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Let S be a closed Riemann surface of genus g (> 2). It is known
that the maximum value of the orders of automorphisms of S is 4g + 2.
In this paper we determine the orders of automorphisms of S which are
greater than or equal to 3g, and characterize those Riemann surfaces
having the corresponding automorphisms. Except for several cases, such
Riemann surfaces are determined uniquely up to conformal equivalence.

THEOREM 1. Let N(.S, h) be the order of an automorphism h of S. Then,
maxg , N(S, h) = 4g + 2. The Riemann surface having the automorphism

of maximum order 4g + 2 is conformally equivalent to the Riemann surface
defined by

y2 — x(x2g+1 _ 1).
The automorphism h of order 4g + 2 is given by
h(x, y) — (e2m'/(2g+1)x’ 62'/71/(4g+2)y).

Although the existence of the Riemann surface with the automor-
phism of order 4g + 2 is well known, in the above theorem the uniqueness
(up to conformal equivalence) is shown.

To simplify, we write Theorem 1 in the following form:

max N =4g+2, S:y?=x(x*®"1-1),
h(x, y) — (eZWi/(2g+1)x, eZm’/(4g+2)y).

Under similar notation,

THEOREM 2.
max N =4g, S:y?=x(x26-1), h(x,y)=(e?"/sx, e*"/*sy).
N<4g+2
THEOREM 3. If g = 0 (mod 3), for g # 3,

max N =3g+3, S:y>=x?(x5"1-1),
N<d4g

h(x, y) — (e2wi/(g+l)x, e4m’/(3g+3)y).
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For g =3, we have 4g = 3g + 3. Then there exist two Riemann
surfaces defined by

yr=x(x*—=1) and y®=x*(x*-1)
which have an automorphism of order 12. Furthermore,

max N =3g, S:p’=x(x¥-1), h(x,p)=/(e*""%x,e>"y),
N<3g+3

except for

Siy®=x(x-1" (g=6,N=20=3g+2),
D=1 (g=9,N =28 =3+ 1),
e =x(x-1)" (g=12,N =36 =3g).

THEOREM 4. If g = 1 (mod 3),

max N =3g+3, S:y’=x(x8"'-1),
N<d4g

h(x,y)= (ez'm'/(g+1)x, ezm‘/(3g+3)y).

max N =3g, S:p’=x(x#-1), h(x,p)=/(e>"%x, 2"/ 8y),
N<3g+3

except for

Siy?=xx-1)7 (g=4,N=12=3p),
yP=x*(x—-1)° (g=10,N=30=3g).

THEOREM 5. If g = 2 (mod 3),

max N = 3g, S:yd=x2(x5—=1), h(x,y)=(e>™/x, e*"/3sy),
<4g

except for

Sy =x3(x-1>(x-¢)P (g=2,N=6=3g¢€C,{+#0,1).

We introduce the following notation; (/) denotes the cyclic group
generated by 4 of order N. S =S/ (k) denotes the closed Riemann
surface of genus g obtained by identifying those points on S which are
equivalent under the action of () on S. p,,...,p, € S denote the projec-
tions of branch points of the covering map ¢: S — S. »,,...,», denote the
multiplicities of ¢ at the branch points over p,,...,p,, respectively.
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A Fuchsian group is said to be a (y; m,,...,m,) group if its signature
is (v; my,...,m,). If n =0, it is said to be a surface group. A homomor-
phism from a Fuchsian group onto a finite group is said to be a surface
kernel homomorphism if its kernel is a surface group.

LemMA 1. (Harvey [2].) Let I be a (v; my,...,m,) group, Z,, the cyclic
group of order N, and M = lcm(m,,...,m,). Then there exists a surface
kernel homomorphism from I onto Z, if and only if the signature (v;
my,...,m,) satisfies the following l.c.m. condition;

1) M = lem(m,,...,m,,...,m,) (i =1,...,n). Here, m, denotes the
omission of m,.

(2) M|{N,ify =0then M = N.

(B)n+1,ify=0thenn = 3.

(4) If 2|M, the number of m;’s which are divisible by the maximum
power of 2 which divides M is even.

LemMA 2. ( Riemann-Hurwitz relation.)

2g—2=N(2§—2)+N§(1-—)

I

LEMMA 3. If t = 0, then S is conformally equivalent to the Riemann
surface defined by

N=f(x) (f(x)isapolynomial of x).

LEMMA 4. (§; vy,...,»,) satisfies the l.c.m. condition.

Proof. Let D be the unit disk, K a Fuchsian surface group which
uniformize S, and ¢ the natural projection from D onto S = D/K. Let
D* =D — (oY) Y py,....D,}» S* =S = { p,...,D,}, and let T be the
covering transformation group of the covering ¢ o y: D* — S* Then T’ is
a(g v,...,v,) group and I'/K = Z,,. So from Lemma 1, we find that (g;
vy,...,7,) satisfies the L.c.m. condition.

LEMMAS. If N > 2g — 2, then g = 0,t = 3,4.

Proof. From the Riemann-Hurwitz relation, if § > 2,
2g—2>=N(Q2g—2) = 2N.
This contradicts the hypothesis. If § = 1, from the L.c.m. condition, ¢ > 2.
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Then,

t
2g—2=NZ(1—l)ZtN/22N.

i=1 i

This also contradicts the hypothesis. So § = 0, and

t —
2g—2=—2N+NZ(1—l)z(t—;—)—]X.

i=1 i

Thust = 3,40r 5 Butift = 5,

21
2g—2=N( Z-)
i=1 Vi
and from N > 2g — 2, we find that
31
2< ) =<3,
i=1 Vi

The signatures which satisfy these inequalities are the following;:
0;2,2,2,2, %), (0;2,2,2,3,3), (0;2,2,2,3,4), (0;2,2,2,3,5).

None of these satisfies the l.c.m. condition.
LEMMA 6. If N > 2g + 2, thent = 3.

Proof. From Lemma 5, § = 0, ¢t = 3, 4. If ¢t = 4, from the Riemann-
Hurwitz relation, we find that

1<y Lo
sV
The signatures which satisfy these inequalities and the l.c.m. condition are

the following ( NV on the right side is given by N = M = lem(»,, »,, v5, v,),
g is calculated from g, »,, »,, 5, »,, N by the Riemann-Hurwitz relation):

0;2,2,m,m)(m=2) if2lm, g=m/2,N=m=2g,
if2tm, g=m-1,N=2m=12g+ 2,

(0;2,3,3,6) g=3,N=6=2g,

(0 2,3,4,12) g=6N=12=2g,
(0;2,3,5,30) g=15,N =30 = 2g,
(0; 3,3,3,3) g=2,N=3=2g—-1,
(0; 3,3,4,4) g=6,N=12=2g,

(0; 3,3,5,5) g=8N=15=2g— 1.

None of these satisfies N > 2g + 2.
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Proof of theorems. If we assume N > 3g (> 2g + 2), from Lemma 3,
g=0, t=3 or exceptionally (I) §=0, t =4, (§; v, by, ¥5,7,) = (0;
2,2,3,3), g=2, N=6. When g = 0, t = 3, from the Riemann-Hurwitz
relation, we find that

1 < 1 + 1 + 1 <1.

3 vy v, 1
The signatures which satisfy these inequalities and the l.c.m. condition are
the following;

0;2,m,m) (2lmthend|m(m +#4)) g=m/4, N=m=4g,

0;2,m,2m) (2+m(m=#3)) g=(m—-1)/2, N=2m=4g+2,

0;3,m,m) (Blm(m #3)) g=m/3, N=m=3g,

0;3,m,3m) (B tm) g=m-—1, N=3m=3g+3,
(I1) (0;4,5,20) g=6, N=20=3g+2,

(0; 4,6,12) g =4, N =12 =3g,

(0; 4,7,28) g=9, N=28=3g+]1,

(0; 4,9,36) g=12, N =36 = 3g,

(0; 5,6,30) g =10, N =130 =3g.

So if we exclude the exceptional cases (I) and (II), the signatures (g;
vy, ¥, v3) are listed as following;

IEN=4g+2, (0;2,2g+1,4g+2).
If N = 4g, (0; 2,4g,4g).
IEN=3g+3, (0;3,¢+1,3g+3).
(In this case, 3+ mand g = m — 1 imply g = 0,1 (mod 3).)
IfN = 3g, (0; 3,3g,3g).

Now S branches over three points of the Riemann sphere C, and the
branching orders are given as above, so if we assume that the projections
of branch points are 0, 1 and oo, from Lemma 3, S is conformally
equivalent to the Riemann surface defined by

yN = xa(x - 1)bs
where a, b are given by the following conditions;
l1<a,b<N, N/(N,a)=v»,, N/(N,b)=v»,, N/(N,a+b)=r,.

((N, a) denotes the g.c.m. of N and a.)
Then if N = 4g + 2, S is defined by

(1) y*+?2=x2"(x - 1) (2g+1,k)=1,1<k <2g+1).
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This surface is conformally equivalent to the Riemann surface defined by
Y?=Xx(Xx%"-1)

under the birational transformation

a b C
= ———)f_— Y= e(g+1)77i/(2g+1) X (x - 1) y(2g+1)
y= Y8tl+k ’ (xp(x — l)qyzr)g+1

1
x=- 2¢g+1 + 1? X = evri/(2g+1) 1 ,

where (a, b, ¢), (p, g, r) are the solutions of the indeterminate equations

{2(1 +(2g+ 1)c=1, {p+r=0,
b+ kec=0, Qg+ 1)g + 2kr =1.

If N = 4g, S is defined by
2) y*¥=x3¥x-1" ((4g, k)= (4g,2g — k) =1,1< k < 4g).
This surface is conformally equivalent to the Riemann surface defined by
Y?=X(X*%-1),
under the birational transformation

{y — em’/4gX(k—1)/2Y’ Y = em’/4gxa(x _ 1)[7))("
x=—X*%+ 1, X=e”’/2gx1’(x— 1)qy’,

where (a, b, ¢), (p, g, r) are the solutions of the indeterminate equations

{2a+c=1, p+r=0,
4gb + kc =1, 2gq + kr = 1.

If N = 3g + 3, S is defined by
(3) YD = D (5~ 1)
(g+1,k)=(3g+3,(3-/)(g+1)—3%k)=1,
Jj=1,2,1<k<g+1).

When g = 0 (mod 3), (3) is conformally equivalent to the Riemann surface
defined by

Y? = X2(X5*1 - 1),
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under the birational transformation

y=ekmsrn Y
Xk+i(e/3+D) ’
1
x= - +1,
Xg+1

x”(x _ 1)by(g+1)c
{(x?(x — l)qy3r)g/3+1 ’
N S
xP(x — 1)y

Y = e(8+37i/Gg+3)
X = e/ (84D

where (a, b, ¢), (p, g, r) are the solutions of the indeterminate equations
{3a+j(g+1)c=1, <p+jr=0,
b+ kc=0, (g+1)g+ 3kr=1.

When g = 1 (mod 3), (3) is conformally equivalent to the Riemann surface
defined by

Y3 = X(X5* - 1),

under the birational transformation

J
S .
Xk+j(g+2)/3
1
x= - o +1,

xa(x - 1)by(g+1)c
(x"(x _ 1)qy3r)<g+2)/3 ’
v
xp(x _ l)qy3r’

Y = 8+ 27/ (3g+3)

X = ™/ (8D

where (a, b, ¢), ( p, g, r) are the solutions of the indeterminate equations

AR AT

b+ kc=0, gp + kr=1.
If N = 3g, S is defined by
@ et

(g, k)= (38, 3-j)g—k)=1,j=12,1<k<g).
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Then we notice that k = j (mod 3) or k = 2 (mod 3). In the case k =
(mod 3), (4) is comformally equivalent to the Riemann surface defined by

Y3 = X(x% - 1),
under the birational transformation
{y — o Wktipymi/39) X (k=/3y). Y = @ Dm0xa(x — 1)°y¢,
x=—-X2+1, X =e"/8xP(x — 1)7y*,

where (a, b, ¢), ( p, q, r) are the solutions of the indeterminate equations
3a+jc=1, p +jr=20,
3gb + kc =1, gq + kr=1.

In the case kK = 2 (mod 3), (4) is conformally equivalent to the Riemann
surface defined by

Y3 = X?(Xx8—-1),
under the birational transformation
{y = oWk+spymi/38) X (h=2))/3y). { Y = e/ x%(x — 1)%y¢,
x=—-Xt+1, X=e" xP(x - 1)y,
where (a, b, ¢), ( p, q, r) are the solutions of the indeterminate equations
{3a+jc=1, {p+jr=0,
3gb + kc = 2, gq + kr=1.
Finally, if g = 0 (mod 3), two Riemann surfaces
y =x(x¥—-1) and Y?=X*(X2-1)
are conformally equivalent under the birational transformation
{y= _Xg/3+1Y, {Y= _xg/3+1y,
x=X1 X=x1
For a surface in (4), if g = 1 (mod 3), we obtain £ = j (mod 3), while if
g = 2 (mod 3), k = 2 (mod 3).

In the exceptional case (I), the surfaces are conformally equivalent to
the Riemann surface defined by

Yo=xx-1>(x-¢) (eC¢+0,1).

In the case (II), the surfaces which have the same signature are
conformally equivalent to each other. Thus we have the following forms
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of S:
y2=x(x-1)% (0;4,5,20),
yB=x"(x-1)°% (0;4,7,28),
Y2 =x3(x -1 (0;4,6,12),
y¥ =x%(x-1)" (0;4,9,36),
y¥ = x5(x —1)°, (0;5,6,30).
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