is well known that the compact
space 2" has density > w, (see Juhasz [6] 6.8, p.68).

Our next theorem goes in the other direction.

THEOREM 2.3. Assume CH. Suppose that P is a c.c.c. partial order of
cardinality w,. Then there exists Q an w, c.c. order which is countably closed
and has the same cardinality as P which adds an w,-generic sequence for P.

Proof. We can assume without loss of generality that P is a boolean
algebra. Elements of Q have the form

((Hy: o < B), 2)

where 8 < w,, Zis a countable family of dense subsets of P, and each H,
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is a countably generated P filter. The order on Q is defined as follows:
<<ﬁa: a< B>’ Q> S<<Ha: a< lB)’ @)
iff B=8,9>9, H, > H, for all @ < B, and for all y with 8 <y < B
andDE€9,DNH, + J.
It is easy to check that Q is countably closed and that Q adds an
w,-generic sequence for P. Now let us see that it has the w, chain

condition. By an obvious argument it is enough to show that Q* has
w,-C.c. where

Q* = {(H,: n < w): each H, is a countably generated P-filter}

ordered by
(H:n<wy<(H,:n<w) iffforalln, A, > H,.

Suppose { P, = (H,: n < w): a < w,} are pairwise incompatible. And let
for each n and «

Hy={qeP:Im<wq<py"}

where p,7'; < p>" is a descending sequence.

Thus for each a # B there exists n and m such that

py" A py" = 0.

by the Erdos-Rado Theorem (w, — (w;)2) (see Kunen [7], p. 290) there
exists ny and m, and X € [w,]*“* such that foralla + B € X p," A pﬁ;"o
= (. This contradicts the countable chain condition for P. O

This forcing can probably be iterated to take care of all c.c.c. P of
cardinality w,. Unfortunately this would blow up 2“1 to w;. A better way
would be to try to deduce the existence of w;-generic sequences from
morasses with built-in . The “black box™ theorems of Velleman and
Shelah-Stanley do not seem to apply because of the lack of homogeneity.

Question. In L does every c.c.c. partial order of cardinality w, have an
w,-generic sequence?
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