Pacific Journal of

Mathematics

THE FLAT CAUCHY PROBLEM FOR RADIALLY
HYPERBOLIC OPERATORS FROM A CHARACTERISTIC

MANIFOLD OF HIGH CODIMENSION

CARL NORMAN MUTCHLER




PACIFIC JOURNAL OF MATHEMATICS
Vol. 115, No. 2, 1984

THE FLAT CAUCHY PROBLEM FOR
RADIALLY HYPERBOLIC OPERATORS FROM A
CHARACTERISTIC MANIFOLD OF
HIGH CODIMENSION

CARL N. MUTCHLER

We consider the flat Cauchy problem from a characteristic submani-
fold 2 of high codimension (greater than 1).

Introduction. In the case of a characteristic hypersurface (codimen-
sion 1), several have studied the flat Cauchy problem for operators of
“Fuchsian type”. Baouendi and Goulaouic [4] considered the case where
the operator had coefficients analytic in the space variable. In the C*
case, S. Alinhac [1], [2] studied hyperbolic Fuchsian operators. He showed
that when the operator was strictly hyperbolic for ¢+ > 0, one had well-
posedness in the flat Cauchy problem. Uniqueness results for a more
general class of Fuchsian operators have been obtained by G. Roberts [8]
when the coefficients are smooth.

For submanifolds of higher codimension, Alinhac and Baouendi [3]
studied the uniqueness question. In particular, they defined (strictly)
radially hyperbolic operators, and, when 2 was simply a point, proved
uniqueness for such operators if the solution to Pu = 0 was sufficiently
flat at t = 0. They showed the same result for second order (strictly)
radially hyperbolic operators when = had dimension greater than or equal
to 1. We present here results of existence, regularity, and flatness for those
two cases and use their uniqueness results to obtain well-posedness in the
flat Cauchy problem.

When 2 is just a point, Theorem 3 proves well-posedness for (strictly)
radially hyperbolic operators of any order. Using pseudodifferential
calculus on a compact manifold without boundary, Theorem 1 shows
existence of “nice” distribution solutions to the equation Pu = f. This is
done via an energy method involving Sobolev norms. For a good review of
these notions, the reader is referred to Alinhac [2], Hormander [5],
Nirenberg [6], [7], and Treves [9]. Theorem 2 gives better regularity to the
solutions of Theorem 1; it provides solutions flat to any finite order
desired. Theorem 3 then follows from Theorem 2 and the uniqueness [3].
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422 CARL N. MUTCHLER

When dim 2 > 1, Theorems 4 and 5 yield the same well-posedness
result for second order (strictly) radially hyperbolic operators and similar
first order hyperbolic systems respectively.

1. Results for radially hyperbolic operators when X is a point. Let
W= {xe€R"|x|<T}withO < T < oo. We use the notation

P (N O B « — (_;)llya
e (&) (2] e
for a multi-index « € N”, |a| = a; + --- + a,, and assume P(x, d,) to be

an mth order linear partial differential operator with smooth coefficients
defined in W. We further assume that in polar coordinates (¢, 6) € [0, T']
X 8”71, x =10, t = |x|, our operator P takes the form

m—1
(1.1) P(1,0,19,,8) = (13)" + X P,,_,(1,0,9)(13,)’,

j=0
where P,,_; is a linear partial differential operator defined on the sphere
S”~1, of order m — j, depending smoothly on the parameter . Let 7 be the
dual variable to ¢ and (8, n) be the variable in 7*(S"~'). For p = ¢7 and
Pm-;(t, 0, m) denoting the (globally defined) principal symbol of
P,_;(1,0,9,), we say that P of the form (1.1) is (strictly) radially hyper-
bolic at the point 0 € W if its principal symbol, namely

m—1

Pu(t,0,0,m) = (ip)" + X p._;(2,0,1)(ip)’,
Jj=0

has (distinct) real roots in p, i.e.

(12) P =" T1 (0 = (1,6, )

with the /,’s real (and distinct) for all (z, 8, n) € [0, T] X (T*(S" ')\ 0).
ReEMARK. If P is radially hyperbolic at the point 0 € W, then it is

hyperbolic with respect to the hypersurface {¢ = €} foreache, 0 <& < T,

but at the point 0 € W, P becomes characteristic, i.e. for t = 0, 7 = 1,
n = 0, we see that p,, vanishes.

ExaMpLE. The following operator, with a;, a,, and a; smooth near
(0,0) € R?, is characteristic at (0, 0):

P=(x*- yz)(ag - 8}?) +4xy9.9, + a;(x, y)x9,

+a,(x, y)yd, + as(x, y).
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But in polar coordinates we have
P=(13) — 9+ a(t,0)td, + b(1,0)d, + c(1,0),

and hence P is strictly radially hyperbolic at (0,0) € R%.

The main result of this section is Theorem 3, which solves the flat
Cauchy problem for radially hyperbolic operators at a point. The problem
in this case is

Pu=f, feC=([0,T] xS"), 3/f|,_o=0 foralljeN
ue Cc>([0,T] x §"Y),  8/u|,_,=0 forallje N.

As a prelude to Theorem 3, we first prove existence of somewhat
“nice” distribution solutions to Pu = f. We shall use the notationu € L2,
to mean ¢ “u € L? for k a positive integer.

THEOREM 1. Let M be a smooth compact (n — 1) dimensional manifold
without boundary, and let s and k be arbitrary positive integers. Assume P of
the form (1.1) satisfies (1.2) with M replacing S"~*. Assume too that for
0<T<oo,fe C®(0,T]; H(M)) where H,(M) denotes the usual Sobo-
lev space on M, and that f is flat at t = 0, i.e. 9/f|,_, = 0 for all j € N.
Then there exists ug, € L?> ([0, T); H(M)) such that Pu , =f in
2'((0, T) X M).

Theorem 1 is not proved by solving directly the equation Pu = f.
Instead, we introduce the new operator Q) = P(¢, 60,10, + A, 95) forA € N
and solve Q,w = ¢/, A large. In doing so, since Q, (¢t %) = t~*Pv, we
have a solution of the form u = t*w, i.e.

Pu = P(t*w) =t*Qw = " =f.

To solve Q,w = t™*f we use the Riesz Theorem and the following lemma
concerning the adjoint operator Q5.

LEMMA 1. With the assumptions as in Theorem 1, there exists A\, € N
such that for every A > A and allv € C§°((0, T') X M) we have

”U”Lz([(),T];H_:(M)) < ”Q;v”LZ([O,T];H,S(M))'

The preceding lemma utilizes pseudodifferential calculus by factoring
the operator Q,. For each root /,(¢,6,n) we have the corresponding
factor

Ap+A =10+ - L(1,0,D,),
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where L, € C*([0, T]; £ '(M)) is a pseudodifferential operator of order
1 on M, smooth in ¢, with principal symbol equal to i/, (¢, §,7n). The
inequality for QF is shown to follow from similar inequalities for each of
its factors.

If we assume more regularity in the right-hand side function f, the
following theorem then shows us we can expect more regularity in the
solution.

THEOREM 2. In addition to the assumptions of Theorem 1, let f be in
C*({0, T) X M). Then for T, € (0, T), there exists ug, in
CX([0, T,]; H(M)) such that

Pu_, =f in]0, T,) xM  and O/us oo =0 for0<j<k.
Theorem 2 is a consequence of Theorem 1, Sobolev’s Embedding

Theorem, and the following lemma.

LeMMA 2. With assumptions as in Theorem 2, let s', r, and I’ be positive
integers such that s' > 1"+ m — 1 and r > I' + m — 1. Then there exists
ug ., € L2 ([0, T); Hy(M)) satisfying

Pu,,,=f in2(0,T)xX M),
atjus’,l',r € Lz—(r—m~j+1)([0’ T]> H '——M7j+1(M))’ 0 Sj <.

Combining Theorem 2 with the uniqueness result of Alinhac and
Baouendi (Theorem 2 of [3]) yields Theorem 3 below.

THEOREM 3. Let M be as before and assume P(t, 0, td,,0y) is of the
form (1.1) and satisfies (1.2) with S"~* replaced by M. If

fec>([0,T] xM), O0<T<x< oo,
and flat at t = 0, then there exists a unique u € C*([0, T] X M) such that

(1.3) Pu=f in[0,T] XM and wuisflatatt=0.

ReMARK. The uniqueness result proved by Alinhac and Baouendi [3]
is stated as one for flat functions; however, as indicated by their proof for
the hyperbolic case, functions flat to some finite order will suffice. This is
exactly what our Theorem 2 provides.
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COROLLARY 3. Assume that P has the form (1.1) and that its principal
symbol has only real roots in p of constant multiplicity, i.e.

(14 py=i"IT(p = 1,(1,0.m)",
j=
with the ;s (j = 1,...,r) real and distinct.

Also assume that P satisfies the following Levi-type condition: For each
J=1,...,r, P can be written

(1.5) Z (2,0, 19,,9) A7,

with Q; , a pseudodifferential operator on (0, T) X M, differential in t9,, of
total order m — m;, where A, =10, — L, is defined as before Then the
conclusion of Theorem 3 remams true.

The Levi-type condition implies a factorization for Q, similar to the
one in the strictly hyperbolic case. This factorization also shows that the
uniqueness result of Alinhac and Baouendi [3] still holds.

2. Results for radially hyperbolic operators when dimX > 1. With
2 a v-dimensional submanifold of R**” containing the origin (» > 1), and
P(z,9,), z € R"*”, an mth order linear partial differential operator with
smooth coefficients defined near 0 € R"*”, we assume there exists local
coordinates (x, y) near 0 so that 2 = { y = 0} and P, written in cylindri-
cal coordinates ¢ = |y|, y = t0, 8§ € "', takes the form

m—1

(2.1) P=(3)"+ X P, ,(t,x,0,19,09)(td,) .

j=0
Here
Pm—j = Z Q::t—j—|a|(t’ x,0, a&)(tax)a’
ld<m—j
with Q% _ . a differential operator defined on the sphere "', of order
m — j — |a|, depending smoothly on (7, x) € [0,T]1 X 2, 0 < T < o0, Q
some open set in R” containing the origin.

We let 7, £ be the dual variables to 7, x respectively and (6, n) the
variable in T*(S”"'). Denoting the principal symbol of Q2_ i-lag DY
G- @0d setting p = 11, { = 1§, we say that the operator P of the form
(2.1) is (strictly) radially hyperbolic with respect to = near 0 if its principal
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symbol,
m—1

Pt x,0,0,8,0)=(i0)" + X X qn, (e, x,8,0)(i)"(ip)’,
J=0 |aej<m—y

has (distinct) real roots in p, i.e.
m
(2.2) P = i'"kUl(p — 1 (t,x,0,%.1)),

with the /,’s real (and distinct)
for all (z, x, 8, ¢, 1) € [0, T] X (T*(& X S""H\0).

REMARK. If P is radially hyperbolic with respect to Z near 0, then for
each ¢, 0 <& < T, it is hyperbolic with respect to the cylinder {¢ = ¢},
but is characteristic with respect to 2.

ExampLE. The operator in R®,

P=(y*=22)(82 — 92) + 4yz8,0. — (y* + 22)32 + 2(yd, + 20.),
with 2 = { y = z = 0} becomes in cylindrical coordinates

P=(13) — 122 — 9},

ar31d hence, is strictly radially hyperbolic with respect to = near (0,0,0) €
R’.

The following theorem solves the flat Cauchy problem for second
order operators which are radially hyperbolic with respect to manifolds of

any dimension. The question regarding higher order operators is currently
under study.

THEOREM 4. Let M be a smooth compact (n — 1) dimensional manifold
without boundary, and let f € C*([0, T} X & X M) where 0 < T < o0 and
2 is some open neighborhood of the origin in R*. Assume P has the form (2.1)
with m = 2 and satisfies (2.2) with M replacing S”~'. Then if f is flat at
t = 0 there exists a unique u € C*([0, T] X & X M) such that

Pu=f in[0,T]| XQ XM and wisflatatt=0.

Theorem 4 is proved by obtaining an estimate similar to the one of
Lemma 1 (although the techniques are different) and uses another unique-
ness result due to Alinhac and Baouendi (Theorem 4’ of [3]). Finally, we
have the same result for certain first order hyperbolic systems.

THEOREM 5. With M, T, and ) as before, let
L(t,x,0,19,19,, Dy) =13, + Y A(t,x,0)td, + A1, x,0, Dy)
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be a first order operator defined on [0, T] X & X M with each A, a smooth
N X N hermitian matrix, and A an N X N matrix of operators in & (M)
depending smoothly on (t, x) € [0, T] X 2. Assume that the principal sym-
bol (matrix) of A, defined now by o,(A), satisfies 0,(A) = —o,(A*). Then,
given f€ C([0, T} X Q2 X M), f flat at t = 0, we have existence of a
unique u € C*([0, T] X € X M) satisfying

Lu=f in[0,T] XQ@XM and wuisflatatt=0.

3. Proof of Theorem 1. We begin by proving Lemma 1. Since the
principal symbol of P satisfies (1.2), each root /,(¢, 8,n) is positively
homogeneous of degree one with respect to the fiber variable n and
smooth in ¢ and 6. We let L, (¢, 8, D,) be a pseudodifferential operator of
order 1 on M, smooth in ¢, with principal symbol equal to i/,, and set
A, = td, — L,. From (1.1) and (1.2) one can easily check that

m—1
(3.1) P=MAy - A, + ¥ (1) 0(m - ),

j=0
where O( j) will be used to denote various pseudodifferential operators on
M, of order j, smooth in ¢. For k # j, we know by (1.2) that L, — L, is
elliptic, so there exists a parametrix @, ;of order —1 on M, smooth in ¢,
such that (L, — L;)Q, , = 1mod O(—1). Applying this fact repeatedly in
(3.1) yields

m—1 ]
(3.2) P=A A, + X (13) X Ay,
j=0

{i<m—j
where
I=(ij,....i;) € (1,...,m), k<m,
A, =1, if[1l=0
Aj=AA, - , if[l]=k,a’ e c2([0, T]; £°(M)).

fk

The existence of Q, ; also shows that (£9,)/ = £ ;,_; A b7, and so

(33) P=A,--- A, + Y A, alecx(o,T]; £°(M)).
[lsm—1

With Q, = P(¢,0, t0, + A, 9;), we immediately get the factorization for

the adjoint operator

(34) Qr=(A,+A)*---(A,+A)*+ Y a¥(A+M)r

H<m~1

For each factor in (3.4) we first shall prove the following inequality: For
s € N there exists A, € N such that for all A > A andv € C°((0, T) X M)
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we have

2
(3.5) Mol 2o oy = 2ICA + M) *0ll 20,y o0y -

To prove this, let (&2, 6,,...,6,_,) be a local chart corresponding to one of
a finite number of coordinate patches {U;} covering M, and let { ¢;} be a
square partition of unity subordinated to the {U;}. We use the Sobolev
norm

N
2
”U“%LX(M) = Z ”(PJ'U”H_S(R'E—I)’
j=1

and observe that
2 2
—1dlgo] " = 2Re((A, + X)*p0, qv) _ + 2(1 = N)|g0]”
+2Re<L,’("<pjv, (pjv> s

The hyperbolicity condition implies that the principal symbol of L,, i/, is
purely imaginary, and so we may estimate the last term by CllqujvllES.
Noting that the commutator [(A, + A)*, ;] is of order 0, after summing
over j and integrating from 0 to 7, we obtain

T T
(2A - C)/O “U“i[_:(M) dr < 2_/(; ”(Ak + )\)*UI‘IZLI-S(M) dr.

Inequality (3.5) then follows for A, > C.
Rewriting the factorization (3.4) and using inequality (3.5) allows us
to absorb terms of length m — 1 to yield for A large enough
2
Z ”(A + }\);‘U“LZ(H_S)

HH|=m-—1

S“Q;\kU”iZ(H_S) +C Z ”(A + A);:Ul‘iz(H_,)'
[H<m—2
Applying (3.5) and this process repeatedly implies there exists A, € N
such that forallA > A and all v € C§°((0, T') X M) we have

2
(3.6) HU”2L2([O,T];H_S(M)) <[|Qxv| L0, T H_((M))-

This proves Lemma 1.

Inequality (3.6) shows that the linear functional (1™*f, v}, 2071x )
is bounded in the norm [ [1|Q%vll3_(ur, dt]'/?, and so, by the Riesz
Theorem, admits the representation (u,, QXv);2y_, where u, is in
L*([0, T]; H_,(M)). Therefore,

<t_}\f’ U>L2([O,T]><M) = (uy, QfU>L2([0.T]><M)
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for some w, € L*([0, T); H(M)), and Q,u; = ¢t f in 2°((0, T) X M).
With u,, = t*u;, we have Pu , ="Qu; =f in 2’ and u,, is in
L*,([0, T1; H(M)). Choosing A sufficiently large then proves Theorem 1.

4. Proof of Theorems 2, 3 and Corollary 3.

Proof of Lemma 2. Theorem 1 tells us there exists a distribution
solution u,,, € L2 (H,) to Pu = f. We will show that this is indeed the
u, , needed. From now on call it simply u. Clearly u belongs to
LZ_(,_,,,H)(H ' m+1)- Manipulating the equation Pu = f, one can show by
induction on k the following sublemma.

Sublemma 1. For each k = 1,...,m — 1 and each j = 0,1,...,m — k,
there exists Q("m —j—k)» @ differential operator on M, smooth in t, of order
m — j — k, satisfying

m—k ]
Qo =1, > (18) Q- i— (17 Pu) e L*(H,, _,,).
j=0

Using Sublemma 1 with k =m — 1 implies du e L%, (H,_,).
Applying Sublemma 1 repeatedly, by induction one can show d/u is in
L2 morsy(Hy_pp1), [=0,...,m — 1. For [ = m the result follows
from the equation

m—1
(1) u=f~ % Pp,(1d)w
Jj=0

Finally, for /> m, we operate both sides of the equation above by
(£3,)’~™ and apply similar techniques. This concludes the proof of Lemma
2.

Proof of Theorem 2. Let k, s € N be given, and choose /’, s, and r
such that I’ >k + 1, s">s+ 0"+ m—1, and r = m + I’. Denote the
solution from Lemma 2 by u, ,. In particular, we have 1 ~'3/u, , € L*(H,)
for 0 <j < /’. Since /" was chosen appropriately large, Sobolev’s Embed-
ding Theorem implies that our solution is in C*((0, T); H,(M)), and it is
easy to see that lim, o, d/u,, = 0,0 <j < k. Thus, for any T; € (0, T),
Uy € CX([0, T,}; H,(M)) and Pug , = f pointwise in [0, 7] X M. This
proves the theorem.

Proof of Theorem 3. Theorem 2 provides a solution in
CX([0, T,]; H,(M)) flat to order k. Choosing k large enough and applying
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the uniqueness result of Alinhac and Baouendi (Theorem 2 of [3]), gives
us,k = us,k+1 = T U e € COO([O’ Tl]’ Hs(M))

with T} €(0, Ty] and u,  flat ar t = 0. Since we are free to pick s larger
and larger, we have by Sobolev’'s Embedding Theorem that u = u, is
actually in C*([0, 7;] X M). Now let0 < 7 < co and 0 < & < T;. Since P
is strictly hyperbolic with respect to {¢ = ¢}, there exists a unique u, in
C*([e, T} X M) satisfying Pu, = f in [e, T} X M and 0/u,|,_, = 9/u|,_,,
0 <j < m — 1. The result of Theorem 3 then follows by the uniqueness of
the solution in [¢, ;] X M.

Proof of Corollary 3. By techniques similar to those of K. Yamamoto
[10], we can use the Levi-type condition (1.5) to show the following
factorization for P:

P= 3 Y4, withy) e C*([0,T]; £°(M))
l<m
and 4, defined to be A, for everyj satisfyingm;, + ---+m,_; + 1 <j <
m; + --- + m,. Combining this factorization with the assumption on the
principal symbol, (1.4), implies actually
P=APAT - A+ Y y)(¢,0, Dy) A,

{fl<m—1
or, after manipulating commutators,
P=AM--- A+ Y A%
i<m—1

This factorization is all that is needed now to get the conclusions of
Theorems 1 and 2. For uniqueness, we see that each factor has the form
A; =19, — L;, and by virtue of the fact that the principal symbol of L,
has no real part, one has the estimate

(41) Re(L,v,0) 24, 2 —Clolf}yy, forallo & CH([0, T]; Hy(M)).

Let T, € (0, T). For functions u € C*([0, T1; H,(M)), flat to order k
(with k large enough), by setting v = ¢~ Yu and using (4.1), one can show
for y large enough that

e ull 20,15 2000y < 2007 | 2o,y 20

for each j = 1,...,r. This, the factorization, and the same method used in
proving Lemma 1 yields for k and y sufficiently large

”I_Yu”LZ(LZ) = ”t-yP”HLZ(LZ)-
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With the desired uniqueness for functions sufficiently flat, we may now
conclude as in the proof of Theorem 3.

5. Proof of Theorems 4 and 5.

Proof of Theorem 4. To prove this theorem we shall first need an
energy estimate similar to that of Lemma 1.

LEMMA 3. With the same assumptions as in Theorem 4 (except here we
assume 0 < T < 00), given any s € N, there exists A; € N such that for all
A=A andallv € CP((0, T) X & X M) we have

(5~1) “U”Lz([O,T]; H_ (9% M)) = ”t" 1/2Q;U”L2([O,T1; H_(XM))"

Proof of Lemma 3. Since P satisfies (2.1) with m = 2, we may write
P=1(13) +20,(t,x,0,13,,9)d, + Q,(, x,0,13,,9),

with Q, and Q, first and second order differential operators respectively.
The condition (2.2) says we may rewrite the operator as

P= (tat + Ql)2 - Qa
where Q is a second order differential operator in 70, and 0,, whose
principal symbol g, considered as a function of ¢§ and 7, is elliptic and
real. Moreover, the principal symbol of Q* satisfies §* = § < 0.

We shall first prove local estimates and then derive the global
estimate (5.1). For a local chart (2,6,,...,0,_,), then, let w be in
Ce((0, T) X 2 X Q). Since —g* is positive and elliptic, we have by
homogeneity that

—g*(t,x,0,t¢&,7m) > C(|t§|2 +|n|2)

for all (1, x, 0, t&,n) € [0, T] X (T*(2 X £)\ 0). Hence, one may associ-
ate with this a definite positive hermitian quadratic form —§*, whose
value on (¢ V,w, Vyw) has the coercivity

(5.2) = g*(vw) = C(lev | +|wgnl).

Recall that for y € N, the operator Q. is just P(t, x, 0, 13, + v, 19,, ).
We may therefore write

(5.3) O = (1, +1-y-0f) - 0*.
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Let us now define the function

2
(5.4)  z(t,w) =[wllh_ @y + (20, + 1 =y = 0wl e
+ ~g*(VA_; w) dx db,

axQ
with A’ , some proper operator with symbol (1 + |£]* + |n|*) /2. We

claim there is a constant C > 0 such that if y > 2 we have the following
estimate:

(5.5) = 18z(t,w) < Cy = 1V 2(t,w) +[Q3wls sy

Using the coercivity (5.2), we obtain after lengthy computations

(5.6) -1, —g*(vA_w)dxdl
QX8

< 2Re(rdw, Q*w) _ + cf = g*(VA_w) dx db
Qx8
+C(18, + 1= v = QWP + Cly = 17wl
For the other two pieces in (5.4), we observe that since the principal
symbol of Qf is purely imaginary we have
— 13 fol2, < —2Re((13, + 1 — y = Qf)v,v) | +(C = 27)|v],

for all v € CZ((0, T) X £ x Q). Applying this estimate for v = w, v =
(19, + 1 — vy — OF)w, and using (5.4) and (5.6) yields

—1dz < —2Re((18,+ 1~y ~ Qf)'w, (19, + 1 —y — QF)w) _

+C(y — 1)’z + 2Re (Q*w, tdw) __.

Since Q,0* + QQf is a second order differential operator in 0, and 9,
from the coercivity (5.2), we can estimate the last term by

2Re(Qfw, (13, + 1 — vy — QF)w) _,
+C(y - 1)[[|w”{s +/ —g*(VA_ w)dxdb|.
QxQ

Hence, by (5.3) and (5.4), the inequality (5.5) follows immediately.
The local estimate (5.5) can now be used to derive (5.1) in the
following way. For w € C5°((0, T') X € X M), we use the Sobolev norm
N

N
HW”%I,S(QXM) = Z H‘PkWHES, ;=1 onM,
k=1 k=1
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and use (5.5) for each z, (¢, p,w). Setting ® = XY_, z, (7, ¢, w), observing
that

|Q3w|>, < C(v = 1)@ + 2|9, 25w,
and summing over k, we have
~18,9 < C(y = 1@ + 2[05w]; g
If welet C, = (C/2)(y — 1)2, this Gronwall-type inequality implies
60 <21 25O, g 4.
and from (5.4) it follows that
HICYW“%Z({O,T] Ho(@xM) = 2T”t 2 CQ*

By (5.3), one can easily check that ¢ vQ*w = Q(y+C (1 Sw). Thus if
v e CP0, T) X QX M), wesetw = ¢~ v to obtain forall y > 2

‘quo T H_ (XM))-

ol o, < 2T 208 1 e (v

Since C, = (C/2)(y — 1)*, this inequality with 7 < 1/2 and A, =2
+ (C/2) implies (5.1). Hence Lemma 3 has been proved.

If f has compact support in the x-directions, then the estimate (5.1)
shows that there exists u, € L*([0, T]; H(Q X M)), @ € Q, such that
O\t Y?uy) =1t in 2((0,T) X @ X M), A large. But this gives a
distribution solution u = ¢*~/Iy to Pu=f. With T, € (0,T) and
k € N, using the same methods as in the proof of Theorem 2 we get a C*
solution to Pu = f, flat to the order k£ at t = 0. We now apply another
uniqueness result of Alinhac and Baouendi (Theorem 4’ of [3]). As in the
proof of Theorem 3, then, with 0 < 7' < o0, { replacing €', and dropping
the support restriction on f, we see that the conclusion of Theorem 4
follows.

TLA(H_,)"

Proof of Theorem 5. With Qf = —13, — 1 + A — X, 10, A, + A*, since
A + A* 1s of order 0 (hyperbolicity condition), we obtain a similar
estimate to (5.1). We simply conclude now as in the proof of Theorem 4,
except here we use still another uniqueness result of Alinhac and
Baouendi—namely Theorem 4 of [3]. This completes the proof.
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