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In this note various criteria are given which solve the following
problem. Given a locally convex space X and an X-valued function on
(0, 00), when does there exist an X-valued function on [0, o) , usually
required to have certain specific properties such as continuity, integrabil-
ity, etc., whose Laplace transform is the given function? Some of these
criteria are new even in Banach spaces.

1. Introduction. Many problems in classical analysis are subsumed
under the theory of semigroups of linear operators. This is particularly
true of Cauchy’s problem which arises in the theory of partial differential
equations. An important problem is the generation of semigroups, that is,
to determine which operators are the infinitesimal generator of a semi-
group. For strongly continuous semigroups a successful approach to this
problem can be based on the Post-Widder inversion formula for Laplace
transforms, which provides a connection between the semigroup and the
resolvent map of its infinitesimal generator [12]. However, as W. Feller
repeatedly emphasized (see for example [7]-[10]), the theory of strongly
continuous semigroups is often inadequate in practice. For example, it is
not applicable to the theory of diffusion processes and problems arising
from applications to stochastic processes. The semigroup arising from the
heat equation may also fail to be strongly continuous in certain function
spaces; see §3 of [2]. It seems plausible that a theory for semigroups which
are not necessarily strongly continuous could still be based on the method
of Laplace transforms. However, the representation theorems available for
Laplace transforms of vector-valued functions appear to be too restrictive
for such applications.

Accordingly, the aim of this note is to provide more general criteria
which guarantee that a given vector-valued function is a Laplace trans-
form. The results are based on the classical Widder inversion operators
(see §2). The functions involved will assume their values in locally convex
spaces. This is not because they are more general than Banach spaces, but
because they provide the natural setting for problems of this type.

A novelty of the note occurs in §5 where sufficient conditions are
presented which ensure that a given function is the Laplace transform of a
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Pettis integrable function. This is possible due to some recent work of S.
Okada which characterizes the completion of the space of strongly mea-
surable, Pettis integrable functions for the topology of convergence in
mean, as a space of Pettis integrable functions with values in an auxiliary
space containing a copy of the original space. Even for Banach spaces
such a criterion was not previously available.

The author would like to thank Professors I. Kluvanek and S. Okada
for valuable discussions, especially concerning §5.

2. Notations and preliminaries. For a vector-valued function there
are many possible ways of defining measurability and integrability. Some
of these definitions may be considered as natural extensions of the
numerical-valued case. This is in particular true for Bochner integrable
functions [3]. However, in practice many functions fail to have such strong
properties and hence, more general definitions are needed. In this section
we give the basic definitions and results concerning measurability and
integrability of vector-valued functions which are needed in the sequel.

Let X be a locally convex Hausdorff space, always assumed to be
quasi-complete. The space of continuous linear functionals on X and the
space of all linear functionals on X are denoted by X’ and X*, respec-
tively.

An X-valued vector measure is a o-additive map m: # — X, whose
domain / is a o-algebra of subsets of some non-empty set Q. For each
x" € X', the complex-valued measure E — (m(E), x'), E € #, is de-
noted by (m, x"). Its variation is denoted by |(m, x)|.

For each continuous seminorm ¢ on X, let U; denote the polar of the
neighbourhood, 47 1([0, 1]), of zero. Then the g-semivariation of a vector
measure m: # — X is the set function g(m) defined by

q(m)(E)=sup{[(m,x’)|(E);x’e U;}, Eeu.

For each continuous seminorm g on X, the function m — g(m)(Q) is a
seminorm for the space of X-valued vector measures on .#. The so-de-
fined topology for the space of X-valued vector measures on .# is called
the topology of convergence in mean.

Let m: # — X be a vector measure. A complex-valued, #-measurable
function f on © is said to be m-integrable if it is integrable with respect to
every measure (m, x’), x’ € X', and if, for every set E € .#, there exists
an element [ f dm of X such that

<fEfdm,x'> = [[fa(m. =),
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for each x” € X’. The element [ f dm is denoted simply by ( fm)(E). The
X-valued map

fm:E— (fm)(E), EcMH,
is called the indefinite integral of the function f with respect to the
measure m. The Orlicz-Pettis lemma implies that it is a vector measure.

Let # be a o-algebra of subsets of a non-empty set £ and A be a
countably additive measure on .#, either complex-valued or non-negative
extended real-valued.

A function f: @ — X is said to be Pettis integrable with respect to A
or briefly, A-integrable, if the function ( f, x"): w — (f(w), x"), w € &, is
A-integrable for each x” € X’, and if, for very set £ € .#, there exists an
element [, fdA of X such that

<fEfd)\,x’> =fE<f, x'YdA,

for each x” € X’. The element [, fdA is denoted simply by (fA)(E). The
Orlicz-Pettis lemma implies that the indefinite integral of f, that is, the
map fA: E - (fANE), E <€ #, is an X-valued vector measure. The
element ( fA)(2) is denoted simply by A(f).

Let f be an X-valued function on . If the function (f, x") is
#-measurable for each x” € X’, then fis said to be scalarly measurable. If
there exists a sequence f,: & —» X, n=1,2,..., of #-simple functions
based on sets of finite A-measure such that f(w) = lim,_  f,(w), for
A = a.e. point w € Q, then fis called strongly measurable.

A topological space is called a Suslin space if it is the continuous
image of a complete, separable metric space. The properties of Suslin
spaces are systematically exposed in [20]; see also [21]. For such spaces
there is a strong relationship between the various notions of measurability.

LEmMMA 2.1. Let X be a Suslin, locally convex space and A: M — [0, c0]
be a o-finite measure. The following conditions for a function f: Q — X are
equivalent.

(i) f is Borel measurable, that is, f~(B) € M for every Borel subset B
of X.
(i1) f is scalarly measurable.
(iii) f is strongly measurable.

Proof. See [21; Theorem 1] and [13; IV Theorem 2.3].

The following results are concerned with the representation of weakly
compact operators defined on L'-spaces.
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LEMMA 2.2. Let A\: # — [0, 0] be a o-finite measure and f: @ — X be a
scalarly measurable function with relatively weakly compact range. Then f is
Pertis integrable with respect to each measure Y\, Y € LY(\), and the linear
operator ®: L}(\) — X given by

(1) o(y) = (yA)(f), v eL'(A),

is weakly compact.

Proof. The integrability of f with respect to each finite measure YA,
¥ € LY()N), follows from [21; Lemma A]. A simple bipolar argument
shows that if B denotes the closed balanced convex hull of the range of f,

then
‘< f 1y d}\,x’>
E

for each ¥ € LY(\). Hence, {®(¥); ¥ € L'(A), ||¥|l;, < 1} is a subset of
B. 1t follows from the Krein-Smulian theorem for quasi-complete spaces
that B is weakly compact and hence, that @ is a weakly compact operator.

S”“Mll’ x' € Bo’

It is rather the converse of Lemma 2.2 which is needed in the sequel.
This is the Dunford-Pettis theorem [4, VI Theorem 8.10], which in the case
of a separable Banach space X, states that any weakly compact operator
®: L}(A) - X is of the form (1). In fact, any function f representing ® in
the form (1) is necessarily strongly measurable with A-a.e. value in a
weakly compact set. Accordingly, the integral in (1) is in the sense of
Bochner. As noted in [21], the Dunford-Pettis theorem can be extended to
a larger class of spaces.

PROPOSITION 2.3. Let X be a Suslin, locally convex space and A:
M — [0, 0] be a o-finite measure. If ®: LY(\) > X is a weakly compact
operator, then there exists a (A-unique) strongly measurable function f:
Q — X with values in a weakly compact set such that ® is given by (1).

Proof. Let K denote the weak closure of { ®(¢); ¢ € LYA), ||¢]l, < 1}.
Since X is Suslin for the weak topology [21; p. 69] and K is weakly closed,
it follows that K is Suslin and compact for the weak topology and hence,
that K is metrizable for the weak topology [1; Ch. 9, Corollarie 2,
Appendix 1]. Accordingly, K has a countable base for the weak topology.
The result follows from [4; VI Theorem 8.2] and Lemma 2.1.

If the function representing ® in (1) is not required to be strongly
measurable, then the following extension of the Dunford-Pettis theorem is
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possible. The proof, which uses the theory of liftings, was suggested by
Dr. B. Jefferies.

PROPOSITION 2.4. Let A: A — [0, 0] be a complete, o-finite measure
and X be a quasi-complete, locally convex space. If ®: L'(A\) » X is a
weakly compact operator, then there exists a weakly Borel measurable
function f: Q — X with relatively weakly compact range such that ® is given

by (1).

Proof. Let Q,, k = 1,2,..., be disjoint measurable sets, each of finite
A-measure, whose union is . If K denotes the closure of the convex set
{®(Y); ¥ € LYN), ||[¢]l; < 1}, then K is weakly compact.

Foreach k = 1,2,..., define a set function m,: 4 N Q, - X by

m(E)=®(x;), EcHN,.

Then m, is a vector measure whose A-average range, { m,(A4)/A(A); A €
M N Ry, AN(A) > 0}, is contained in K. Hence, each measure m,, k =
1,2,..., has relatively weakly compact range contained in K. It follows
(see [S; Theorem 1.2] or [22; Corollary 1.7]) that there is a weakly Borel
measurable function f,: €, — K such that

m(E) = (fM(E), E€ANQ,,

foreachk =1,2,....

Let f = X%_, f,- Then f is a weakly Borel measurable function on £
with range contained in K. If E € . has finite A-measure, then it is easily
shown that

) ®(xz) = (fANE).

A standard argument using (2), the weak continuity of ® and the density
of the #-simple functions in L'()\), shows that ® is given by (1).

It is worth noting that slightly more has been shown than asserted in
the Proposition. Namely, it follows from [5; Theorem 1.2] that the image
measure A o ! is actually (weakly) Radon. Hence, using an argument
similar to that in the proof of IV Corollary 1.2 of [14], it follows that if g:
@ — X is another weakly Borel measurable function representing ® such
that A o g~ ! is (weakly) Radon, then f and g agree A-a.e.

For the remainder of this section @ = [0, c0) , A is the o-algebra of
Borel sets in {2 and A is Lebesgue measure.

A function f: (0, 00) — X is said to be a Laplace transform if there
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exists a scalarly measurable function ¢: & — X which is Pettis integrable
with respect to the measure

3) A,;EH/ e ™aw, Ec M,
E

for each ¢ > 0, and such that
(4) F(0) =N(8) = [~ e p(w) dw, 1>0.

The relation (4) is denoted by f = ¢.

Let f be an infinitely differentiable, complex-valued function defined
on (0, o0). The Widder differential operators L,, k = 1,2,..., are defined
by
(5)  Li(£)(w) = (=D (k) (k/w) " f O (k/w),  w>0.

The following result follows from [24; VII Theorem 11b].

LEMMA 2.5. Let f be a complex-valued function with derivatives of all
orders in (0, 00). If for each k = 1,2,...,

fo" L(f)dw=0(v), v- o,

then f(o0) exists, and

lim fow e L (f)(w)dw = f(1) — f(s0), 1> 0.

k— o0

If a function f: (0, o0) = X has weak derivatives of all orders, in the
sense of Definition 3.2.3 in [12], then the Widder differential operators (5)
can be applied to f giving a sequence of X-valued functions

w = Lk(f)(w)’ w > 0,
fork =1,2,....

3. Laplace transforms of continuous functions. In Chapter VII, §5
of [24] it is shown that if ¢ is a continuous, complex-valued function on
[0, c0) with a limit at infinity, then

(6) lim L,(3)(w) = (w)
uniformly in 0 < w < oo. Several authors have noted various analogoues

of (6) in the case when ¢ is a vector-valued function; see for example [12;
Theorem 6.3.5] and [16; Theorem 2.5] for Banach spaces or [6; Auxiliary
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Lemma 3.2] for more general spaces. This section is concerned rather with
the converse problem, namely when a given function is the Laplace
transform of some continuous function.

Let X be a quasi-complete, locally convex space. The linear space of
all continuous functions ¢: [0, 00) — X for which lim,_,  ¢(w) exists in
X, is denoted by %,(X). For each continuous seminorm g on X, define a
seminorm § on %,(X) by

(7) 3(¢) = sup{q(o(w)): w20}, ¢ € %(X).

Then %,(X) is a sequentially complete, locally convex space.

Let ¢ € %,(X). Since ¢ is Lusin A,-measurable, ¢ > 0 [15; §2], and
bounded it follows that ¢ is Pettis integrable with respect to each of the
finite, regular measures A,, ¢ > 0, given by (3); see for example [15;
Lemma 4] extended to quasi-complete spaces. Hence, the Laplace trans-
form of ¢ is defined.

Let #(X) denote the linear space of all X-valued functions f on
(0, o0), with weak derivatives of all orders (see §2), such that

(®) L)) = lim L,(f)(),
exists in X for each k =1,2,.... It is tacitly assumed that whenever
f € F(X), each of the maps L,(f): (0,00) = X, k =1,2,..., has been
extended to [0, c0) by declaring its value at zero to be the limit (8).
LEmMMA 3.1. Let ¢ € €,(X). Then for eachk = 1,2,...,
Tim L,(3)(w) = $(0).
In particular, ¢ belongs to # ( X).

Proof. 1t follows from (4) and (5) that ¢ has weak derivatives of all
orders (equal to (17) for each k = 1,2,...) and that

%) Lk(<i>)(W)=(k!)(k/W)k+1f she™t/"p(s) ds,  w >0,

[o0]
0
for each k = 1,2,.... Substituting u = ks/w gives

L(#)(w) = (k) [ " uke g (uw/k) du,  w >0,

foreachk =1,2,....
Fix k. Let w, » 0 + . Define bounded, continuous functions ¢,:
[0,0) = X,n=1,2,..., by

o, (u) = (k') ‘ure ¢ (uw,/k), u = 0.
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If Y(u) = (k") uke ™ *?%$(0), u > 0, then ¢, > ¢ in €,(X) as n - .
Hence, it follows from the inequalities

‘I(j(; ¢ndA1/2_'[) ‘l‘d}‘vz)ﬁ[) q(¢, — ¥) dA, ,, n=12,...,

valid for each continuous seminorm g on X, and the Dominated Conver-
gence Theorem for the finite measure A, , that

Jim Ly()(w,) = lim [ 0,(u) d, ()
_f Y (u) d>\1/2 u) = ¢(0).

PROPOSITION 3.2. 4 function f: (0, 00) — X is the Laplace transform of
a function in €,(X), if and only if,
(i) f € F(X)
(i1) f vanishes at infinity with respect to the weak topology on X,
(ii) foreach k = 1,2,..., and x’ € X/,

/OU L({f, x))(w) dw = 0(v), v — 0,

(iv) the sequence { L,(f)}%-, is Cauchy in €,(X).
If such a function exists in €,( X), then it is unique.

Proof. 1f (i) — (iv) hold, then there exists a function ¢ € %,( X) such
that L,(f) — ¢, uniformly on [0,00). In particular, L,({f, x)) —
(¢, x"y, uniformly on [0, o) , for each x’ € X’. Accordingly, if ¢ > 0 and
t > 0, then there exists an integer k, = k,(¢, ¢, x’) such that k > k,
implies

< ¢t, w > 0.

lLk(<fa x'))(w) -
Thus, for k > k,,

/w e L, ({f,x"))(w) dw — _[)OO e "{(w), x")dw

0

< gt ” e "dw = &.
J
It follows from Lemma 2.5 that
(10) (). x)= [ e p(w), x)dw, 1> 0.
0

Since this holds for all x” € X', it follows that the function f is the
Laplace transform of ¢.
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Conversely, suppose that f= ¢ for some ¢ € %,(X). Lemma 3.1
implies that f € #(X) which is (i). If x" € X', then M, =
sup{ { ¢(w), x")|; w > 0} is finite and

l(f(t),x’)lsMx,fOoo e™daw=1t"M,->0, - co.

Hence, (ii) holds.
It follows from (9) that foreach x’ € X’ and k = 1,2,...,
L((f, D) (w) = (k) " (k/w) ™ [ " ste/w(p(s), x')ds, w0,
Since foreachw > 0and k= 1,2,...,
(11) (k!)“(k/w)"+‘f0°° skeks/w gs = 1,
it follows that
[ L xN o vl < M, [ dw=0(0), 0= o,

which is (iii).

The proof of (iv) is analogous to that of [24; VII Theorem 5b]; see for
example [23; Theorem 1.12]. It is for this part of the argument that the
existence of lim,,_, _ ¢(w) is needed. Hence, the conditions (i) — (iv) are
necessary.

Denote by %,(X) the linear space of all bounded, continuous X-val-
ued functions on [0, ) . If €,(X) is equipped with the topology induced
by the seminorms (7), for each continuous seminorms (7), for each
continuous seminorm ¢ on X, then it is a sequentially complete, locally
convex space.

An examination of the proof of Proposition 3.2 shows that the
sufficiency of the conditions (i)—(iv) did not require the existence of
lim,_,  ¢(w). Accordingly, if f: (0, 00) = X is a function satisfying the
conditions (i)—(iii) of Proposition 3.2 and such that the sequence
{ Ly (f)}%-1 is Cauchy in %,(X), then f is the Laplace transform of a
unique function in %,( X).

The space %,(X) cannot be replaced by the space of all continuous
X-valued functions on [0, o) as the Laplace transform of such functions
may not be defined.

4. Laplace transforms of bounded measurable functions. The proofs
of those criteria which guarantee that a given Banach space valued
function is the Laplace transform of a bounded, strongly measurable
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function and which are formulated in terms of a family of inversion
operators, are usually based on the Dunford-Pettis theorem; see for
example [17], [19], [23], [25]. As noted in §2, versions of the Dunford-Pet-
tis theorem can be extended to a larger class of spaces. In this section the
problem of representing a given function as the Laplace transform of a
bounded measurable function is considered in a more general setting.

LeMMA 4.1. Let f: (0, 00) — X be a function having weak derivatives of
all orders. Then there exists a closed, separable subspace Y of X which
contains the range of L,(f) for each k = 1,2,.... If Y is Suslin for the
relative topology induced by X, then the functions L, (f), k = 1,2,..., are
strongly measurable. In particular, if X is a Fréchet space, then each
function L, (f), k = 1,2,..., is strongly measurable.

Proof. Since L,(f) is weakly continuous for each k =1,2,..., it
follows that R = { L, (f)w);w >0, k=1,2,...} is weakly separable.
Accordingly, the smallest closed linear subspace Y of X containing R is
weakly separable, hence separable. If Y is Suslin, then Lemma 2.1 implies
the functions L,(f), k = 1,2,..., are strongly measurable. In particular,
this is the case if X is a Fréchet space as separable Fréchet spaces are
Suslin.

Let X be a quasi-complete, locally convex space. Let f: (0, c0) = X be
a function having weak derivatives of all orders. Being weakly continuous,
each of the functions L,(f), k = 1,2,..., is weakly (Lusin) y A-measura-
ble [15; §2] with respect to each of the finite, regular measures YA,
¢ € LY()), where A denotes Lebesgue measure on [0, o) . If each function
L,(f), k=1,2,..., is Pettis integrable with respect to each of the
measures YA, Y € L'(A), then a sequence of linear operators ®,(f):
L'(\) » X, k =1,2,..., can be defined by

[e e}
12) 2 (NW) = [ LNmy(w)dw, ¢ L),

D. V. Widder characterized those functions on (0, co) which are the
Laplace transforms of bounded measurable functions [24; VII, §16].
Using the theory of Bochner integration this result was extended to
Banach space valued functions in [17; Theorem 4] and [25]. The following
two propositions can be interpreted as a natural extension of this se-
quence of results.

PROPOSITION 4.2. Let X be a Fréchet space and f: (0,00) > X a
function. Then f is the Laplace transform of an X-valued, strongly measura-
ble function on [0, c0) with relatively weakly compact range, if and only if,
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(i) f has weak derivatives of all orders.
(ii) f vanishes at infinity with respect to the weak topology on X,
(iii) for each k = 1,2,..., the function L (f) is Pettis integrable with
respect to each measure Y\, € LY(\), and
(iv) the set {®, (f)(¥); ¥ € L'A), ||¥ll, < 1, k =1,2,} is relatively
weakly compact.

Proof. Let K denote the weak closure of { ®,(f)(¥); ¥ € LY(N), [|¥]);
<1, k=12,...}. It follows from [11; (1), p. 39] that any sequence in K
has a weakly convergent subsequence. Using this fact it follows from an
argument as in the proof of Theorem 9.1 of [19], that there is an increasing
sequence of integers { k;}92, such that the limits

(13) (weak) lim @, (/)(¥), ¥ L),

exist in X. Hence, the linear operator ®( f): L'(A) — X whose value at
each point ¢ € L'()) is declared to be the limit (13), is weakly compact.

Lemma 4.1 implies that there exists a closed, separable subspace Y of
X which contains the set { L,(f)(w); w > 0,k =1,2,...}. If ¢ € L'(N) is
finitely-valued, then it is clear from (12) that ®,(f)(¢) € Y, for each
k=1,2,..., and hence, that ®,(f)(¢) € Y for each ¢y € L}(A) and
k=1,2,.... Then (13) shows that ®(f) assumes its values in Y. By
Proposition 2.3 there is a strongly measurable, Y-valued function ¢
defined on [0, c0) with values in a weakly compact subset of Y, hence of
X, such that

(14) ®(f)(y) = /0°° s(w)y(w)dw, e L}A).

Since w = e, w > 0, belongs to L(\) for each ¢ > 0, it follows
from (13) that

(15) [~ e 9(w) dw = (weak) lim [~ 7L, (f) dw,
0 100 Y0

for each ¢+ > 0. The boundedness of K implies that for each x” € X’ there
is a positive constant M, satisfying

LIS D) | = sup (@9, %) M.

sup
Il <1

fork =1,2,.... That s,
ess-sup [L,((f, x)(w)|< M., k=1,2,....
w>0
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Also condition (ii) implies that lim,_, ( f(¢), x") = 0, for each x" € X".
Hence, Lemma 2.5 and (15) imply that for each x” € X’,

(16) <f(t),x’>=<f0oo e o (w) dw,x’>, t>0.

That is, f = ¢.

Conversely, suppose that ¢: [0, 0) — X is strongly measurable and
has relatively weakly compact range. Let K denote the closed balanced
convex hull of the range of ¢. Since for each k = 1,2,..., the function
w — w¥e ™" w > 0, is A-integrable for each ¢ > 0, it follows from Lemma
2.2 that

(17) (—l)kfoo(J wke ™o (w) dw

is an element of X, for each k =1,2,..., and ¢ > 0. It is then easily
verified that ¢ has weak derivatives of all orders; in fact (¢)*(¢) is equal
to(17) foreachk =1,2,..., and ¢ > 0.

If x” € X, then there is a constant M, > 0 such that |{¢(w), x")| <
M., for each w > 0. Accordingly, the estimate

(B0, = [ e I(o0w), ¥ < Mt 1>,

shows that ¢ vanishes at infinity with respect to the weak topology on X.

It follows from (5) and (17) that Lk(ﬁb)(w) is given by (9) for each
k=1,2,..., and w > 0. Since [° Y(w)$p(w) dw € K for each ¢ € L} ()
with [|¢]l; < 1 (see proof of Lemma 2.2) it follows from (9) and (11) that
Lk(é)(w) € Kforeachk =1,2,..., and w > 0. Lemma 2.2 then implies
that condition (iii) is satisfied.

It is clear from (12) that d)k(és)(xp) € K whenever ¢ is a finitely-val-
ued integrable function with |||, < 1 and hence, it follows that ® k((}b)( Y)
€ Kforallk =1,2,..., and ¢ € L'(\) such that ||¢||, < 1 (recall that K

is closed, balanced and convex). Hence, condition (iv) is satisfied.

The above proof is based on the fact that if a subset of a metrizable
space is weakly compact then it is also weakly sequentially compact.
Suslin spaces also have this property. This follows from a theorem of
Hausdorff which asserts the equivalence of compactness and sequential
compactness in metric spaces and the fact that a weakly compact subset of
a Suslin space is metrizable (see the proof of Proposition 2.3). Accord-
ingly, Proposition 4.2 is valid if in its statement the space X is any Suslin,
locally convex space.

D. H. Fremlin introduced a class of topological spaces called angelic
spaces which have the property that a subset is compact, if and only if, it
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is sequentially compact. As already noted, many locally convex spaces are
angelic for the weak topology. A systematic exposition of such spaces can
be found in [11; Chapter 3].

PROPOSITION 4.3. Let X be a quasi-complete, locally convex space which
is angelic for the weak topology. A function f: (0, 00) — X is the Laplace
transform of an X-valued, weakly Borel measurable function on [0, 00) with
relatively weakly compact range, if and only if, if satisfies the conditions
(i)—(iv) of Proposition 4.2.

Proof. Suppose that f satisfies the hypotheses of Proposition 4.2.
Using the fact that X is angelic for the weak topology, it follows as in the
proof of Proposition 4.2 that there is an increasing sequence of positive
integers { k,}°, and a weakly compact operator ®(f): L'(A) = X whose
value at each point ¢ € L'()) is given by the limit (13). Proposition 2.4
gives the existence of a weakly Borel measurable function ¢: [0, 0) — X
with values in a weakly compact subset of X such that ®( f) is given by
(14). The proof can now be completed as in the proof of Proposition 4.2.

5. Laplace transforms of integrable functions. Let A denote
Lebesgue measure on [0, c0) . It is well known that a complex-valued
function f on (0, o) is the Laplace transform of an integrable function, if
and only if, f has derivatives of all orders, vanishes at infinity and
{L,(f)}%?-, is a Cauchy sequence in L'()), [24, VII, Theorem 17a). If X is
a Banach space and B;(X) the space of X-valued, Bochner integrable
functions defined on [0, o) , equipped with the usual norm

ls= [~ le(wllaA(w). g B (),

then the same criterion characterizes those functions f: (0, c0) — X which
are the Laplace transform of members of B,(X), [17, Theorem 5]. The
completeness of B,(X) guarantees the existence of a limit, ¢, of the
sequence { L (f)}¢.,, and it follows that f= ¢. However, as noted
previously, the requirement of Bochner integrability is unduely restrictive
in practice.

Let 2,(X) denote the space of X-valued, Pettis integrable functions
defined on [0, o0) , equipped with the topology of convergence in mean of
indefinite integrals. If f: (0, o0) — Xis a function for which { L, ( f)}%_; 1s
a Cauchy sequence in the space #,( X), then it is not in general possible to
deduce the existence of a limit of { L, (f)}%_, in Z,( X). This is due to the
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fact that #,( X) is not complete. However, if the function whose trans-
form is f need not assume its values in X, then this difficulty can be
overcome.

Throughout this section X denotes a Fréchet space with topology
specified by a sequence of seminorms q,, n = 1,2,....

Let Y be a locally convex Hausdorff space such that there exists a
continuous linear injection of X into Y. Then the space Y’ can be
identified with a subspace of X’ which separates the points of X.

A Y-valued function f defined on [0, o) is said to be (X, Y)-Archi-
medes integrable with respect to A, [18], if there exist vectors ¢; € X and
Borel sets E; [0, 0),i=1,2,..., of finite \-measurable such that

(i) the sequence of sets { c,A(F); F Borel, F C E;}, is summable in
X, in the sense of [18], and

(i) if y” € Y7, then the equality

(7)) = X (e 0).

holds for every w > 0 such that £, [(c,, y')|x z(w) is finite.
The indefinite integral of f with respect to A is the X-valued vector

measure fA given by
[e e}

(fA)E) = Z AEN E)c,,

i=1
for each Borel set E C [0, o0) .
The vector space of all (X, Y)-Archimedes integrable functions on
[0, ) is denoted by Ly(A; X, Y). Each seminorm ¢,, n = 1,2,..., on X
induces a seminorm on Ly(A; X, Y') given by the formula

= a.(fA)[0,0)), feLy(r; X,Y).
The so defined semi-metric space Ly(A; X,Y) may not be Hausdorff.
This can be overcome in the usual way by declaring two elements f and g
of L,(A; X, Y) to be equal if

2.((f = g)A)([0,0)) =0, n=1,2,....

This is equivalent to the requirement that {f, y’) = (g, y’) A-a.e. for
each y’ € Y’. The resulting Hausdorff, locally convex metric space (of
equivalence classes) is denoted by L(A; X, Y). It contains the X-valued
simple functions as a dense subspace. In particular, if Ly(A; X,Y) is
complete, then L(A: X, Y) is a Fréchet space. It is the completion of the
space of X-valued simple functions on [0, cc) for the topology of conver-
gence in mean of indefinite integrals.

The existence of spaces Y for which Ly (A; X,Y) is complete is
guaranteed by the following result, [18].
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PROPOSITION 5.1. The locally convex space Ly(A; X, X'*) is complete
and contains as dense subspaces the space of X-valued simple functions based
on sets of finite \-measure and the space of strongly measurable, X-valued
Pettis integrable functions on [0, o0) .

The following result provides sufficient conditions for an X-valued
function on (0, c0) to be the Laplace transform of an X’*-valued, Archi-
medes integrable function.

PROPOSITION 5.2. Let f be an X-valued function having weak derivatives
of all orders in (0, c0) such that f vanishes at infinity with respect to the weak
topology on X and { L, (f)}¥-. is a Cauchy sequence in ,( X). Then there
exists a unique (X, X'*)-Archimedes integrable function on [0, c0) whose
Laplace transformis f.

Proof. 1t follows from Lemma 4.1 that each function L,(f), k =
1,2,..., is strongly measurable and hence, is ( X, X'*)-Archimedes inte-
grable. Proposition 5.1 implies that there exists an ( X, X'*)-Archimedes
integrable function ¢ such that L,(f) —» ¢ in L(A; X, X'*). Since the
function w — ¢7 "', w > 0, is bounded and measurable for each ¢ > 0, it
follows that e (V%(-) is (X, X’*)-Archimedes integrable [18; Corollary 4].
Hence, the Laplace transform of ¢ is defined and takes its values in X.

If x” € (X’*), then also x” € X’. Accordingly,

(18) <j:o e Vo(w) dw, x'> = fow e " (p(w), xYdw, t>0.

Since (L, (f), x’) = (¢, x’y in L}N), it follows that (10) is valid for all
x" € (X", [24; VII Theorem 17a]. Then (18) implies that (16) holds and
hence, that f = ¢.

Let ¢ be another ( X, X"*)-Archimedes integrable function such that
f = 4. It follows from (18) that for each x” € (X"*)’,

/:0 e " (o(w), x")dw = fow e (y(w), x")aw, 1>0.

Hence, (¢, x") = (Y, x’) A-a.e. [4; VIII Lemma 1.15] for each x’ € (X"*)’,
that is, ¢ = ¢ in the space L(A; X, X'*).

It is worth noting that for particular spaces X it may be possible to
replace the space X’* in Proposition 5.2 by a substantially smaller space.
For example, if X is a separable Hilbert space and I' is a complete
orthonormal basis for X’, then the vector space CT, consisting of all
complex-valued functions on I' equipped with the natural linear opera-
tions, is a Fréchet space with respect to the topology of pointwise
convergence. Furthermore, X is continuously imbedded in CT and the
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space L(A; X,CT) is complete, [18; §2]. Accordingly, if a function f:
(0, o) — X satisfies the hypotheses of Proposition 5.2, then there exists a
unique ( X, CT)-Archimedes integrable function on [0, o) whose Laplace
transform is f.

The formulation of the converse statement to Proposition 5.2 does not
require the completeness of the space L(A; X, Y).

PROPOSITION 5.3. Let Y be a locally convex space in which X is
continuously included. If ¢ is an (X, Y)-Archimedes integrable function on
[0, 00) , then

(i) ¢ has weak derivatives of all orders and vanishes at infinity with
respect to the weak topology on X,

(i) the X-valued functions L k(i&), k=1,2,..., are strongly measurable
and Pettis A-integrable, and

(ii1) the sequence { Lk(gﬁ)}‘,’(‘;1 is Cauchy in the space #( X).

Proof. Let m = ¢\ denote the indefinite integral of ¢ with respect to
A. Then m is an X-valued vector measure whose Laplace transform is ¢,
that is,

$(1) = f°° e "o (w) dw = f°° e am(w), t>0.
0 0

It follows that ¢ has weak derivatives of all orders and that L k(c}s) is Pettis
integrable for each k = 1,2,..., [23; Theorem 1.6]. The strong measura-
bility of the functions L k(&)), k=12,..., follows from Lemma 4.1.

Let ¢, = oo. Then the sequence of functions w — e~ ">, w > 0, for
each n=1,2,..., converges pointwise t0 X,. It follows from the
Dominated Convergence Theorem for vector measures that

lim ($(z,),x") = (m({0}.), x'),

for each x” € X'. That is, lim,_, o(1) = m({0}) weakly in X. However, if
y’ € Y, then (¢, y’) € LY(\) and

(m({0}), y") = fow X0y (W){e(w), y')dw = 0.

Since Y’ separates points of X it follows that m({0}) = 0 and hence, that
lim,_, é(t) = 0 weakly in X.

To verify (iii) let ¢ > 0. Fix a seminorm ¢, determining the topology
of X. There exist points ¢, € X, 1 <i < r, and Borel sets E, C [0, ) ,
1 < i < r, of finite Lebesgue measure such that the function s = X7_, ¢;x ¢,
satisfies

4,(hA — ¢h)([0, 0)) < e.
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Let p = hA — ¢A. If k is a positive integer, then it follows from Fubini’s
theorem and the identity (11) that

fow [(L(9)(&) — Li(R)(§), x")|d¢

< [ R0 ) [T whem Bl ) (w))

=[(r, x)[([0, 00)),
for each x” € X’. Accordingly,

3.(Li(9)A = L, (R)A)([0, 0))
(19) < sup{[{p, x)[([0, 0)); x" € U}
= q,(hA = ¢A)([0, ®0)) < ¢,

foreachk =1,2,...
Choose a > 0 such that g,(¢;) < @,1 < i < r. Since

qn(Lk(h)A - L,(iz))\)([O, 0))

< sup Y |<Ci’ x')| ”Lk(i(E,) - L/(XE,)HI,
x’eU‘;: i=1
for each k, /=1,2,..., and Xk € LYMN), 1 <i <r, there is a positive
integer N such that

(20) g, (Le(B)A = L(R)A)([0,0)) < e(ar) ™" sup Z (e x")| < e,

x'elp i=1

for all k,/ > N. It follows from (19) and (20) that
4.(Li($)X = L($)A)([0,0)) < 3e, k1= N.
This shows that the sequence { L,($)}%_, is Cauchy in 2,( X).
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